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Function Reference

Data Import and Processing (p. 1-3)

Linear Model Identification (p. 1-5)

Nonlinear Black-Box Model
Identification (p. 1-9)

ODE Parameter Estimation (p. 1-12)

Recursive Model Identification
(p. 1-13)

Model Analysis (p. 1-14)

Represent, process, analyze, and
manipulate data

Estimate time response, frequency
response, transfer function,
input-output polynomial, and
state-space models from time and
frequency domain data

Estimate nonlinear ARX and
Hammerstein-Wiener models

Estimate parameters of linear and
nonlinear ordinary differential

or difference equations (grey-box
models)

Recursively estimate input-output
linear models, such as AR,

ARX, ARMAX, Box-Jenkins, and
Output-Error models

Validate and analyze models by
comparing model output, computing
parameter confidence intervals and
prediction errors, and getting advice
on estimated models



1 Function Reference

Simulation and Prediction (p. 1-19)

System Identification Tool GUI
(p. 1-20)

Simulate and predict linear and
nonlinear model output, and
estimate initial states

Start System Identification
Toolbox™ GUI and customize
preferences



Data Import and Processing

Data Import and Processing

absorbDelay Replace time delays by poles at z=10
or phase shift

advice Analysis and recommendations for
data or estimated linear models

detrend Subtract offset or trend from data
signals

diff Difference signals in iddata objects

feedback Identify possible feedback data

getexp Specific experiments from
multiple-experiment data set

getTrend Data offset and trend information

iddata Time- or frequency-domain data

idfilt Filter data using user-defined

passbands, general filters, or
Butterworth filters

idfrd Frequency-response data or model

idresamp Resample time-domain data by
decimation or interpolation

ifft Transform iddata objects from
frequency to time domain

merge (iddata) Merge data sets into iddata object

misdata Reconstruct missing input and
output data

nkshift Shift data sequences

pexcit Level of excitation of input signals

realdata Determine whether iddata is based

on real-valued signals
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1-4

resample

retrend

TrendInfo

Resample time-domain data by
decimation or interpolation (requires
Signal Processing Toolbox™
software)

Add offsets or trends to data signals

Offset and linear trend slope values
for detrending data



Linear Model Identification

Linear Model Identification

advice

ar

armax

armaxOptions
arOptions

arx

arxOptions

arxstruc

bj

bjOptions
cad

c2dOptions

canon

chgFrequnit

chgTimeUnit

cra

d2c

Analysis and recommendations for
data or estimated linear models

Estimate parameters of AR model

for scalar time series

Estimate parameters of ARMAX
model using time-domain data

Option set for armax

Option set for ar

Estimate parameters of ARX or AR
model using least squares

Option set for ar

Compute and compare loss functions
for single-output ARX models

Estimate Box-Jenkins polynomial
model using time domain data

Option set for bj

Convert model from continuous to

discrete time

Create options for continuous- to
discrete-time conversions

State-space canonical realization

Change frequency units of
frequency-response data model

Change time units of dynamic

system

Estimate impulse response using
prewhitened-based correlation

analysis

Convert model from discrete to

continuous time
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d2cOptions

d2d
d2dOptions

delayest

etfe

feedback
fft

findstates(idParametric)

findstatesOptions

idfrd

idpar

idpoly

idproc

idss

idssdata
idtf

impulseest

init

Create option set for discrete- to
continuous-time conversions

Resample discrete-time model

Create option set for discrete-time
resampling

Estimate time delay (dead time)
from data

Estimate empirical transfer
functions and periodograms

Identify possible feedback data

Transform iddata object to
frequency domain data

Estimate initial states of identified
linear state-space model from data

Option set for findstates
Frequency-response data or model

Create parameter for initial states
and input level estimation

Polynomial model with identifiable
parameters

Continuous-time process model with
identifiable parameters

State-space model with identifiable
parameters

State-space data of identified system

Transfer function model with
identifiable parameters

Nonparameteric impulse response
estimation

Set or randomize initial parameter
values



Linear Model Identification

iv4

iv40ptions

ivar

ivstruc

ivx

merge

n4sid

n4sidOptions

nuderst

oe

oeOptions

pem

pexcit

polydata

polyest

polyestOptions

procest

procestOptions

ARX model estimation using
four-stage instrumental variable

method.

Option set for iv4

AR model estimation using
instrumental variable method

Loss functions for sets of ARX model

structures

ARX model estimation using
instrumental variable method with
arbitrary instruments

Merge estimated models

Estimate state-space model using a

subspace method.

Option set for n4sid

Set step size for numerical

differentiation

Estimate Output-Error polynomial
model using time or frequency

domain data

Option set for oe

Prediction error estimate of linear or

nonlinear model

Level of excitation of input signals

Access polynomial coefficients and
uncertainties of identified model

Estimate polynomial model using
time or frequency domain data

Option set for polyest

Estimate process model using time

or frequency data

Options set for procest
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segment

selstruc

spa

spafdr

S$S2ss
ssest
ssestOptions

struc

tfdata
tfest
tfestOptions

Segment data and estimate models
for each segment

Select model order for single-output
ARX models

Estimate frequency response with
fixed frequency resolution using
spectral analysis

Estimate frequency response and
spectrum using spectral analysis
with frequency-dependent resolution

State coordinate transformation for
state-space model

Estimate state-space model using
time or frequency domain data

Option set for ssest

Generate model-order combinations
for single-output ARX model
estimation

Access transfer function data
Transfer function estimation

Options set for tfest



Nonlinear Black-Box Model Identification

Nonlinear Black-Box Model Identification

addreg Add custom regressors to nonlinear
ARX model
customnet Custom nonlinearity estimator

for nonlinear ARX and
Hammerstein-Wiener models

customreg Custom regressor for nonlinear ARX
models

data2state(idnlarx) Map past input/output data to
current states of nonlinear ARX
model

deadzone Class representing dead-zone

nonlinearity estimator for
Hammerstein-Wiener models

evaluate Value of nonlinearity estimator at
given input

findop(idnlarx) Compute operating point for
nonlinear ARX model

findop (idnlhw) Compute operating point for
Hammerstein-Wiener model

findstates(idnlarx) Estimate initial states of nonlinear
ARX model from data

findstates(idnlgrey) Estimate initial states of nonlinear
grey-box model from data

findstates(idnlhw) Estimate initial states of nonlinear
Hammerstein-Wiener model from
data

getDelayInfo Get input/output delay information
for idnlarx model structure

getreg Regressor expressions and numerical
values in nonlinear ARX model

idnlarx Nonlinear ARX model
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idnlhw
idnlmodel

init

linapp

linear

linearize(idnlarx)

linearize(idnlhw)

neuralnet

nlarx

nlhw

operspec(idnlarx)

operspec (idnlhw)

pem

polyid

polyreg

Hammerstein-Wiener model
Superclass for nonlinear models

Set or randomize initial parameter
values

Linear approximation of nonlinear
ARX and Hammerstein-Wiener
models for given input

Class representing linear
nonlinearity estimator for nonlinear
ARX models

Linearize nonlinear ARX model

Linearize Hammerstein-Wiener
model

Class representing neural network
nonlinearity estimator for nonlinear
ARX models

Estimate nonlinear ARX model

Estimate Hammerstein-Wiener
model

Construct operating point
specification object for idnlarx
model

Construct operating point
specification object for idnlhw
model

Prediction error estimate of linear or
nonlinear model

Class representing single-variable
polynomial nonlinear estimator for
Hammerstein-Wiener models

Powers and products of standard
regressors



Nonlinear Black-Box Model Identification

pwlinear

saturation

sigmoidnet

treepartition

unitgain

wavenet

Class representing piecewise-linear
nonlinear estimator for
Hammerstein-Wiener models

Class representing saturation
nonlinearity estimator for
Hammerstein-Wiener models

Class representing sigmoid network
nonlinearity estimator for nonlinear
ARX and Hammerstein-Wiener
models

Class representing binary-tree
nonlinearity estimator for nonlinear
ARX models

Specify absence of nonlinearities for
specific input or output channels in
Hammerstein-Wiener models

Class representing wavelet network
nonlinearity estimator for nonlinear
ARX and Hammerstein-Wiener
models
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ODE Parameter Estimation

getinit

getpar

greyest
greyestOptions
idgrey

idnlgrey

idnlmodel

init

pem

setinit

setpar

Values of idnlgrey model initial
states

Parameter values and properties of
idnlgrey model parameters

Linear grey box model estimation
Option set for greyest

Linear ODE (grey-box model) with
identifiable parameters

Nonlinear ODE (grey-box model)
with unknown parameters

Superclass for nonlinear models

Set or randomize initial parameter
values

Prediction error estimate of linear or
nonlinear model

Set initial states of idnlgrey model
object

Set initial parameter values of
idnlgrey model object



Recursive Model Identification

Recursive Model Identification

rarmax Estimate recursively parameters of
ARMAX or ARMA models

rarx Estimate parameters of ARX or AR
models recursively

rbj Estimate recursively parameters of
Box-Jenkins models

roe Estimate recursively output-error
models (ITR-filters)

rpem Estimate general input-output

models using recursive
prediction-error minimization
method

rplr Estimate general input-output
models using recursive pseudolinear
regression method
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Model Analysis

aic

bandwidth
blkdiag

bode

bodemag

bodeoptions
bodeplot

compare

compareOptions
damp
db2mag

dcgain

fcat

fdel

forecast

forecastOptions

fpe

Akaike Information Criterion for
estimated model

Frequency response bandwidth

Block-diagonal concatenation of
models

Bode plot of frequency response,
magnitude and phase of frequency
response

Bode magnitude response of LTI
models

Create list of Bode plot options

Plot Bode frequency response with
additional plot customization options

Compare model output and
measured output

Option set for compare
Natural frequency; damping ratio
Convert decibels (dB) to magnitude

Low-frequency (DC) gain of LTI
system

Concatenate FRD models along
frequency dimension

Delete specified data from frequency
response data (FRD) models

Forecast linear system response into
future

Option set for forecast

Akaike Final Prediction Error for
estimated model



Model Analysis

frdata

freqresp

fselect

get

getcov

getoptions

getpvec

goodnessOfFit

identpref

idssdata

impulse

impulseplot

interp

iopzmap

iopzplot

isct

isdt

Access data for frequency response

data (FRD) object

Frequency response over grid

Select frequency points or range in

FRD model

Access model property values

Parameter covariance information in

either raw or factored form

Return @PlotOptions handle or plot

options property

Model parameters and associated

uncertainty data

Goodness of fit between test and

reference data

Set System Identification Toolbox

preferences

State-space data of identified system

Impulse response plot of dynamic

system; impulse response data

Plot impulse response and return

plot handle

Interpolate FRD model

Plot pole-zero map for I/O pairs of

model

Plot pole-zero map for I/0 pairs and

return plot handle

Determine if dynamic system model

1s 1n continuous time

Determine if dynamic system model

is in discrete time
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isreal

issiso

isstable

1sim

1siminfo

Isimplot

mag2db

ndims

noise2meas

noisecnv

norm
nparams

nyquist

nyquistoptions

nyquistplot

order

pe

peOptions

Determine whether model
parameters or data values are
real

Determine if dynamic system model
1s single-input/single-output (SISO)

Determine whether system is stable

Simulate time response of dynamic
system to arbitrary inputs

Compute linear response
characteristics

Simulate response of dynamic
system to arbitrary inputs and
return plot handle

Convert magnitude to decibels (dB)

Query number of dimensions of
dynamic system model or model
array

Noise component of model

Transform idmodel object with noise
channels to model with measured
channels only

Norm of linear model
Number of model parameters
Nyquist plot

List of Nyquist plot options

Nyquist plot with additional plot
customization options

Query model order

Prediction error for an identified
model

Option set for pe



Model Analysis

plot
pole
polydata

predict
predictOptions

present

pzmap

pzoptions

pzplot

resid

rsample

selstruc

set

setcov

setoptions

setPolyFormat

setpvec

showConfidence

Plot iddata or model objects
Compute poles of dynamic system

Access polynomial coefficients and
uncertainties of identified model

K-step ahead prediction
Option set for predict

Display model information, including
estimated uncertainty

Pole-zero plot of dynamic system
Create list of pole/zero plot options

Pole-zero map of dynamic system
model with plot customization
options

Compute and test model residuals
(prediction errors)

Random sampling of linear identified
systems

Select model order for single-output
ARX models

Set or modify model properties

Set parameter covariance data in
identified model

Set plot options for response plot

Specify format for B and F
polynomials of multi-input
polynomial model for backward
compatibility

Modify value of model parameters

Display confidence regions on
response plots for identified models
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sim

sim(idnlarx)
sim(idnlgrey)

sim(idnlhw)
simOptions

simsd

simsdOptions

size

ssdata

stack

step

stepinfo

stepplot

strseq
tfdata
timeoptions

zZero

zpkdata

Simulate response of identified
models to arbitrary inputs

Simulate nonlinear ARX model
Simulate nonlinear ODE model

Simulate Hammerstein-Wiener
model

Option set for sim

Simulate linear models with
uncertainty using Monte Carlo
method

Option set for simsd

Query output/input/array
dimensions of input—output

model and number of frequencies of
FRD model

Access state-space model data

Build model array by stacking
models or model arrays along array
dimensions

Step response plot of dynamic system

Rise time, settling time, and other
step response characteristics

Plot step response and return plot
handle

Create sequence of indexed strings
Access transfer function data
Create list of time plot options

Zeros and gain of SISO dynamic
system

Access zero-pole-gain data



Simulation and Prediction

Simulation and Prediction

idinput
predict
predictOptions

sim

sim(idnlarx)
sim(idnlgrey)

sim(idnlhw)

simOptions

simsd

simsdOptions

Generate input signals
K-step ahead prediction
Option set for predict

Simulate response of identified
models to arbitrary inputs

Simulate nonlinear ARX model
Simulate nonlinear ODE model

Simulate Hammerstein-Wiener
model

Option set for sim

Simulate linear models with
uncertainty using Monte Carlo
method

Option set for simsd

1-19
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System Identification Tool GUI

ident Open System Identification Tool
GUI
midprefs Set folder for storing idprefs.mat

containing GUI startup information

1-20
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absorbDelay

Purpose Replace time delays by poles at z = 0 or phase shift

Syntax sysnd = absorbDelay(sysd)
[sysnd,G] = absorbDelay(sysd)

Description sysnd = absorbDelay(sysd) absorbs all time delays of the dynamic
system model sysd into the system dynamics or the frequency response
data.

For discrete-time models (other than frequency response data models),
a delay of k sampling periods is replaced by k poles at z = 0. For
continuous-time models (other than frequency response data models),
time delays have no exact representation with a finite number of poles
and zeros. Therefore, use pade to compute a rational approximation of
the time delay.

For frequency response data models in both continuous and discrete
time, absorbDelay absorbs all time delays into the frequency response
data as a phase shift.

[sysnd,G] = absorbDelay(sysd) returns the matrix G that maps the
initial states of the ss model sysd to the initial states of the sysnd.

Examples Example 1

Create a discrete-time transfer function that has a time delay and
absorb the time delay into the system dynamics as poles at z = 0.

z = tf('z',-1);

sysd = (-.4*z -.1)/(z"2 + 1.05*z + .08);
sysd.InputDelay = 3

These commands produce the result:

Transfer function:
-0.4 z - 0.1

z"2 + 1.05 z + 0.08

2-2



absorbDelay

Sampling time: unspecified

The display of sysd represents the InputDelay as a factor of z* (-3),
separate from the system poles that appear in the transfer function
denominator.

Absorb the delay into the system dynamics.

sysnd = absorbDelay(sysd)

The display of sysnd shows that the factor of z* (-3) has been absorbed
as additional poles in the denominator.

Transfer function:
-0.4 z - 0.1

z"5 + 1.05 z*4 + 0.08 z"3
Sampling time: unspecified
Additionally, sysnd has no input delay:

sysnd.InputDelay
ans =

0

Example 2
Convert "nk" into regular coefficients of a polynomial model.

Consider the discrete-time polynomial model:

m = idpoly(1,[0 0 0 2 3]);

The value of the B polynomial, m.b, has 3 leading zeros. Two of these
zeros are treated as input-output delays. Consequently:

sys = tf(m)



absorbDelay

creates a transfer function such that the numerator is [0 2 3] and the 10
delay is 2. In order to treat the leading zeros as regular B coefficients,
use absorbDelay:

m2 = absorbDelay(m);
sys2 = tf(m2);

sys2's numeratoris [0 0 0 2 3] and IO delay is 0. The model m2
treats the leading zeros as regular coefficients by freeing their values.
m2.Structure.b.Free(1:2) is TRUE while m.Structure.b.Free(1:2)
is FALSE.

See Also hasdelay | pade | totaldelay



advice

Purpose

Syntax

Description

Input
Arguments

See Also

Analysis and recommendations for data or estimated linear models

advice(data)
advice(model,data)

advice(data) displays the following information about the data in
the MATLAB® Command Window:

¢ What are the excitation levels of the signals and how does this affect
the model orders? See also pexcit.

® Does it make sense to remove constant offsets and linear trends from
the data? See also detrend.

¢ Is there an indication of output feedback in the data? See also
feedback.

¢ Would a nonlinear ARX model perform better than a linear ARX
model?

advice(model,data) displays the following information about the
estimated linear model in the MATLAB Command Window:

¢ Does the model capture essential dynamics of the system and the
disturbance characteristics?

¢ Is the model order higher than necessary?

¢ Is there potential output feedback in the validation data?

data

Specify data as an iddata object.

model

Specify model as an idtf, idgrey, idpoly, idproc, or idss model
object.

detrend | feedback | iddata | pexcit



addreg
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Purpose

Syntax

Description

Examples

Add custom regressors to nonlinear ARX model

m = addreg(model,regressors)
m = addreg(model,regressors,output)
m = addreg(model,regressors) adds custom regressors to a nonlinear

ARX model by appending the CustomRegressors model property. model
and m are idnalrx objects. For single-output models, regressors is

an object array of regressors you create using customreg or polyreg,
or a cell array of string expressions. For multiple-output models,
regressors is 1-by-ny cell array of customreg objects or 1-by-ny cell
array of cell arrays of string expressions. addreg adds each element of
the ny cells to the corresponding model output channel. If regressors
is a single regressor, addreg adds this regressor to all output channels.

m = addreg(model,regressors,output) adds regressors regressors
to specific output channels output of a multiple-output model. output
is a scalar integer or vector of integers, where each integer is the index
of a model output channel. Specify several pairs of regressors and
output values to add different regressor variables to the corresponding
output channels.

Add regressors to a nonlinear ARX model as a cell array of strings:

% Create nonlinear ARX model with standard regressors:
m1 = idnlarx([4 2 1], 'wavenet','nlr',[1:3]);

% Create model with additional custom regressors:
m2 = addreg(mi,{'y1(t-2)"2"';'ul(t)*y1(t-7)"'})

% List all standard and custom regressors of m2:
getreg(m2)

Add regressors to a nonlinear ARX model as customreg objects:

% Create nonlinear ARX model with standard regressors:
m1 = idnlarx([4 2 1], 'wavenet','nlr',[1:3]);
% Create a model based on m1 with custom regressors:



addreg

ri = customreg(@(x)x*2, {'y1'}, 2)
r2 = customreg(@(x,y)x*y, {'ul','yi1'},

m2 = addreg(mi,[r1 r2]);
See Also customreg | getreg | nlarx | polyreg
How To + “Identifying Nonlinear ARX Models”

[0 71)
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Purpose

Syntax

Arguments

Description

Tips

Akaike Information Criterion for estimated model

am = aic(model)
am aic(modell,model2,...)

model
Name of an idtf, idgrey, idpoly, idproc, idss, idnlarx,
idnlhw, or idnlgrey model object.

am = aic(model) returns a scalar value of the Akaike’s Information
Criterion (AIC) for the estimated model.

am = aic(modell,model2,...) returns a row vector containing AIC
values for the estimated models model1,model2,....

Akaike’s Information Criterion (AIC) provides a measure of model
quality by simulating the situation where the model is tested on a
different data set. After computing several different models, you can
compare them using this criterion. According to Akaike’s theory, the
most accurate model has the smallest AIC.

Note If you use the same data set for both model estimation and
validation, the fit always improves as you increase the model order and,
therefore, the flexibility of the model structure.

Akaike’s Information Criterion (AIC) is defined by the following
equation:

AIC = 10gV+%
N

where Vis the loss function, d is the number of estimated parameters,
and N is the number of values in the estimation data set.

The loss function V'is defined by the following equation:



References

See Also

V- det(%%s(t,GN)(e(t,eN))T]

where 0p represents the estimated parameters.

For d<<N:

AIC = logLV(l + %)J
N

Note AIC is approximately equal to log(FPE).

AIC is formally defined as the negative log-likelihood function A,
evaluated at the estimated parameters, plus the number of estimated
parameters. You can derive AIC from this definition, as follows:

If the disturbance source is Gaussian with the covariance matrix A, the
logarithm of the likelihood function is

N
L®,A) = —% Zs(t, 0T A e(t,0) - %log (det A)+ const
1

Maximizing this analytically with respect to A, and then maximizing
the result with respect to 0, gives

L(6,A) = const + % + %log(V)

Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NdJ, Prentice-Hal PTR, 1999. See sections about the statistical
framework for parameter estimation and maximum likelihood method
and comparing model structures.

fpe



append

Purpose Group models by appending their inputs and outputs
Syntax sys = append(sysi,sys2,...,sysN)
Descripl‘ion sys = append(sysi1,sys2,...,sysN)

append appends the inputs and outputs of the models sys1,...,sysN to
form the augmented model sys depicted below.

tq —i-|  sys -V
Uy — 1 | sSysZ =y,
Uy | sysN - Yy
sys
For systems with transfer functions H,(s), . . . , Hy(s), the resulting

system sys has the block-diagonal transfer function

Hys) 0 .. 0
0  Hys)

: ; .0
0 0 Hy(s)

For state-space models sys1 and sys2 with data (4,, B, C,, D) and
(A,, By, C,, D,), append(sys1,sys2) produces the following state-space
model:

2-10
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IR e )
RS M

Arguments The input arguments sys1,..., sysN can be model objects s of any type.
Regular matrices are also accepted as a representation of static gains,
but there should be at least one model in the input list. The models
should be either all continuous, or all discrete with the same sample
time. When appending models of different types, the resulting type
is determined by the precedence rules (see “Precedence Rules That
Determine Model Type” for details).

There is no limitation on the number of inputs.

Examples The commands
sysi = tf(1,[1 0]);
sys2 = ss(1,2,3,4);

sys = append(sysi1,10,sys2)

produce the state-space model

a =
x1 x2
X1 0 0
X2 0 1
b =
ut u2 u3
x1 1 0 0
X2 0 0 2
C =
x1 x2
y1 1 0

2-11



append

y2 0 0
y3 0 3
d =
ul u2 u3
y1 0 0 0
y2 0 10 0
y3 0 0 4

Continuous-time model.

See Also connect | feedback | parallel | series

2-12



ar

Purpose

Syntax

Description

Input
Arguments

Estimate parameters of AR model for scalar time series

m = ar(y,n)

[m,ref1] = ar(y,n,approach,window)
m= ar(y,n,Name,Value)

m= ar(ysn! ;Opt)

Note Use for scalar time series only. For multivariate data, use arx.

m = ar(y,n) returns an idpoly model m.

[m,ref1] = ar(y,n,approach,window) returns an idpoly model m
and the variable refl. For the two lattice-based approaches, 'burg'
and 'gl', refl stores the reflection coefficients in the first row, and the
corresponding loss function values in the second row. The first column
of refl is the zeroth-order model, and the (2,1) element of refl is
the norm of the time series itself.

m= ar(y,n,Name,Value) specifies model structure attributes using one
or more Name,Value pair arguments.

m= ar(y,n, ,0pt) specifies the estimations options using opt.

Yy

iddata object that contains the time-series data (one output channel).

n
Scalar that specifies the order of the model you want to estimate (the
number of A parameters in the AR model).

approach

One of the following text strings, specifying the algorithm for computing
the least squares AR model:
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®* 'purg': Burg’s lattice-based method. Solves the lattice filter
equations using the harmonic mean of forward and backward
squared prediction errors.

e 'fb': (Default) Forward-backward approach. Minimizes the sum of
a least- squares criterion for a forward model, and the analogous
criterion for a time-reversed model.

e 'gl': Geometric lattice approach. Similar to Burg’s method, but
uses the geometric mean instead of the harmonic mean during
minimization.

e '1s': Least-squares approach. Minimizes the standard sum of
squared forward-prediction errors.

e 'yw': Yule-Walker approach. Solves the Yule-Walker equations,
formed from sample covariances.
window

One of the following text strings, specifying how to use information
about the data outside the measured time interval (past and future
values):

e 'now': (Default) No windowing. This value is the default except
when the approach argument is 'yw'. Only measured data is used
to form regression vectors. The summation in the criteria starts at
the sample index equal to n+1.

® 'pow': Postwindowing. Missing end values are replaced with zeros
and the summation is extended to time N+n (N is the number of
observations).

e 'ppw': Pre- and postwindowing. Used in the Yule-Walker approach.
® 'prw': Prewindowing. Missing past values are replaced with zeros so
that the summation in the criteria can start at time equal to zero.

opt

Estimation options.
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Output
Arguments

opt is an options set that specifies the following:
® data offsets

® covariance handling

® estimation approach

® estimation window

Use arOptions to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

specify several name and value pair arguments in any order as
Namei1,Valuei,...,NameN,ValueN.

ts

Positive scalar that specifies the sample time. Use when you specify Y
as double vector rather than an IDDATA object.

IntegrateNoise

Boolean value that specifies whether the noise source contains an

e

integrator or not. Use it to create "ARI" structure models: Ay = —
1-27)

Default: false

m

An idpoly model.

refl

An 2-by-2 array. The first row stores the reflection coefficients, and
the second row stores the corresponding loss function values. The first
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Examples

Algorithms

column of refl is the zeroth-order model, and the (2,1) element of refl
is the norm of the time series itself.

Given a sinusoidal signal with noise, compare the spectral estimates of
Burg’s method with those found from the forward-backward approach
and no-windowing method on a Bode plot.

sin([1:300]') + 0.5*randn(300,1);
iddata(y);

b = ar(y,4,'burg');

mfb = ar(y,4);

bode (mb,mfb)

y
y
m

Estimate an ARI model.

load iddata9 z9

Ts = z9.Ts;
y = cumsum(z9.y);
model = ar(y, 4, 'ls', 'Ts', Ts, 'IntegrateNoise', true)

compare(y,model,5) % 5 step ahead prediction

Use option set to choose '1s' estimation approach and to specify that
covariance matrix should not be estimated.

y = rand(100,1);
opt = arOptions('Approach', 'ls', 'EstCovar',6 false);
model = ar(y, N, opt);

The AR model structure is given by the following equation:

AlQ)y@) =e®)

AR model parameters are estimated using variants of the least-squares
method. The following table summarizes the common names for
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methods with a specific combination of approach and window argument

values.

Method

Approach and Windowing

Modified Covariance Method

(Default) Forward-backward
approach and no windowing.

Correlation Method

Yule-Walker approach, which
corresponds to least squares plus
pre- and postwindowing.

Covariance Method

Least squares approach with no
windowing. arx uses this routine.

Marple, Jr., S.L., Digital Spectral Analysis with Applications, Prentice
Hall, Englewood Cliffs, 1987, Chapter 8.

arOptions | idpoly | arx | etfe | ivar | pem | spa |

forecast
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Purpose

Syntax

Description

Tips

Input
Arguments

Estimate parameters of ARMAX model using time-domain data

sys = armax(data,[na nb nc nk])

sys = armax(data,[na nb nc nk],Name,Value)
sys = armax(data,init_sys)

sys = armax(data, ,opt)

Note armax supports only time-domain data. For frequency-domain
data, use oe.

sys = armax(data,[na nb nc nk]) returns an idpoly model, Sys,
with estimated parameters and covariance (parameter uncertainties).
Estimates the parameters using the prediction-error method and
specified polynomial orders.

sys = armax(data,[na nb nc nk],Name,Value) returns an
idpoly model, sys, with additional options specified by one or more
Name,Value pair arguments.

sys = armax(data,init_sys) estimates a polynomial model using
the ARMAX structure polynomial model init_sys to configure the
initial parameterization.

sys = armax(data, ,opt) specifies estimation options using the

option set opt.

e Use the IntegrateNoise property to add integrators to the noise
source.

data
Estimation data.

Specify data as an iddata object containing the time-domain
input-output data.

You cannot use frequency-domain data for estimating ARMAX models.



armax

[na nb nc nk]
Polynomial orders.

[na nb nc nk] define the polynomial orders of an “ARMAX Model”
on page 2-22.

® na — Order of the polynomial A(g).

Specify na as an Ny-by-Ny matrix of nonnegative integers. Ny is the
number of outputs.

® nb — Order of the polynomial B(q) + 1.

nb is an Ny-by-Nu matrix of nonnegative integers. Ny is the number
of outputs and Nu is the number of inputs.

® nc — Order of the polynomial C(g).

nc is a column vector of nonnegative integers of length Ny. Ny is the
number of outputs.

® nk — Input-output delay expressed as fixed leading zeros of the
B polynomial.

Specify nk as an Ny-by-Nu matrix of nonnegative integers. Ny is the
number of outputs and Nu is the number of inputs.
init_sys

Linear polynomial model that configures the initial parameterization
of sys.

init_sys must be an ARMAX model. You may obtain init_sys by
either performing an estimation using measured data, or by direct
construction.

Use the Structure property of init sys to configure initial guesses
and constraints for A(g), B(q), and C(q).

To specify an initial guess for, say, the A(q) term of init_ sys, set
init_sys.Structure.a.Value as the initial guess.

To specify constraints for, say, the B(g) term of init_sys:
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® set init_sys.Structure.b.Minimum to the minimum B(q) coefficient
values

® set init sys.Structure.b.Maximum to the maximum B(q) coefficient
values

® set init sys.Structure.b.Free to indicate which B(q) coefficients
are free for estimation

You can similarly specify the initial guess and constraints for the other
polynomials.

If opt is not specified, and init_sys was created by estimation, then
the estimation options from init sys.Report.OptionsUsed are used.
opt

Estimation options.

opt is an options set that specifies estimation options, including:

® estimation objective

¢ handling of initial conditions

® numerical search method to be used in estimation

Use armaxOptions to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuei,...,NameN,ValueN.

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay
for each input channel. Specify input delays in integer multiples of
the sampling period Ts. For example, InputDelay = 3 means a delay
of three sampling periods.
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For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where
each entry is a numerical value representing the input delay for the
corresponding input channel. You can also set InputDelay to a scalar
value to apply the same delay to all channels.

Default: 0 for all input channels

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate
transport delay for each input/output pair.

Specify transport delays as integers denoting delay of a multiple of the
sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a
Ny-by-Nu array, where each entry is a numerical value representing the
transport delay for the corresponding input/output pair. You can also
set ioDelay to a scalar value to apply the same delay to all input/output
pairs. Useful as a replacement for the nk order, you can factor out
max(nk-1,0) lags as the ioDelay value.

Default: 0 for all input/output pairs

IntegrateNoise
Logical vector specifying integrators in the noise channel.

IntegrateNoise is a logical vector of length Ny, where Ny is the
number of outputs.

Setting IntegrateNoise to true for a particular output results in
the model:

Clg)
1-q

e(t)

A(Q)y(t) = B(Qu(t — nk) + 1

Where, =) is the integrator in the noise channel, e(?).

1-¢q
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Output
Arguments

Definitions

Use IntegrateNoise to create an ARIMA model.

For example,

load iddata9 z9;

z9.y = cumsum(z9.y); %integrated data

sys = armax(z9,[4 1], ' 'IntegrateNoise',true);
compare(z9,sys,10) %10-step ahead prediction

Default: false(Ny,1) (Ny is the number of outputs.)
sys

Identified ARMAX structure polynomial model.

Sys is a discrete-time idpoly model, which encapsulates the estimated
A, B and C polynomials and the parameter covariance information.

ARMAX Model
The ARMAX model structure is

y(t)+a1y(t—1)+...+anay(t—na):
biult —np)+...+ by ult —nj, —ng +1) +

et =D +...+cy et —n;) +elt)
A more compact way to write the difference equation is
A(@y®) = B(@u(t —ny) + C(ge(?)
where
® y(t)— Output at time ¢.
* n, — Number of poles.
® 1, — Number of zeroes plus 1.

® n, — Number of C coefficients.
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® n; — Number of input samples that occur before the input affects
the output, also called the dead time in the system.

e y(t-1)...y(t —n,) — Previous outputs on which the current output
depends.

® u(t—np)...u(t—ny —ny +1) — Previous and delayed inputs on which
the current output depends.

® e(t—1)...e(t —n.) — White-noise disturbance value.

The parameters na, nb, and nc are the orders of the ARMAX model, and
nk is the delay. ¢ is the delay operator. Specifically,

Alg=1+ alq_1 totay, q
B(g)=b; + qu_l +..tby, g et

ClQ=1+ciqg ' +...+ € q

If data is a time series, which has no input channels and one output
channel, then armax calculates an ARMA model for the time series

A(Q)y(@) = e(t)
In this case

orders = [na nc]

ARIMAX Model

An ARIMAX model structure is similar to ARMAX, except that it
contains an integrator in the noise source e(t):
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Examples

A@y(H) = Biqult ~nk) + ———e(t)
1-g)

If there are no inputs, this reduces to an ARIMA model:

A@y(®) = ———e(®
1-g7)

Specifying Estimation Options

Estimate an ARMAX model from measured data and specify the
estimation options.

Estimate an ARMAX model with simulation focus, using '1m' as the
search method and maximum number of search iterations set to 10.

load twotankdata

z = iddata(y,u,0.2);

opt = armaxOptions;

opt.Focus = 'simulation';
opt.SearchMethod = '1Im';
opt.SearchOption.MaxIter = 10;
opt.Display = 'on';

sys = armax(z, [2 2 2 1], opt)

The termination conditions for measured component of the model shown
in the progress viewer is that the maximum number of iterations were
reached. To improve results, re-estimate the model using a greater
value for MaxIter, or we can continue iterations on the previously
estimated model as follows:

Sys2 = armax(z, sys);
compare(z, sys, sSys2)

where sys2 refines the parameters of sys to improve the fit to data.
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Estimate an ARIMA Model
Estimate an ARIMA Model from measured data.

Estimate a 4th order ARIMA model for univariate time series data.

load iddata9

z9.y = cumsum(z9.y); % integrated data

model = armax(z9, [4 1], 'IntegrateNoise', true);
compare(z9, model, 10) % 10-step ahead prediction

Estimate ARMAX Models Iteratively

Estimate ARMAX models of varying orders iteratively from measured
data.

Estimate ARMAX models of orders varying between 1 and 4 for dryer
data

load dryer2

z = iddata(y2,u2,0.08, 'Tstart',0);
na = 2:4; nc = 1:2; nk = 0:2;
models = cell(1,18);

ct = 1;
for i = 1:3
na_ = na(i);
nb_ = na_;
for j = 1:2
nc_ = nc(j);
for k = 1:3
nk_ = nk(k);
models{ct} = armax(z, [na_, nb_, nc_, nk_]);
ct = ct+1;
end
end
end
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Algorithms

Stack the estimated models and compare their simulated responses
to estimation data z.

models = stack(1,models{:});
compare(z,models)

An iterative search algorithm minimizes a robustified quadratic
prediction error criterion. The iterations are terminated either when
the maximum number of iterations is reached, or when the expected
improvement is less than the specified tolerance, or when a lower value
of the criterion cannot be found. You can get information about the
stopping criteria using sys.Report.Termination.

Use the armaxOptions option set to create and configure options
affecting the estimation results. In particular, set the search algorithm
attributes, such as MaxIter and Tolerance, using the 'SearchOption'
property.

When you do not specify initial parameter values for the iterative
search as an initial model, they are constructed in a special four-stage
LS-IV algorithm.

The cutoff value for the robustification is based on the
Advanced.ErrorThreshold estimation option and on the estimated
standard deviation of the residuals from the initial parameter
estimate. It is not recalculated during the minimization. By default,
no robustification is performed; the default value of ErrorThreshold
option is 0.

To ensure that only models corresponding to stable predictors are tested,
the algorithm performs a stability test of the predictor. Generally, both

C(g) and F(q) (if applicable) must have all zeros inside the unit circle.

Minimization information is displayed on the screen when the
estimation option 'Display' is 'On' or 'Full'. With 'Display’
='Full', both the current and the previous parameter estimates are
displayed in column-vector form, listing parameters in alphabetical
order. Also, the values of the criterion function (cost) are given and the
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Gauss-Newton vector and its norm are also displayed. With 'Display
= '0On' only the criterion values are displayed.

Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NdJ, Prentice-Hal PTR, 1999. See chapter about computing the
estimate.

armax does not support continuous-time model estimation. Use tfest
to estimate a continuous-time transfer function model, or ssest to
estimate a continuous-time state-space model.

armaxOptions | arx | bj | oe | polyest | ssest | tfest |
idpoly | iddata | idfrd | forecast

2-27



armaxOptions

Purpose Option set for armax
Syntax opt = armaxOptions
opt = armaxOptions(Name,Value)
Description opt = armaxOptions creates the default options set for armax.
opt = armaxOptions(Name,Value) creates an option set with the
options specified by one or more Name ,Value pair arguments.
Input Name-Value Pair Arguments
Arguments Specify optional comma-separated pairs of Name,Value arguments,

where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Valuel,...,NameN,ValueN.

InitialCondition

Specify handling of initial conditions during estimation.
InitialCondition takes one of the following values:

e 'zero' — Initial conditions are set to O.

e 'estimate' — Initial conditions, along with the model parameters,
are treated as estimation parameters.

® 'backcast' — Initial conditions are estimated using a backcasting
(backward filtering) process.

e 'auto' — The software chooses the initial condition handling method
based on the estimation data.

Default: 'auto'

Focus
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Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus can take the following values:

e 'simulation' — Estimates the model using the frequency weighting
of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

This method provides a stable model.

e 'prediction' — Automatically calculates the weighting function
as a product of the input spectrum and the inverse of the noise
model. This minimizes the one-step-ahead prediction, which typically
favors fitting small time intervals (higher frequency range). From
a statistical-variance point of view, this is the optimal weighting
function. However, this method neglects the approximation aspects
(bias) of the fit. Might not result in a stable model. Use 'stability
when you want to ensure a stable model.

® 'stability' — Same as 'prediction', but with model stability
enforced.

e Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[wil,wih;w21,w2h;w31,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

e SISO filter — Enter any SISO linear filter in any of the following
ways:
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= A single-input-single-output (SISO) linear system.

= The {A,B,C,D} format, which specifies the state-space matrices
of the filter.

= The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

This calculates the weighting function as a product of the filter and
the input spectrum to estimate the transfer function. To obtain a
good model fit for a specific frequency range, you must choose the
filter with a passband in this range. The estimation result is the
same if you first prefilter the data using idfilt.

® Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same size
as length of the frequency vector of the data set, Data.Frequency.
Each input and output response in the data is multiplied by the
corresponding weight at that frequency.

Default: 'prediction'

EstCovar
Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

Display
Specifies whether estimation progress should be displayed.
Display requires one of the following strings:

e 'on' — Information on model structure and estimation results are
displayed in a progress viewer window

e 'off' — No progress or results information is displayed
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Default: 'off'

InputOffset
Removes offset from time domain input data during estimation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu 1s the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

OvutputOffset
Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments. Each entry specified by OutputOffset is subtracted
from the corresponding output data.

Default: []

SearchMethod
Search method used for iterative parameter estimation.
SearchMethod is a string that can take the following values:

® gn — The subspace Gauss-Newton direction. Singular values of the
Jacobian matrix less than GnPinvConst*eps*max(size(J))*norm(J)
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are discarded when computing the search direction. o is the Jacobian
matrix. The Hessian matrix is approximated by J7dJ. If there is

no improvement in this direction, the function tries the gradient
direction.

gna — An adaptive version of subspace Gauss-Newton approach,
suggested by Wills and Ninness [1]. Eigenvalues less than
gamma*max (sv) of the Hessian are neglected , where sv are the
singular values of the Hessian. The Gauss-Newton direction is
computed in the remaining subspace. gamma has the initial value
InitGnaTol (see Advanced for more information) and is increased by
the factor LMStep each time the search fails to find a lower value of
the criterion in less than 5 bisections. It is decreased by the factor
2*|MStep each time a search is successful without any bisections.

1m — Uses the Levenberg-Marquardt method. This means that the
next parameter value is -pinv (H+d*I)*grad from the previous one,
where H is the Hessian, I is the identity matrix, and grad is the
gradient. d is a number that is increased until a lower value of the
criterion is found.

1sgnonlin — Uses 1sgnonlin optimizer from Optimization
Toolbox™ software. You must have Optimization Toolbox installed
to use this option. This search method can only handle the Trace
criterion.

grad — The steepest descent gradient search method.

auto — A choice among the above is made in the algorithm.
The descent direction is calculated using gn, gna, 1m and grad
successively, in that order, at each iteration until a sufficient
reduction in error is achieved.

Default: 'auto'

SearchOption

SearchOption is an options set for the search algorithm with the fields:
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Seurchl\h&mﬂhOption

gn,gna,ly
grad
and
auto

n,®e Tolerance — Minimum percentage difference (divided

by 100) between the current value of the loss function
and its expected improvement after the next iteration.
When the percentage of expected improvement is less
than Tolerance, the iterations are stopped. The estimate
of the expected loss-function improvement at the next
iteration is made based on the Gauss-Newton vector
computed for the current parameter value.

Default: 0.01

MaxIter — Maximum number of iterations during
loss-function minimization. The iterations stop when
MaxIter is reached or another stopping criterion is
satisfied, such as Tolerance.

Setting MaxIter = 0 returns the result of the startup
procedure.

Use sys.Report.Termination.Iterations to get the
actual number of iterations during an estimation, where
sys is an idtf model.

Default: 20

® Advanced — Search settings:

= GnPinvConst — Singular values of
the Jacobian that are smaller than
GnPinvConst*max(size(J)*norm(J) *eps are
discarded when computing the search direction and
SearchMethodis 'gn"'.

GnPinvConst must be a positive real value.
Default: 10000

= InitGnaTol — Initial value of gamma when
SearchMethod is 'gna".

Default: .0001
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Seurchl*&lmdhOption

= LMStartValue — Starting value of search-direction
length d in the Levenberg-Marquardt method.
Applicable when SearchMethod is '1m'.

Default: .001

= LMStep — Size of the Levenberg-Marquardt step.
The next value of the search-direction length d in
the Levenberg-Marquardt method 1s LMStep times
the previous one. Applicable when SearchMethod is
“Im'.
Default: 2

= MaxBisections — Maximum number of bisections
used by the line search along the search direction.

Default: 25

= MaxFunEvals — Iterations are stopped if the number
of calls to the model file exceeds this value.

MaxFunEvals must be a positive integer value.
Default: Inf

= MinParChange — Smallest parameter update allowed
per iteration

MinParChange must be a positive, real value.
Default: 0

= RellImprovement — Iterations are stopped if the
relative improvement of the criterion function is less
than RelImprovement.

RelImprovement must be a positive integer value.

Default: 0
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Seurchl*&lmdhOption

= StepReduction — Suggested parameter update is
reduced by the factor StepReduction after each try
until either MaxBisections tries are completed or a
lower value of the criterion function is obtained.

StepReduction must be a positive, real value that is
greater than 1.

Default: 2

1sgnonl

irr TolFun — Termination tolerance on the loss function

that the software minimizes to determine the estimated
parameter values.

The value of TolFun is the same as that of
sys.SearchOption.Advanced.TolFun.

Default: le-5

TolX — Termination tolerance on the estimated
parameter values.

The value of TolX is the same as that of
sys.SearchOption.Advanced.TolX.

Default: le-6

MaxIter — Maximum number of iterations during
loss-function minimization. The iterations stop when
MaxIter is reached or another stopping criterion is
satisfied, such as TolFun etc..

The value of MaxIter is the same as that of
sys.SearchOption.Advanced.MaxIter.

Default: 20
Advanced — Options set for 1sqnonlin.

For more information, see “Optimization Options”.
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Searchl*&mdhOption

Use optimset('1lsgnonlin') to create an options set
for 1sqnonlin and then modify it to specify its various
options.

Advanced
Advanced is a structure with the following fields:

® ErrorThreshold — Specifies when to adjust the weight of large
errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the criteria. The standard deviation
is estimated robustly as the median of the absolute deviations from
the median and divided by 0.7. (See the section about choosing

a robust norm in the chapter “Computing the Estimate” of [1].)
ErrorThreshold = 0 disables robustification and leads to a purely
quadratic criterion. When estimating with frequency-domain data,
ErrorThreshold is set to zero. ErrorThreshold = 1.6 is a good
choice for estimation when data contains outliers.

Default: 0

® MaxSize — Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive integer.
Default: 250000

® StabilityThreshold — Specifies thresholds for stability tests.
StabilityThreshold is a structure with the following fields:

= s — Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0
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= z — Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

® AutoInitThreshold — Specifies when to automatically estimate
the initial conditions.

When InitialCondition = 'Auto', the initial condition is
estimated when the ratio of the prediction-error norm with a zero
initial condition to the norm with an estimated initial condition
exceeds AutoInitialState.

Default: 1.05

opt

Option set containing the specified options for armax.
Create Default Options Set for ARMAX Estimation
Create a default options set for armax.

opt = armaxOptions;

Specify Options for ARMAX Estimation

Create an options set for armax using the 'stability' for Focus and
set the Display to 'on'.

opt = armaxOptions('Focus', 'stability', 'Display','on');

Alternatively, use dot notation to set the values of opt.

opt = armaxOptions;
opt.Focus = 'stability';
opt.Display = 'on';
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References [1] Wills, Adrian , B. Ninness, and S. Gibson. "On Gradient-Based
Search for Multivariable System Estimates" IFAC World Congress,
Prague, 2005.

[2] Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NdJ, Prentice-Hal PTR, 1999.

See Also armax | idfilt
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Purpose

Syntax

Description

Input
Arguments

Option set for ar

opt = arOptions
opt arOptions(Name,Value)

opt = arOptions creates the default options set for ar.

opt = arOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuel,...,NameN,ValueN.

Approach

Technique used for AR model estimation.

Approach takes one of the following strings:

e 'fp' — Forward-backward approach.

e '1s' — Least-squares method.

e 'yw' — Yule-Walker approach.
® 'burg' — Burg’s method.

® 'gl' — Geometric lattice method.
Default: 'fb'
Window

Data windowing technique.

Window determines how the data outside the measured time interval
(past and future values) should be handled.
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Window takes one of the following strings:

® 'now' — No windowing.

® 'prw' — Pre-windowing.

® 'pow' — Post-windowing.

® 'ppw' — Pre- and post-windowing.

Default: 'now' (except when Approachis 'yw')

DataOffset
Data offset level that must be removed before estimation of parameters.

Specify DataOffset as a double scalar. For multi-experiment data,
specify DataOffset as a vector of length Ne, where Ne is the number
of experiments. Each entry of the vector is subtracted from the
corresponding data.

Default: []1 (no offsets)

MaxSize

Specifies the maximum number of elements in a segment when
input-output data is split into segments.

If larger matrices are needed, the software will use loops for
calculations. Use this option to manage the trade-off between memory
management and program execution speed. The original data matrix
must be smaller than the matrix specified by MaxSize.

MaxSize must be a positive integer.

Default: 250000

opt

Option set containing the specified options for ar.
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Examples Create Default Options Set for AR Estimation

Create a default options set for ar.
opt = arOptions;

Specify Options for AR Estimation

Create an options set for ar using the least squares algorithm for
estimation and set the Window to 'ppw'.

opt = arOptions('Approach','ls', 'Window', 'ppw');

Alternatively, use dot notation to set the values of opt.

opt = arOptions;
opt.Approach = '1s';
opt.Window = 'ppw';

See Also ar
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Purpose

Syntax

Description

Input
Arguments

Estimate parameters of ARX or AR model using least squares

sys = arx(data,[na nb nk])
Sys arx(data,[na nb nk],Name,Value)
Sys arx(data,[na nb nk], ,opt)

Note arx does not support continuous-time estimations. Use tfest
instead.

sys = arx(data,[na nb nk]) returns an ARX structure polynomial
model, sys, with estimated parameters and covariances (parameter
uncertainties) using the least-squares method and specified orders.

sys = arx(data,[na nb nk],Name,Value) estimates a polynomial
model with additional options specified by one or more Name,Value
pair arguments.

sys = arx(data,[na nb nk],__ ,opt) specifies estimation options
that configure the estimation objective, initial conditions and handle
input/output data offsets.

data

Estimation data.

Specify data as an iddata object, an frd object, or an idfrd
frequency-response-data object.

[na nb nk]

Polynomial orders.

[na nb nk] define the polynomial orders of an ARX model.

® na — Order of the polynomial A(g).

Specify na as an Ny-by-Ny matrix of nonnegative integers. Ny is the
number of outputs.
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® nb — Order of the polynomial B(q) + 1.

nb is an Ny-by-Nu matrix of nonnegative integers. Ny is the number
of outputs and Nu is the number of inputs.

® nk — Input-output delay expressed as fixed leading zeros of the
B polynomial.

Specify nk as an Ny-by-Nu matrix of nonnegative integers. Ny is the
number of outputs and Nu is the number of inputs.

opt

Estimation options.

opt is an options set that specifies estimation options, including:

® input/output data offsets

® output weight

Use arxOptions to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuei,...,NameN,ValueN.

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay
for each input channel. Specify input delays in integer multiples of
the sampling period Ts. For example, InputDelay = 3 means a delay
of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where
each entry is a numerical value representing the input delay for the
corresponding input channel. You can also set InputDelay to a scalar
value to apply the same delay to all channels.
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Default: 0 for all input channels

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate
transport delay for each input/output pair.

Specify transport delays as integers denoting delay of a multiple of the
sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a
Ny-by-Nu array, where each entry is a numerical value representing the
transport delay for the corresponding input/output pair. You can also
set ioDelay to a scalar value to apply the same delay to all input/output
pairs. Useful as a replacement for the nk order, you can factor out
max(nk-1,0) lags as the ioDelay value.

Default: 0 for all input/output pairs

IntegrateNoise
Logical vector specifying integrators in the noise channel.

IntegrateNoise is a logical vector of length Ny, where Ny is the
number of outputs.

Setting IntegrateNoise to true for a particular output results in
the ARIX model:

1
1-¢q

AQy(t) = B(Qu(t — nk) + e(t)

-1

Where,

is the integrator in the noise channel, e(?).
1-q
Default: false(Ny,1) (INy is the number of outputs.)

sys
Identified ARX structure polynomial model.
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Definitions

Sys is a discrete-time idpoly model, which encapsulates the estimated
A and B polynomials and the parameter covariance information.

ARX structure

arx estimates the parameters of the ARX model structure:

YO +ayEt-D+...+a,,yt—na) =
biut—nk)+...+ bu(t —nb—nk+1) +e(t)

The parameters na and nb are the orders of the ARX model, and nk
is the delay.

® y()— Output at time ¢.
* n, — Number of poles.
® n; — Number of zeroes plus 1.

® n; — Number of input samples that occur before the input affects
the output, also called the dead time in the system.

o y(t-1)...y(t —n,) — Previous outputs on which the current output
depends.

® u(t—ng)...ult—np —ny +1) — Previous and delayed inputs on which
the current output depends.

e(t—1)...e(t —n,) — White-noise disturbance value.

A more compact way to write the difference equation is

A(Q)y(@) = B(@u(t —ny,) +e(t)

q is the delay operator. Specifically,

AlQ=1+a;q  +...+ a, q "
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B(@)=b; + b2q_1 +...+ ban_”bJrl

Time Series Models

For time-series data that contains no inputs, one output and orders
na, the model has AR structure of order na.

The AR model structure is
AlQ)y@) =e(t)

Multiple Inputs and Single-Output Models

For multiple-input systems, nb and nk are row vectors where the ith
element corresponds to the order and delay associated with the ith
input.

Y&+ A1yt -D+ Ayt —2)+...+ A,y —na) =
Byu(t) + Bju(t —1) +...+ B, pu(t —nb) + e(?)

Multi-Output Models

For models with multiple inputs and multiple outputs, na, nb, and nk
contain one row for each output signal.

In the multiple-output case, arx minimizes the trace of the prediction
error covariance matrix, or the norm

N
Y el (e

t=1

To transform this to an arbitrary quadratic norm using a weighting
matrix Lambda

N
Y el t)ae)
t=1

use the syntax
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Examples

Algorithms

opt = arxOptions('OutputWeight', inv(lambda))
m = arx(data, orders, opt)

Estimating Initial Conditions

For time-domain data, the signals are shifted such that unmeasured
signals are never required in the predictors. Therefore, there is no need
to estimate initial conditions.

For frequency-domain data, it might be necessary to adjust the data by
initial conditions that support circular convolution.

Set the InitialCondition estimation option (see arxOptions) to one
the following values:

e 'zero' — No adjustment.

e 'estimate' — Perform adjustment to the data by initial conditions
that support circular convolution.

® 'auto' — Automatically choose between 'zero' and 'estimate’
based on the data.

This example generates input data based on a specified ARX model, and
then uses this data to estimate an ARX model.

A=1[1 -1.5 0.7]; B =101 0.5];
mO0 = idpoly(A,B);

= iddata([],idinput (300, 'rbs'));
= iddata([],randn(300,1));
sim(m0, [u e]);

= [y,ul;

= arx(z,[2 2 1]);

S N O C
I

QR factorization solves the overdetermined set of linear equations that
constitutes the least-squares estimation problem.

The regression matrix is formed so that only measured quantities are
used (no fill-out with zeros). When the regression matrix is larger
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than MaxSize, data i1s segmented and QR factorization is performed
iteratively on these data segments.

See Also arxOptions | arxstruc | ar | armax | bj | iv4 | n4sid | oe | nlarx

How To + “Using Linear Model for Nonlinear ARX Estimation”
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Purpose

Syntax

Arguments

Description

ARX parameters from multiple-output models with variance
information

Note arxdata will be removed in a future release. Use polydata
instead.

[A,B] = arxdata(m)
[A,B,dA,dB] = arxdata(m)

An idarx model object.

Also accepts single-output idpoly models with an underlying
ARX structure with orders nc=nd=nf=0.
[A,B] = arxdata(m) returns A and B as 3-D arrays.

Suppose ny is the number of outputs (the dimension of the vector y(z))
and nu is the number of inputs.

A is an ny-by-ny-by-(na+1) array such that

A(:,:,k+1) = Ak
A(:,1,1) = eye(ny)

where k=0,1,...,na.

B is an ny-by-nu-by-(nb+1) array with
B(:,:,kt1) = Bk

A(0) is always the identity matrix. The leading entries in B equal to
zero, which means there are no delays in the model.
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Tips

See Also

Note For a time series, B = [].

[A,B,dA,dB] = arxdata(m) returns A and B matrices, and dA and dB
as the estimated standard deviations of A and B, respectively.

A and B are 2-D or 3-D arrays and are returned in the standard
multivariable ARX format (see idarx), describing the model.

YO+ A1yt -D+ Ayt -2)+...+ A, ¥yt —na) =
Byu(t) + Bju(t —1) +...+ B,u(t —nb) + e(?)

where A, and B, matrices have dimensions ny-by-ny and ny-by-nu,

respectively. ny is the number of outputs (the dimension of the vector
y(t)) and nu is the number of inputs.

idarx | idpoly
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Purpose

Syntax

Description

Input
Arguments

Option set for ar

opt = arxOptions
opt arxOptions(Name,Value)

opt = arxOptions creates the default options set for arx.

opt = arxOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuel,...,NameN,ValueN.

InitialCondition

Specify handling of initial conditions during estimation.
InitialCondition takes one of the following values:

e 'zero' — Initial conditions are set to O.

e 'estimate' — Initial conditions, along with the model parameters,
are treated as estimation parameters.

® 'backcast' — Initial conditions are estimated using a backcasting
(backward filtering) process.

e 'auto' — The software chooses the initial condition handling method
based on the estimation data.

Default: 'auto'

Focus
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Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus can take the following values:

e 'simulation' — Estimates the model using the frequency weighting
of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

This method provides a stable model.

e 'prediction' — Automatically calculates the weighting function
as a product of the input spectrum and the inverse of the noise
model. This minimizes the one-step-ahead prediction, which typically
favors fitting small time intervals (higher frequency range). From
a statistical-variance point of view, this is the optimal weighting
function. However, this method neglects the approximation aspects
(bias) of the fit. Might not result in a stable model. Use 'stability'
when you want to ensure a stable model.

® 'stability' — Same as 'prediction', but with model stability
enforced.

e Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[wil,wih;w21,w2h;w31,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

e SISO filter — Enter any SISO linear filter in any of the following
ways:
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= A single-input-single-output (SISO) linear system.

= The {A,B,C,D} format, which specifies the state-space matrices
of the filter.

= The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

This calculates the weighting function as a product of the filter and
the input spectrum to estimate the transfer function. To obtain a
good model fit for a specific frequency range, you must choose the
filter with a passband in this range. The estimation result is the
same if you first prefilter the data using idfilt.

® Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same size
as length of the frequency vector of the data set, Data.Frequency.
Each input and output response in the data is multiplied by the
corresponding weight at that frequency.

Default: 'prediction'

EstCovar
Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

Display
Specifies whether estimation progress should be displayed.
Display requires one of the following strings:

e 'on' — Information on model structure and estimation results are
displayed in a progress viewer window

e 'off' — No progress or results information is displayed
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Default: 'off'

InputOffset
Removes offset from time domain input data during estimation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu 1s the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

OvutputOffset
Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments. Each entry specified by OutputOffset is subtracted
from the corresponding output data.

Default: []

OutputWeight
Weight of prediction errors in multi-output estimation.

Specify OutputWeight as a positive semi-definite symmetric matrix
(W). The software will minimize the trace of the weighted prediction
error matrix trace (E' *E*W). Where E is the matrix of prediction errors,
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Output
Arguments

Examples

with one column for each output, and W is the positive semi-definite
symmetric matrix of size equal to the number of outputs. Use

W to specify the relative importance of outputs in multiple-input
multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-output models.

Advanced
Advanced is a structure with the following fields:

® MaxSize — Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive integer.
Default: 250000

® StabilityThreshold — Specifies thresholds for stability tests.
StabilityThreshold is a structure with the following fields:

= s — Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0

= z — Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

opt

Option set containing the specified options for arx.

Create Default Options Set for ARX Estimation

Create a default options set for arx.

opt = arxOptions;
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Specify Options for ARX Estimation

Create an options set for arx using zero initial conditions for estimation
and set Display to 'on'.

opt = arxOptions('InitialCondition','zero','Display','on');
Alternatively, use dot notation to set the values of opt.

opt = arxOptions;
opt.InitialCondition = 'zero';
opt.Display = 'on';

See Also arx | idfilt
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Purpose

Syntax

Arguments

Description

Compute and compare loss functions for single-output ARX models

V = arxstruc(ze,zv,NN)

V = arxstruc(ze,zv,NN,maxsize)
ze
Estimation data set can be iddata or idfrd object.
aY,
Validation data set can be iddata or idfrd object.
NN
Matrix defines the number of different ARX-model structures.
Each row of NN is of the form:
nn = [na nb nk]
maxsize

Specifies the maximum number of elements in a segment when
input-output data is split into segments.

If larger matrices are needed, the software will use loops for
calculations. Use this option to manage the trade-off between
memory management and program execution speed. The original
data matrix must be smaller than the matrix specified by maxsize.

maxsize must be a positive integer.

Note Use arxstruc for single-output systems only. arxstruc supports
both single-input and multiple-input systems.

V = arxstruc(ze,zv,NN) returns V, which contains the loss functions
in its first row. The remaining rows of V contain the transpose of NN, so
that the orders and delays are given just below the corresponding loss
functions. The last column of V contains the number of data points in ze.
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Tips

Examples

V = arxstruc(ze,zv,NN,maxsize) uses the additional specification
of the maximum data size.

with the same interpretation as described for arx. See struc for easy
generation of typical NN matrices.

The output argument V is best analyzed using selstruc. The selection
of a suitable model structure based on the information in v is normally
done using selstruc.

Each of ze and zv is an iddata object containing output-input data.
Frequency-domain data and idfrd objects are also supported. Models
for each of the model structures defined by NN are estimated using the
data set ze. The loss functions (normalized sum of squared prediction
errors) are then computed for these models when applied to the
validation data set zv. The data sets ze and zv need not be of equal size.
They could, however, be the same sets, in which case the computation
is faster.

This example uses the simulation data from a second-order idpoly
model with additive noise. The data is split into two parts, where one
part is the estimation data and the other is the validation data. You
select the best model by comparing the output of models with orders
ranging between 1 and 5 with the validating data. All models have an
input-to-output delay of 1.

% Create an ARX model for generaing data:
A=1[1-1.50.7]; B=1[01 0.5];
mO0 = idpoly(A,B);

Generate a random input signal:

= iddata([],idinput (400, 'rbs'));

= iddata([],0.1*randn(400,1));

Simulate the output signal from the model mO:
= sim(m0, [u e]);

= [y,u]; % analysis data
N = struc(1:5,1:5,1);

= arxstruc(z(1:200),z(201:400),NN);

n = selstruc(V,0);

o°

D C

o°

S < Z2NK
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m = arx(z,nn);

arx | idpoly | ivstruc | selstruc | struc
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Purpose

Syntax

Description

See Also

Frequency response bandwidth

fb = bandwidth(sys)
fb = bandwidth(sys,dbdrop)
fb = bandwidth(sys) computes the bandwidth fb of the SISO dynamic

system model sys, defined as the first frequency where the gain drops
below 70.79 percent (-3 dB) of its DC value. The frequency fb is
expressed in rad/TimeUnit, where TimeUnit is the time units of the
input dynamic system, specified in the TimeUnit property of sys.

For FRD models, bandwidth uses the first frequency point to
approximate the DC gain.

fb = bandwidth(sys,dbdrop) further specifies the critical gain drop
in dB. The default value is -3 dB, or a 70.79 percent drop.

If sys is an S1-by...-by-Sp array of models, bandwidth returns an array
of the same size such that

fb(j1,...,jp) = bandwidth(sys(:,:,j1,...,3ip))

dcgain | issiso



Purpose Estimate Box-Jenkins polynomial model using time domain data
Syntax sys = bj(data, [nb nc nd nf nk])

sys = bj(data,[nb nc nd nf nk], Name,Value)

sys = bj(data, init_sys)

sys = bj(data, , opt)
Description sys = bj(data, [nb nc nd nf nk]) estimates a Box-Jenkins

polynomial model, sys, using the time domain data, data. [nb nc nd
nf nk] define the orders of the polynomials used for estimation.

sys = bj(data,[nb nc nd nf nk], Name,Value) estimates a
polynomial model with additional options specified by one or more
Name,Value pair arguments.

sys = bj(data, init_sys) estimates a Box-Jenkins polynomial
using the polynomial model init_sys to configure the initial
parameterization of Sys.

sys = bj(data, , opt) estimates a Box-Jenkins polynomial using
the option set, opt, to specify estimation behavior.

Input data
Arguments Estimation data.

datais an iddata object containing the input and output signal values.

[nb nc nd nf nk]

A vector of matrices containing the orders and delays of the Box-Jenking
model. Matrixes must contain nonnegative integers.

® nb is the order of the B polynomial plus 1 (Ny-by-Nu matrix)
® nc is the order of the C polynomial plus 1 (Ny-by—1 matrix)
¢ nd is the order of the D polynomial plus 1 (Ny-by-1 matrix)
® nf is the order of the F polynomial plus 1 (Ny-by-Nu matrix)
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® nk is the input delay (in number of samples, Ny-by-Nu matrix) where
Nu 1s the number of inputs and Ny is the number of outputs.

opt

Estimation options.

opt is an options set that configures, among others, the following:

® estimation objective

¢ initial conditions

® numerical search method to be used in estimation

Use bjOptions to create the options set.

init_sys
Polynomial model that configures the initial parameterization of sys.

init_sys must be an idpoly model with the Box-Jenkins structure
that has only B, C, D and F polynomials active. bj uses the parameters
and constraints defined in init_Sys as the initial guess for estimating
sys.

Use the Structure property of init sys to configure initial guesses
and constraints for B(q), F(q), C(q) and D(q).

To specify an initial guess for, say, the C(q) term of init_sys, set
init_sys.Structure.c.Value as the initial guess.

To specify constraints for, say, the B(g) term of init_sys:

® set init_sys.Structure.b.Minimum to the minimum B(q) coefficient
values

® set init sys.Structure.b.Maximum to the maximum B(q) coefficient
values

® set init sys.Structure.b.Free to indicate which B(q) coefficients
are free for estimation



You can similarly specify the initial guess and constraints for the other
polynomials.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuei,...,NameN,ValueN.

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay
for each input channel. Specify input delays in integer multiples of
the sampling period Ts. For example, InputDelay = 3 means a delay
of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where
each entry is a numerical value representing the input delay for the
corresponding input channel. You can also set InputDelay to a scalar
value to apply the same delay to all channels.

Default: O for all input channels

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate
transport delay for each input/output pair.

Specify transport delays as integers denoting delay of a multiple of the
sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a
Ny-by-Nu array, where each entry is a numerical value representing the
transport delay for the corresponding input/output pair. You can also
set ioDelay to a scalar value to apply the same delay to all input/output
pairs.

Default: 0 for all input/output pairs
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Arguments

Definitions

IntegrateNoise
Logical specifying integrators in the noise channel.

IntegrateNoise is a logical vector of length Ny, where Ny is the
number of outputs.

Setting IntegrateNoise to true for a particular output results in
the model:

y(@) = Mu(,f —nk)+ Clg) e@®)

Flg) D@1-q!

Where,

I is the integrator in the noise channel,e(t).
1-q

Default: false(Ny,1)(NVy is the number of outputs)
sys
Identified polynomial model of Box-Jenkins structure.

Sys is a discrete-time idpoly model which encapsulates the identified
polynomial model.

Box-Jenkins Model Structure

The general Box-Jenkins model structure is:

< Bi@) Clg)
H=> (t—nk;)+ ="e(t
y(@) iﬂﬁ}(q)u;( nl)+D(q)e()

where nu is the number of input channels.

The orders of Box-Jenkins model are defined as follows:



Examples

nb: B(q)=by +byg ! +...+bypg "M
ne: Clq)=1+ clq_1 ot Cpeq

nd: D(@) =1+ allq_1 +...+ dndq_nd
nf: F@=1+fig 4.t fopqg™

Identify SISO Box-Jenkins Model

Estimate the parameters of a single-input, single-output Box-Jenkins
model from measured data.

load iddatatl zi;
nb =
nc =
nd =
nf =
nk = 1;
sys = bj(z1,[nb nc nd nf nk])

b
b
b

b

= NN NN

sys is a discrete-time idpoly model with estimated coefficients. The
order of sys is as described by nb, nc, nd, nf, and nk.

Use getpvec to obtain the estimated parameters and getcov to obtain
the covariance associated with the estimated parameters.

Estimate a Multi-Input, Single-Output Box-Jenkins Model

Estimate the parameters of a multi-input, single-output Box-Jenkins
model from measured data.

load iddatas8;

nb = [21 1];
nc = 1;
nd = 1;
nf = [2 1 2];

nk = [5 10 15];
sys = bj(z8,[nb nc nd nf nk]);
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sys estimates the parameters of a model with three inputs and one
output. Each of the inputs has a delay associated with 1it.

Configure Estimation Options

Estimate the parameters of a single-input, single-output Box-Jenkins
model while configuring some estimation options.

Generate estimation data.

[0 1 0.5];

[1 -1 0.2];

[1 1.5 0.7];

[1 -1.5 0.7];

sys0O = idpoly(1,B,C,D,F,0.1);

MO O W
1]

e = iddata([],randn(200,1));
u = iddata([],idinput(200));
y = sim(sysO,[u e]);

data = [y ul;

data is a single-input, single-output data set created by simulating
a known model.

Estimate initial Box-Jenkins model.

nb
nc
nd =
nf =
nk = 1;

init sys = bj(data,[2 2 2 2 1]);

H

= NN

H
H

H

Create an estimation option set to refine the parameters of the
estimated model.

opt = bjoOptions;
opt.Display = 'on';
opt.SearchOption.MaxIter = 50;



Alternatives

opt is an estimation option set that configures the estimation to iterate
50 times at most and display the estimation progress.

Reestimate the model parameters using the estimation option set.
sys = bj(data,init_sys,opt)

sys 1s estimated using init_sys for the initial parameterization for the
polynomial coefficients.

To view the estimation result, enter sys.Report at the MATLAB
command prompt.

Estimate MIMO Box-Jenkins Model

Estimate a multi-input, multi-output Box-Jenkins model from
estimated data.

Load measured data.

load iddatal zi
load iddata2 z2
data = [z1, z2(1:300)];

data contains the measured data for two inputs and two outputs.

Estimate the model.

nb = [2 2; 3 4];
nc = [2;2];
nd = [2;2];
nf = [10; 2 2];
nk = [1 1; 0 0];

sys = bj(data, [nb nc nd nf nk])

The polynomial order coefficients contain one row for each output.

sys is a discrete-time idpoly model with two inputs and two outputs.

To estimate a continuous-time model, use:
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References

See Also

® tfest — returns a transfer function model
® ssest — returns a state-space model

® bj to first estimate a discrete-time model and convert it a
continuous-time model using d2c.

[1] Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NdJ, Prentice-Hal PTR, 1999.

bjoptions | tfest | arx | armax | iv4 | ssest | oe |
polyest | idpoly | iddata | d2c | forecast | sim | compare



bjOptions

Purpose

Syntax

Description

Input
Arguments

Option set for bj

opt = bjOptions
opt bjOptions(Name,Value)

opt bjOptions creates the default options set for bj.

opt = bjOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuel,...,NameN,ValueN.

InitialCondition

Specify how initial conditions are handled during estimation.
InitialCondition takes one of the following values:

e 'zero' — The initial conditions are set to zero.

e 'estimate' — The initial conditions are treated as independent
estimation parameters.

® 'backcast' — The initial conditions are estimated using the best
least squares fit.

® 'auto' — The software chooses the method to handle initial
conditions based on the estimation data.

Default: 'auto'

Focus
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Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus can take the following values:

e 'simulation' — Estimates the model using the frequency weighting
of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

This method provides a stable model.

® prediction — Automatically calculates the weighting function
as a product of the input spectrum and the inverse of the noise
model. The weighting function minimizes the one-step-ahead
prediction, which typically favors fitting small time intervals (higher
frequency range). From a statistical-variance point of view, this is
the optimal weighting function. However, this method neglects the
approximation aspects (bias) of the fit. Use 'stability'when you
want to ensure a stable model.

® 'stability' — Same as 'prediction', but with model stability
enforced.

e Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[wil,wih;w21,w2h;w31,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

e SISO filter — Enter any SISO linear filter in any of the following
ways:
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= A single-input-single-output (SISO) linear system.

= The {A,B,C,D} format, which specifies the state-space matrices
of the filter.

= The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

This calculates the weighting function as a product of the filter and
the input spectrum to estimate the transfer function. To obtain a
good model fit for a specific frequency range, you must choose the
filter with a passband in this range. The estimation result is the
same if you first prefilter the data using idfilt.

® Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same size
as length of the frequency vector of the data set, Data.Frequency.
Each input and output response in the data is multiplied by the
corresponding weight at that frequency.

Default: 'prediction'

EstCovar
Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

Display
Specifies whether estimation progress should be displayed.
Display requires one of the following strings:

e 'on' — Information on model structure and estimation results are
displayed in a progress viewer window

e 'off' — No progress or results information is displayed
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Default: 'off'

InputOffset
Removes offset from time domain input data during estimation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu 1s the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

OvutputOffset
Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments. Each entry specified by OutputOffset is subtracted
from the corresponding output data.

Default: []

SearchMethod
Search method used for iterative parameter estimation.
SearchMethod is a string that can take the following values:

® gn — The subspace Gauss-Newton direction.



bjOptions

® gna — An adaptive version of subspace Gauss-Newton approach,
suggested by Wills and Ninness [1].

® 1m — Uses the Levenberg-Marquardt method.

® 1sgnonlin — Uses the trust region reflective algorithm. Requires
the Optimization Toolbox software.

® grad — The steepest descent gradient search method.

® auto — A choice among the above is made in the algorithm.
The descent direction is calculated using gn, gna, 1m and grad
successively, in that order, at each iteration until a sufficient
reduction in error is achieved.

Default: 'auto'

SearchOption

SearchOption is an options set for the search algorithm with the fields:

SearchMéﬁmdhOption

gn,gna,ly
grad
and
auto

n,e Tolerance — Minimum percentage difference (divided

by 100) between the current value of the loss function
and its expected improvement after the next iteration.
When the percentage of expected improvement is less
than Tolerance, the iterations are stopped. The estimate
of the expected loss-function improvement at the next
iteration is made based on the Gauss-Newton vector
computed for the current parameter value.

Default: 0.01

MaxIter — Maximum number of iterations during
loss-function minimization. The iterations stop when
MaxIter is reached or another stopping criterion is
satisfied, such as Tolerance.

Setting MaxIter = O returns the result of the startup
procedure.
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Seurchl*&lmdhOption

Use sys.Report.Termination.Iterations to get the
actual number of iterations during an estimation, where
sys is an idtf model.

Default: 20

e Advanced — Search settings:

GnPinvConst — Singular values of

the Jacobian that are smaller than
GnPinvConst*max(size(J)*norm(J)*eps are
discarded when computing the search direction and
SearchMethod is 'gn'.

GnPinvConst must be a positive real value.
Default: 10000

InitGnaTol — Initial value of gamma when
SearchMethod is 'gna’.

Default: .0001

LMStartValue — Starting value of search-direction
length d in the Levenberg-Marquardt method.
Applicable when SearchMethod is '1m'.

Default: .001

LMStep — Size of the Levenberg-Marquardt step.
The next value of the search-direction length d in
the Levenberg-Marquardt method is LMStep times
the previous one. Applicable when SearchMethod is
“Im'.

Default: 2

MaxBisections — Maximum number of bisections
used by the line search along the search direction.

Default: 25
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Seurchl*&lmdhOption

MaxFunEvals — Iterations are stopped if the number
of calls to the model file exceeds this value.

MaxFunEvals must be a positive integer value.
Default: Inf

= MinParChange — Smallest parameter update allowed
per iteration

MinParChange must be a positive, real value.
Default: 0

= RellImprovement — Iterations are stopped if the
relative improvement of the criterion function is less
than RelImprovement.

RelImprovement must be a positive integer value.
Default: 0

= StepReduction — Suggested parameter update is
reduced by the factor StepReduction after each try
until either MaxBisections tries are completed or a
lower value of the criterion function is obtained.

StepReduction must be a positive, real value that is
greater than 1.

Default: 2

1sqnonlirm TolFun — Termination tolerance on the loss function
that the software minimizes to determine the estimated
parameter values.

The value of TolFun is the same as that of
sys.SearchOption.Advanced.TolFun.

Default: le-5
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Seurchl*&lmdhOption

® TolX — Termination tolerance on the estimated

parameter values.

The value of TolX i1s the same as that of
sys.SearchOption.Advanced.TolX.

Default: 1le-6

MaxIter — Maximum number of iterations during
loss-function minimization. The iterations stop when
MaxIter is reached or another stopping criterion is
satisfied, such as TolFun etc..

The value of MaxIter is the same as that of
sys.SearchOption.Advanced.MaxIter.

Default: 20
Advanced — Options set for 1sgnonlin.
For more information, see “Optimization Options”.

Use optimset('lsgnonlin') to create an options set
for 1sqnonlin and then modify it to specify its various
options.

Advanced

Advanced is a structure with the following fields:

® ErrorThreshold — Specifies when to adjust the weight of large
errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard

deviation have a linear weight in the criteria. The standard deviation

is estimated robustly as the median of the absolute deviations from
the median and divided by 0.7. See the section about choosing
a robust norm in the chapter “Computing the Estimate” of [2].
ErrorThreshold = 0 disables robustification and leads to a purely
quadratic criterion. When estimating with frequency-domain data,
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ErrorThreshold is set to zero. ErrorThreshold = 1.6 is a good
choice for estimation when data contains outliers.

Default: 0

® MaxSize — Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive integer.
Default: 250000

® StabilityThreshold — Specifies thresholds for stability tests.
StabilityThreshold is a structure with the following fields:

= s — Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0

= z — Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

® AutoInitThreshold — Specifies when to automatically estimate
the initial conditions.

When InitialCondition = 'Auto’, the initial condition is
estimated when the ratio of the prediction-error norm with a zero
initial condition to the norm with an estimated initial condition
exceeds AutoInitialState.

Default: 1.05

Output opt

Arguments Option set containing the specified options for bj.
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References

Examples

See Also

[1] Wills, Adrian , B. Ninness, and S. Gibson. "On Gradient-Based
Search for Multivariable System Estimates" IFAC World Congress,
Prague, 2005.

[2] Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NdJ, Prentice-Hal PTR, 1999.

Create Default Options Set for Box-Jenkins Estimation
Create a default options set for bj.
opt = bjOptions;

Specify Options for Box-Jenkins Estimation

Create an options set for bj using zero initial conditions for estimation
and set Display to 'on'.

opt = bjOptions('InitialCondition','zero','Display','on');
Alternatively, use dot notation to set the values of opt.
opt = bjoOptions;

opt.InitialCondition = 'zero';
opt.Display = 'on';

bj | idfilt



blkdiag

Purpose
Syntax

Description

Examples

Block-diagonal concatenation of models

sys

sys

blkdiag(sys1,sys2,...,sysN)

blkdiag(sysi1,sys2,...

sysl
0

0

sys2

0 sysN

,SysN) produces the aggregate system

blkdiag is equivalent to append.

The commands

sys1
sys2

produce the state-space model

a =

x1
X2

x1
X2

y1
y2
y3

tf(1,[1 0]);
ss(1,2,3,4);
sys = blkdiag(sys1,10,sys2)

X1

OO = =

X2
0
1

o

X2

w o o

o

2-79



blkdiag

d =
ul u2 u3
y1 0 0 0
y2 0 10 0
y3 0 0 4

Continuous-time model.

See Also append | series | parallel | feedback
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Purpose

Syntax

Description

Bode plot of frequency response, magnitude and phase of frequency
response

bode (sys)

bode(sys1,...,sysN)
bode(sys1,PlotStylel,...,sysN,PlotStyleN)
bode(...,w)

[mag,phase] = bode(sys,w)

[mag,phase,wout] = bode(sys)
[mag,phase,wout,sdmag,sdphase] = bode(sys)

bode (sys) creates a Bode plot of the frequency response of a dynamic
system model sys. The plot displays the magnitude (in dB) and phase
(in degrees) of the system response as a function of frequency.

When sys is a multi-input, multi-output (MIMO) model, bode produces
an array of Bode plots, each plot showing the frequency response of
one I/0 pair.

bode automatically determines the plot frequency range based on
system dynamics.

Bode Diagram

Magnitude (dB)

Phase (deq)

=) ) AT | Ll Ll M
10" 10 107 10 10" 10
Frequency (rad/sec)
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Input
Arguments

bode(sys1,...,sysN) plots the frequency response of multiple dynamic
systems in a single figure. All systems must have the same number of
inputs and outputs.

bode(sys1,PlotStylel,...,sysN,PlotStyleN) plots system
responses using the color, linestyle, and markers specified by the
PlotStyle strings.

bode(...,w) plots system responses at frequencies determined by w.

e If wis a cell array {wmin,wmax}, bode(sys,w) plots the system
response at frequency values in the range {wmin,wmax}.

e Ifwis a vector of frequencies, bode (sys,w) plots the system response
at each of the frequencies specified in w.

[mag,phase] = bode(sys,w) returns magnitudes mag in absolute
units and phase values phase in degrees. The response values in mag
and phase correspond to the frequencies specified by w as follows:

e If wis a cell array {wmin,wmax}, [mag,phase] = bode(sys,w)
returns the system response at frequency values in the range
{wmin,wmax}.

e If wis a vector of frequencies, [mag,phase] = bode(sys,w) returns
the system response at each of the frequencies specified in w.

[mag,phase,wout] = bode(sys) returns magnitudes, phase values,
and frequency values wout corresponding to bode (sys).

[mag,phase,wout,sdmag,sdphase] = bode(sys) additionally returns
the estimated standard deviation of the magnitude and phase values
when sys is an identified model and [ ] otherwise.

sys
Dynamic system model, such as a Numeric LTI model, or an array of
such models.

PlotStyle
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Output
Arguments

Line style, marker, and color of both the line and marker, specified as
a one-, two-, or three-part string enclosed in single quotes (' '). The
elements of the string can appear in any order. The string can specify
only the line style, the marker, or the color.

For more information about configuring the P1lotStyle string, see
“Colors, Line Styles, and Markers” in the MATLAB documentation.
w

Input frequency values, specified as a row vector or a two-element cell
array.

Possible values of w:

* Two-element cell array {wmin,wmax}, where wmin is the minimum
frequency value and wmax is the maximum frequency value.

® Row vector of frequency values.

For example, use logspace to generate a row vector with
logarithmically-spaced frequency values.

Specify frequency values in radians per TimeUnit, where TimeUnit is
the time units of the input dynamic system, specified in the TimeUnit
property of sys.

mag

Bode magnitude of the system response in absolute units, returned as a
3-D array with dimensions (number of outputs) X (number of inputs)
X (number of frequency points).

® For a single-input, single-output (SISO) sys, mag(1,1,k) gives the
magnitude of the response at the kth frequency.

® For MIMO systems, mag(i,j,k) gives the magnitude of the response
from the jth input to the ith output.

You can convert the magnitude from absolute units to decibels using:

magdb = 20*1og10(mag)
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Examples

phase

Phase of the system response in degrees, returned as a 3-D array with
dimensions are (number of outputs) X (number of inputs) X (number
of frequency points).

¢ For SISO sys, phase(1,1,k) gives the phase of the response at the
kth frequency.

¢ For MIMO systems, phase(i,j,k) gives the phase of the response
from the jth input to the ith output.
wout

Response frequencies, returned as a row vector of frequency points.
Frequency values are in radians per TimeUnit, where TimeUnit is the
value of the TimeUnit property of sys.

sdmag

Estimated standard deviation of the magnitude. sdmag has the same
dimensions as mag.

If sys is not an identified LTI model, sdmag is [].

sdphase

Estimated standard deviation of the phase. sdphase has the same
dimensions as phase.

If sys is not an identified LTI model, sdphase is [].

Bode Plot of Dynamic System
Create Bode plot of the dynamic system:

2
+0.1s+7.5
H(s)= 48 83 2
s +0.12s° +9s

H(s) is a continuous-time SISO system.
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H=tf([1 0.1 7.5],[1 0.12 9 0 0]);
bode (H)

Bode Diagram

Magnitude (dB)
ha
=1
1

s i

-40
.45

a0+ i

Phasze (deq)

-180

Freguency (radfsec)

bode automatically selects the plot range based on the system dynamics.

Bode Plot at Specified Frequencies

Create Bode plot over a specified frequency range. Use this approach
when you want to focus on the dynamics in a particular range of
frequencies.

H=tf([1 0.1 7.5],[1 0.12 9 0 0]);
bode (H,{0.1,10})

The cell array {0.1,10} specifies the minimum and maximum
frequency values in the Bode plot.
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Bode Diagram
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Alternatively, you can specify a vector of frequencies to use for
evaluating and plotting the frequency response.

w = logspace(-1,1,50);
bode (H,w)

logspace defines a logarithmically spaced frequency vector in the range
of 0.1-10 rad/s.

Compare Bode Plots of Several Dynamic Systems

Compare the frequency response of a continuous-time system to an
equivalent discretized system on the same Bode plot.

1 Create continuous-time and discrete-time dynamic systems.

H=tf([1 0.1 7.5],[1 0.12 9 0 0]);
Hd = c2d(H,0.5,'zoh");

2 Create Bode plot that includes both systems.
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bode (H,Hd)
Bode Diagram
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Bode Plot with Specified Line and Marker Attributes

Specify the color, linestyle, or marker for each system in a Bode plot
using the PlotStyle input arguments.

H=tf([1 0.1 7.5],[1 0.12 9 0 0]);
Hd = c2d(H,0.5,'zoh');

H and Hd are two different systems.

bode(H, 'r',Hd, 'b--")

The string 'r' specifies a solid red line for the response of H. The string
'b--' specifies a dashed blue line for the response of Hd.
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Bode Diagram
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Obtain Magnitude and Phase Data

Compute the magnitude and phase of the frequency response of a
dynamic system.

H=+tf([1 0.1 7.5],[1 0.12 9 0 0]);
[mag phase wout] = bode(H);

Because H is a SISO model, the first two dimensions of mag and phase
are both 1. The third dimension is the number of frequencies in wout.

Bode Plot of Identified Model

Compare the frequency response of a parametric model, identified
from input/output data, to a non-parametric model identified using
the same data.

1 Identify parametric and non-parametric models based on data.

load iddata2 z2;
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w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);

sys_np is a non-parametric identified model. sys_p is a parametric
identified model.

2 Create a Bode plot that includes both systems.

bode (sys_np,sys_p,w);

Bode Diagram
From: u1 To: y1
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Obtain Magnitude and Phase Standard Deviation Data of
Identified Model

Compute the standard deviation of the magnitude and phase of an
identified model. Use this data to create a 3o plot of the response

uncertainty.

1 Identify a transfer function model based on data. Obtain the
standard deviation data for the magnitude and phase of the frequency

response.
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load iddata2 z2;
sys_p = tfest(z2,2);
w = linspace(0,10*pi,128);

[mag,ph,w,sdmag, sdphase] bode(sys_p,w);

sys_p is an identified transfer function model.

sdmag and sdphase contain the standard deviation data for the
magnitude and phase of the frequency response, respectively.

2 Create a 30 plot corresponding to the confidence region.
mag = squeeze(mag);

sdmag = squeeze(sdmag);
semilogx(w,mag,'b',w,mag+3*sdmag, 'k:',w,mag-3*sdmag,

z—
-

Algorithms bode computes the frequency response using these steps:

1 Computes the zero-pole-gain (zpk) representation of the dynamic
system.

2 Evaluates the gain and phase of the frequency response based on the
zero, pole, and gain data for each input/output channel of the system.
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a For continuous-time systems, bode evaluates the frequency
response on the imaginary axis s = jo and considers only positive
frequencies.

b For discrete-time systems, bode evaluates the frequency response
on the unit circle. To facilitate interpretation, the command
parameterizes the upper half of the unit circle as

- ™
L 0<w<oy =—,

z=e€
TS

where T is the sampling time. o, is the Nyquist frequency. The
equivalent continuous-time frequency w is then used as the x-axis

variable. Because H(e/*%) is periodic and has a period 2 w,, bode
plots the response only up to the Nyquist frequency w,. If you do
not specify a sampling time, bode uses T, = 1.

Alternatives Use bodeplot when you need additional plot customization options.
See Also bodeplot | freqresp | nichols | nyquist | spectrum

How To * “Dynamic System Models”

2-91



bodemag

2-92

Purpose

Syntax

Description

See Also

Bode magnitude response of LTI models

bodemag(sys)

bodemag(sys, {wmin,wmax})

bodemag (sys,w)
bodemag(sysi1,sys2,...,sysN,w)
bodemag(sysi1,'r',sys2,'y--"',sys3,'gx")

bodemag(sys) plots the magnitude of the frequency response of the
dynamic system model sys (Bode plot without the phase diagram). The
frequency range and number of points are chosen automatically.

bodemag (sys, {wmin,wmax}) draws the magnitude plot for frequencies
between wmin and wmax (in rad/TimeUnit, where TimeUnit is the time
units of the input dynamic system, specified in the TimeUnit property
of sys).

bodemag(sys,w) uses the user-supplied vector W of frequencies, in
rad/TimeUnit, at which the frequency response is to be evaluated.

bodemag(sys1,sys2,...,sysN,w) shows the frequency response
magnitude of several models sysi1,sys2,...,sysN on a single plot. The
frequency vector w is optional. You can also specify a color, line style,
and marker for each model, as in
bodemag(sys1,'r',sys2,'y--"',sys3,'gx")

bode | 1tiview
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Purpose

Syntax

Description P

Create list of Bode plot options

bodeoptions
bodeoptions('cstprefs')

bodeoptions returns a list of available options for Bode plots with

default values set. You can use these options to customize the Bode plot
appearance using the command line.

P

bodeoptions('cstprefs') initializes the plot options with the

options you selected in the Control System Toolbox Preferences Editor.
For more information about the editor, see “Toolbox Preferences Editor”
in the User’s Guide documentation.

The following table summarizes the Bode plot options.

Option

Description

Title, XLabel, YLabel

Label text and style

TickLabel

Tick label style

Grid

Show or hide the grid
Specified as one of the following strings: 'off' |
Default: 'off'

|on|

XlimMode, YlimMode

Limit modes

Xlim, Ylim

Axes limits

I0Grouping Grouping of input-output pairs
Specified as one of the following strings: 'none'
| "inputs' | 'output'|'all’
Default: 'none'
InputLabels, Input and output label styles
OutputLabels
InputVisible, Visibility of input and output channels
OutputVisible
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Option Description

ConfidenceRegionNumbbdidbber of standard deviations to use to plotting the response
confidence region (identified models only).

Default: 1.

FreqUnits Frequency units, specified as one of the following strings:

° |Hz|

® 'rad/second’

* '‘rpm'
® 'kHz'
® 'MHz'
® 'GHz'

® 'rad/nanosecond’

® 'rad/microsecond’

® 'rad/millisecond’

® 'rad/minute’

® ‘rad/hour’

* 'rad/day'’

® '‘rad/week’

* ‘'rad/month’

® 'rad/year'’

® 'cycles/nanosecond’
® 'cycles/microsecond’
® '‘cycles/millisecond’

® '‘cycles/hour'

® '‘cycles/day'
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Option

Description

® '‘cycles/week'
® '‘cycles/month'

® '‘cycles/year'

Default: 'rad/s'

You can also specify 'auto' which uses frequency units
rad/TimeUnit relative to system time units specified in the
TimeUnit property. For multiple systems with different time
units, the units of the first system are used.

FreqScale

Frequency scale
Specified as one of the following strings: 'linear' | 'log'
Default: 'log'

MagUnits

Magnitude units
Specified as one of the following strings: 'dB' | 'abs'
Default: 'dB'

MagScale

Magnitude scale
Specified as one of the following strings: 'linear' | 'log'
Default: 'linear’

MagVisible

Magnitude plot visibility
Specified as one of the following strings: 'on' | 'off'
Default: 'on'

MagLowerLimMode

Enables a lower magnitude limit
Specified as one of the following strings: 'auto' | 'manual’
Default: 'auto'

MagLowerLim

Specifies the lower magnitude limit

PhaseUnits

Phase units
Specified as one of the following strings: 'deg' | 'rad'
Default: 'deg'
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Option Description

PhaseVisible Phase plot visibility
Specified as one of the following strings: 'on' | 'off'
Default: 'on'

PhaseWrapping Enables phase wrapping
Specified as one of the following strings: 'on' | 'off'
Default: 'off!'

PhaseMatching Enables phase matching
Specified as one of the following strings: 'on' | 'off'
Default: 'off!'

PhaseMatchingFreq | Frequency for matching phase

PhaseMatchingValue | The value to which phase responses are matched closely

Examples In this example, set phase visibility and frequency units in the Bode

plot options.

P = bodeoptions; % Set phase visiblity to off and frequency units to Hz in options

P.PhaseVisible = 'off';

P.FreqUnits = 'Hz'; % Create plot with the options specified by P
h = bodeplot(tf(1,[1,1]),P);

The following plot is created, with the phase plot visibility turned off
and the frequency units in Hz.
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See Also bode | bodeplot | getoptions | setoptions | showConfidence
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Purpose

Syntax

Description

Plot Bode frequency response with additional plot customization options

h = bodeplot(sys)
bodeplot(sys)
bodeplot(sysi,sys2,...)
bodeplot (AX,...)
bodeplot(..., plotoptions)
bodeplot(sys,w)

h = bodeplot(sys) plot the Bode magnitude and phase of the dynamic
system model sys and returns the plot handle h to the plot. You can use
this handle to customize the plot with the getoptions and setoptions
commands.

bodeplot(sys) draws the Bode plot of the model sys. The frequency
range and number of points are chosen automatically.

bodeplot(sysi,sys2,...) graphs the Bode response of multiple
models sys1,sys2,... on a single plot. You can specify a color, line style,
and marker for each model, as in

bodeplot(syst, 'r',sys2,'y--"',sys3, 'gx"')

bodeplot (AX,...) plots into the axes with handle AX.

bodeplot(..., plotoptions) plots the Bode response with the options
specified in plotoptions. Type

help bodeoptions

for a list of available plot options. See “Example 2” on page 2-99 for
an example of phase matching using the PhaseMatchingFreq and
PhaseMatchingValue options.

bodeplot(sys,w) draws the Bode plot for frequencies specified by w.
Whenw = {wmin,wmax}, the Bode plot is drawn for frequencies between
wmin and wmax (in rad/TimeUnit, where TimeUnit is the time units of
the input dynamic system, specified in the TimeUnit property of sys.).
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Tips

Examples

When w is a user-supplied vector w of frequencies, in rad/TimeUnit, the
Bode response is drawn for the specified frequencies.

See logspace to generate logarithmically spaced frequency vectors.

You can change the properties of your plot, for example the units. For
information on the ways to change properties of your plots, see “Ways
to Customize Plots”.

Example 1

Use the plot handle to change options in a Bode plot.

Sys = rss(5);

h = bodeplot(sys);

% Change units to Hz and make phase plot invisible
setoptions(h,'Frequnits', 'Hz','PhaseVisible', 'off');

Example 2

The properties PhaseMatchingFreq and PhaseMatchingValue are
parameters you can use to specify the phase at a specified frequency.
For example, enter the following commands.

sys = tf(1,[1 1]);
h = bodeplot(sys) % This displays a Bode plot.
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Use this code to match a phase of 750 degrees to 1 rad/s.

p = getoptions(h);

p.PhaseMatching = 'on';

p.PhaseMatchingFreq = 1;

p.PhaseMatchingValue = 750; % Set the phase to 750 degrees at 1
% rad/s.

setoptions(h,p); % Update the Bode plot.
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The first bode plot has a phase of -45 degrees at a frequency of 1 rad/s.
Setting the phase matching options so that at 1 rad/s the phase is near
750 degrees yields the second Bode plot. Note that, however, the phase
can only be -45 + N*360, where N is an integer, and so the plot is set to
the nearest allowable phase, namely 675 degrees (or 2*¥360 - 45 = 675).

Example 3

Compare the frequency responses of identified state-space models of
order 2 and 6 along with their 2 std confidence regions.

load iddatat
sys1 = n4sid(z1, 2) %
sys2 = n4sid(z1, 6) %

discrete-time IDSS model of order 2
discrete-time IDSS model of order 6
Both models produce about 76% fit to data. However, sys2 shows
higher uncertainty in its frequency response, especially close to Nyquist
frequency as shown by the plot:
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w = linspace(8,10*pi,256);
h = bodeplot(sys1,sys2,w);
setoptions(h, 'PhaseMatching', 'on', 'ConfidenceRegionNumberSD', 2);

Use the context menu by right-clicking Characteristics > Confidence
Region to turn on the confidence region characteristic.

Example 4

Compare the frequency response of a parametric model, identified
from input/output data, to a nonparametric model identified using
the same data.

1 Identify parametric and non-parametric models based on data.

load iddata2 z2;

w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);

spa and tfest require System Identification Toolbox software.
sys_np is a non-parametric identified model. sys_p is a parametric
identified model.

2 Create a Bode plot that includes both systems.

opt = bodeoptions; opt.PhaseMatching = 'on’;
bodeplot(sys_np,sys_p,w, opt);

See Also bode | bodeoptions | getoptions | setoptions | showConfidence

2-102



c2d

Purpose

Syntax

Description

Tips

Input
Arguments

Convert model from continuous to discrete time

sysd = c2d(sys,Ts)

sysd c2d(sys,Ts,method)
sysd c2d(sys,Ts,opts)
[sysd,G] = c2d(sys,Ts,method)
[sysd,G] = c2d(sys,Ts,opts)

sysd = c2d(sys,Ts) discretizes the continuous-time dynamic system
model sys using zero-order hold on the inputs and a sample time of
Ts seconds.

sysd = c2d(sys,Ts,method) discretizes SyS using the specified
discretization method method.

sysd = c2d(sys,Ts,opts) discretizes Sys using the option set opts,
specified using the c2dOptions command.

[sysd,G] = c2d(sys,Ts,method) returns a matrix, G that maps the
continuous initial conditions x, and u, of the state-space model sys to
the discrete-time initial state vector x [0]. method is optional. To specify
additional discretization options, use [sysd,G] = c2d(sys,Ts,opts).

e Use the syntax sysd = c2d(sys,Ts,method) to discretize sys using
the default options for method. To specify additional discretization
options, use the syntax sysd = c2d(sys,Ts,opts).

® To specify the tustin method with frequency prewarping (formerly
known as the 'prewarp' method), use the PrewarpFrequency option
of c2dOptions.

sys
Continuous-time dynamic system model (except frequency response

data models). sys can represent a SISO or MIMO system, except that
the 'matched' discretization method supports SISO systems only.
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Output
Arguments
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Sys can have input/output or internal time delays; however, the
'matched' and 'impulse' methods do not support state-space models
with internal time delays.

The following identified linear systems cannot be discretized directly:
e idgrey models with FcnType is '¢'. Convert to idss model first.

® idproc models. Convert to idtf or idpoly model first.

For the syntax [sysd,G] = c2d(sys,Ts,opts), Sys must be a
state-space model.

Ts

Sample time.

method
String specifying a discretization method:

® 'zoh' — Zero-order hold (default). Assumes the control inputs are
piecewise constant over the sampling period Ts.

e 'foh' — Triangle approximation (modified first-order hold). Assumes
the control inputs are piecewise linear over the sampling period Ts.

e 'impulse' — Impulse invariant discretization.
e 'tustin' — Bilinear (Tustin) method.
®* 'matched' — Zero-pole matching method.

For more information about discretization methods, see
“Continuous-Discrete Conversion Methods”.

opts

Discretization options. Create opts using c2dOptions.

sysd

Discrete-time model of the same type as the input system sys.
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When sys is an identified (IDLTT) model, sysd:

¢ Includes both measured and noise components of sys. The
Iinnovations variance A of the continuous-time identified model sys,
stored in its NoiseVarianceproperty, is interpreted as the intensity
of the spectral density of the noise spectrum. The noise variance in
sysd is thus A/Ts.

® Does not include the estimated parameter covariance of sys. If you
want to translate the covariance while discretizing the model, use
translatecov.

G

Matrix relating continuous-time initial conditions x, and u, of the
state-space model sys to the discrete-time initial state vector x [0],
as follows:

x[O]zG-[xO:|

Up

For state-space models with time delays, c2d pads the matrix G with
zeroes to account for additional states introduced by discretizing those
delays. See “Continuous-Discrete Conversion Methods” for a discussion
of modeling time delays in discretized systems.

Examples Discretize the continuous-time transfer function:
-1
H(s)=—5——
s“+4s+5

with input delay 7, = 0.35 second. To discretize this system using the
triangle (first-order hold) approximation with sample time 7, = 0.1
second, type

H=tf([1 -1], [1 4 5], 'inputdelay', 0.35);

Hd = c2d(H, 0.1, 'foh'); % discretize with FOH method and
% 0.1 second sample time
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Transfer function:
0.0115 z*3 + 0.0456 z"2 - 0.0562 z - 0.009104

Sampling time: 0.1

The next command compares the continuous and discretized step
responses.

step(H,"'-"',Hd,"'--")
<) Figure No. 1 =] 3

File Edit ¥iew Insert Tools Window Help
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Discretize the delayed transfer function
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10

H(S) — e—0.25s
s +3s5+10
using zero-order hold on the input, and a 10-Hz sampling rate.

h = tf(10,[1 3 10], 'iodelay',0.25); % create transfer function
hd = c2d(h, 0.1) % zoh is the default method
These commands produce the discrete-time transfer function

Transfer function:
0.01187 z"2 + 0.06408 z + 0.009721

Sampling time: 0.1

In this example, the discretized model hd has a delay of three sampling
periods. The discretization algorithm absorbs the residual half-period
delay into the coefficients of hd.

Compare the step responses of the continuous and discretized models
using

step(h,'--',hd,"'-")
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Discretize a state-space model with time delay, using a Thiran filter
to model fractional delays:

sys = ss(tf([1, 2], [1, 4, 2])); % create a state-space model
sys.InputDelay = 2.7 % add input delay

This command creates a continuous-time state-space model with two
states, as the output shows:

a:
x1 x2
x1 -4 2
X2 1 0
b =
ui
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x1 2
X2 0
C =
X1 X2
yl1 0.5 1
d =
ui
y1 0

Input delays (listed by channel): 2.7
Continuous-time model.

Use c2dOptions to create a set of discretization options, and discretize
the model. This example uses the Tustin discretization method.

opt = c2dOptions('Method', 'tustin', 'FractDelayApproxOrder', 3);
sysd1l = c2d(sys, 1, opt) % 1s sampling time

These commands yield the result

a:
x1 X2 x3 x4 x5
x1 -0.4286 -0.5714 -0.00265 0.06954 2.286
x2 0.2857 0.7143 -0.001325 0.03477 1.143
x3 0 0 -0.2432 0.1449 -0.1153
X4 0 0 0.25 0 0
x5 0 0 0 0.125 0
b =
ui

x1 0.002058
x2 0.001029

x3 8
x4 0
x5 0
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C:
x1 X2 X3 x4 x5
yi 0.2857 0.7143 -0.001325 0.03477 1.143
d:
ui

yl 0.001029

Sampling time: 1
Discrete-time model.

The discretized model now contains three additional states x3, x4,
and x5 corresponding to a third-order Thiran filter. Since the time
delay divided by the sampling time is 2.7, the third-order Thiran filter
(FractDelayApproxOrder = 3) can approximate the entire time delay.

Discretize an identified, continuous-time transfer function and compare
its performance against a directly estimated discrete-time model

Estimate a continuous-time transfer function and discretize it.
load iddatat

sysic = tfest(z1, 2);

sys1d = c2d(sysic, 0.1, 'zoh');

Estimate a second order discrete-time transfer function.

sys2d = tfest(z1, 2, 'Ts', 0.1);

Compare the two models.

compare(z1, sysid, sys2d)
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Algorithms
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The two systems are virtually identical.

Discretize an identified state-space model to build a one-step ahead
predictor of its response.

load iddata2

sysc = ssest(z2, 4);

sysd = c2d(sysc, 0.1, 'zoh');

[A,B,C,D,K] = idssdata(sysd);

Predictor = ss(A-K*C, [K B-K*D], C, [0 D], 0.1);

The Predictor is a two input model which uses the measured output
and input signals ([z1.y z1.u]) to compute the 1-steap predicted
response of sysc.

For information about the algorithms for each c2d conversion method,
see “Continuous-Discrete Conversion Methods”.
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See Also c2dOptions | d2c | d2d | thiran | translatecov

How To * “Dynamic System Models”
“Discretize a Compensator”

“Continuous-Discrete Conversion Methods”
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Purpose

Syntax

Description

Input
Arguments

Create option set for continuous- to discrete-time conversions

opts = c2dOptions
opts = c2dOptions('OptionName',
OptionValue)

opts = c2dOptions returns the default options for c2d.

opts

c2dOptions('OptionName', OptionValue) accepts one or

more comma-separated name/value pairs that specify options for the
c2d command. Specify OptionName inside single quotes.

Name-Value Pair Arguments

Method

Discretization method, specified as one of the following values:

‘zoh'

‘foh'

"impulse’

"tustin'

'matched’

Zero-order hold, where c2d assumes the control inputs
are piecewise constant over the sampling period Ts.

Triangle approximation (modified first-order hold),
where c2d assumes the control inputs are piecewise
linear over the sampling period Ts. (See [1], p. 228.)

Impulse-invariant discretization.

Bilinear (Tustin) approximation. By default, c2d
discretizes with no prewarp and rounds any fractional
time delays to the nearest multiple of the sample
time. To include prewarp, use the PrewarpFrequency
option. To approximate fractional time delays, use
theFractDelayApproxOrder option.

Zero-pole matching method. (See [1], p. 224.) By
default, c2d rounds any fractional time delays
to the nearest multiple of the sample time. To
approximate fractional time delays, use the
FractDelayApproxOrder option.
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Default: 'zoh'

PrewarpFrequency

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit,
where TimeUnit is the time units, specified in the TimeUnit property,
of the discretized system. Takes positive scalar values. A value of 0
corresponds to the standard 'tustin' method without prewarp.

Default: 0

FractDelayApproxOrder

Maximum order of the Thiran filter used to approximate fractional
delays in the 'tustin' and 'matched' methods. Takes integer values.
A value of 0 means that c2d rounds fractional delays to the nearest
integer multiple of the sample time.

Default: 0

Examples Discretize two models using identical discretization options.
% generate two arbitrary continuous-time state-space models

sysi = rss(3, 2, 2);
Sys2 = rss(4, 4, 1);

Use c2dOptions to create a set of discretization options.
opt = c2dOptions('Method', 'tustin', 'PrewarpFrequency', 3.4);

Then, discretize both models using the option set.

dsys1 = c2d(sys1, 0.1, opt); %
dsys2 c2d(sys2, 0.2, opt); %

s sampling time

0.1
0.2s sampling time

The c2dOptions option set does not include the sampling time Ts. You
can use the same discretization options to discretize systems using a
different sampling time.
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References [1] Franklin, G.F., Powell, D.J., and Workman, M.L., Digital Control of
Dynamic Systems (3rd Edition), Prentice Hall, 1997.

See Also c2d
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Purpose

Syntax

Description

Input
Arguments
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State-space canonical realization

CcsSys = canon(sys,type)
[csys,T]= canon(sys,type)
csys = canon(sys, 'modal',condt)

csys = canon(sys,type) transforms the linear model sys into a
canonical state-space model csys. The argument type specifies
whether csys is in modal or companion form.

[csys,T]= canon(sys,type) also returns the state-coordinate
transformation T that relates the states of the state-space model sys to
the states of csys.

csys = canon(sys, 'modal',condt) specifies an upper bound condt
on the condition number of the block-diagonalizing transformation.

sys

Any linear dynamic system model, except for frd models.

type

String specifying the type of canonical form of csys. type can take
one of the two following values:

® 'modal' — convert Sys to modal form.
e 'companion' — convert SyS to companion form.
condt

Positive scalar value specifying an upper bound on the condition
number of the block-diagonalizing transformation that converts sys to
csys. This argument is available only when type is 'modal’.

Increase condt to reduce the size of the eigenvalue clusters in the A
matrix of csys. Setting condt = Inf diagonalizes A.

Default: 1e8
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Output
Arguments

Definitions

csys

State-space (ss) model. CSys is a state-space realization of sys in the
canonical form specified by type.

T

Matrix specifying the transformation between the state vector x of the

state-space model sys and the state vector x, of csys:

x,=Tx

This argument is available only when sys is state-space model.

Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically
1-by-1 for real eigenvalues and 2-by-2 for complex eigenvalues.
However, if there are repeated eigenvalues or clusters of nearby
eigenvalues, the block size can be larger.

For example, for a system with eigenvalues (11,0 £ jow,49), the modal A
matrix is of the form

&4 0 0 O
0 o 0
0 - o O
0 0 0 A

Companion Form

In the companion realization, the characteristic polynomial of the
system appears explicitly in the rightmost column of the A matrix. For
a system with characteristic polynomial

n n-1
p(s)=s"+mys ~+..+a,_15+a,
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the corresponding companion A matrix is

0 0 -o
100 0 -a,-1
A _ 1 0 . .
0 L :
0 . .10 -oa
0 .. . 01 -a |

The companion transformation requires that the system be controllable
from the first input. The companion form is poorly conditioned for most
state-space computations; avoid using it when possible.

This example uses canon to convert a system having doubled poles and
clusters of close poles to modal canonical form.

Consider the system G having the following transfer function:

(s—1)(s+1)

G(s) =100 -
s(s+10)(s+10.0001)(s—(1+1))" (s —(1-i))

R

To create a linear model of this system and convert it to modal canonical
form, enter:

G = zpk([1 -1]1,[0 -10 -10.0001 1+1i 1-1i 1+1i 1-11i],100);
Gc = canon(G, 'modal');

The system G has a pair of nearby poles at s =—-10 and s =—-10.0001. G
also has two complex poles of multiplicity 2 ats=1+iands=1—1i.
As a result, the modal form, has a block of size 2 for the two poles near
s =-10, and a block of size 4 for the complex eigenvalues. To see this,
enter the following command:

GCc.A

This command returns the result:



canon

ans =
0 0 0 0 0 0
0 1.0000 1.0000 0 0 0
0 -1.0000 1.0000 2.0548 0 0
0 0 0 1.0000 1.0000 0
0 0 0 -1.0000 1.0000 0
0 0 0 0 0 -10.0000
0 0 0 0 0 0

To separate the two poles near s = —10, you can increase the value of

condt. For example, entering the commands:

Gc2 = canon(G, 'modal',1e10);

Gc2.A

returns the result:

ans =
0 0 0 0 0 0
0 1.0000 1.0000 0 0 0
0 -1.0000 1.0000 2.0548 0 0
0 0 0 1.0000 1.0000 0
0 0 0 -1.0000 1.0000 0
0 0 0 0 0 -10.0000
0 0 0 0 0 0

The A matrix of Ge2 includes separate diagonal elements for the poles
near s = —10. The cost of increasing the maximum condition number of
A 1s that the B matrix includes some large values.

format shortE
Gc2.B

ans =

3.2000e-001

(
(
(
(
(
(

-10.000
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.5691e-003
.4046e-002
.9502e-001
.0637e+000
.2533e+005
.2533e+005

'
W W= =0 O

This example estimates a state-space model that is freely parameterized
and convert to companion form after estimation.

load icEngine.mat

z = iddata(y,u,0.04);

FreeModel = n4sid(z,4, 'InputDelay',2);
CanonicalModel = canon(FreeModel, 'companion')

Obtain the covariance of the resulting form by running a zero-iteration
update to model parameters.

opt = ssestOptions; opt.SearchOption.MaxIter = 0;
CanonicalModel = ssest(z, CanonicalModel, opt)

Compare frequency response confidence bounds of FreeModel to
CanonicalModel.

h = bodeplot(FreeModel, CanonicalModel)
the bounds are identical.

The canon command uses the bdschur command to convert sys into
modal form and to compute the transformation T. If sys is not a
state-space model, the algorithm first converts it to state space using ss.

The reduction to companion form uses a state similarity transformation
based on the controllability matrix [1].

[1] Kailath, T. Linear Systems, Prentice-Hall, 1980.
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See Also ctrb | ctrbf | ss2ss
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Purpose Change frequency units of frequency-response data model
Syntax sys_new = chgFrequUnit(sys,newfrequnits)
Description sys_new = chgFreqUnit(sys,newfrequnits) changes units of the

frequency points in sys to newfrequnits. Both Frequency and
FrequencyUnit properties of Sys adjust so that the frequency responses
of sys and sys_new match.

Tips e Use chgFrequnit to change the units of frequency points without
modifying system behavior.

Input sys

Arguments Frequency-response data (frd, idfrd, or genfrd) model

newfrequnits
New units of frequency points, specified as one of the following strings:
® 'rad/TimeUnit'

® 'cycles/TimeUnit'

® 'rad/s'
e 'Hz'

® 'kHz'
e 'MHz'
e 'GHz'
® 'rpm'

rad/TimeUnit and cycles/TimeUnit express frequency units relative
to the system time units specified in the TimeUnit property.

Default: 'rad/TimeUnit'
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Output
Arguments

Examples

sys_new

Frequency-response data model of the same type as sSys with new units
of frequency points. The frequency response of Sys_new is same as Sys.

This example shows how to change units of the frequency points in a
frequency-response data model.

1 Create a frequency-response data model.

load AnalyzerData;
sys = frd(resp,freq);

The data file AnalyzerData has column vectors freq and resp.
These vectors contain 256 test frequencies and corresponding
complex-valued frequency response points, respectively. The default
frequency units of sys is rad/TimeUnit, where TimeUnit is the
system time units.

2 Change the frequency units.

sys1 = chgFreqUnit(sys, 'rpm');

The FrequencyUnit property of sys1 is rpm.
3 Compare the Bode responses of sys and sys1.

bode(sys, 'r',syst,'y--"');
legend('sys', 'sysi1')

The magnitude and phase of sys and sys1 match.
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Bode Diagram

Magnitude (dB)
b r'u
= =1
T T
P
£
1 1

8

2]
|

=N
28
T
1

o
H
]
]
P
N
2
i
El

Ly
oo fie]
-] a
T
|

Phase (deq)

270 s

_360 L \ P \ L \ T
107 10° 10' 10
Freguency (rad/zs}

4 (Optional) Change the FrequencyUnit property of sys to compare
the Bode response with the original system.

SysS2=sys;
sys2.FrequencyUnit = 'rpm';
bode(sys, 'r',sys2,'gx"');
legend('sys', 'sys2');

Changing the FrequencyUnit property changes the original system.
Therefore, the Bode responses of sys and sys2 do not match. For
example, the original corner frequency at 2 rad/s changes to 2 rpm
(or 0.2 rad/s).
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Magnitude (dB)

sys

Phase (deq)

Freguency (rad/zs}

See Also chgTimeUnit | frd | idfrd
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Tutorials + “Specify Frequency Units of Frequency-Response Data Model”!
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Purpose
Syntax

Description

Tips

Input
Arguments

Change time units of dynamic system

sys_new = chgTimeUnit(sys,newtimeunits)

sys_new = chgTimeUnit(sys,newtimeunits) changes the time
units of sys to newtimeunits. The time- and frequency-domain
characteristics of sys and sys_new match.

® Use chgTimeUnit to change the time units without modifying system
behavior.

sys
Dynamic system model

newtimeunits

New time units, specified as one of the following strings:
® 'nanoseconds’

® 'microseconds’

e 'milliseconds’

* 'seconds’

® 'minutes’

® 'hours'
* 'days'

®* 'weeks'
®* 'months'
® 'years'

Default: 'seconds'
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Output sys_new

Arguments Dynamic system model of the same type as sys with new time units.

The time response of Sys_new is same as SYS.

If sys is an identified linear model, both the model parameters as and
their minimum and maximum bounds are scaled to the new time units.

Examples This example shows how to change the time units of a transfer function
model.

1 Create a transfer function model.

num [4 2];
den = [1 3 10];
Sys tf(num,den);

The default time units of sys is seconds.
2 Change the time units.

sys1 = chgTimeUnit(sys, 'minutes');

The TimeUnit property of sys1is milliseconds.
3 Compare the step responses of sys and sys1.

Step(SyS,'r';SyS1,'Y"');
legend('sys', 'sysi1');
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Step Response

sys
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The step responses of sys and sys1 match.

4 (Optional) Change the TimeUnit property of sys, and compare the
step response with the original system.

SyS2=sysS;

sys2.TimeUnit = 'minutes’;
step(sys,'r', sys2,'gx');
legend('sys', 'sys2');

Changing the TimeUnit property changes the original system.
Therefore, the step responses of sys and sys2 do not match. For
example, the original rise time of 0.04 seconds changes to 0.04
minutes.
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Step Response
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See Also chgFrequnit | tf | zpk | ss | frd | pid | idss | idpoly | idtf |
idproc

Tutorials + “Specify Model Time Units”
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Purpose

Syntax

Description

Compare model output and measured output

compare(data,sys)

compare(data,sys,prediction_horizon)
compare(data,sys,style,prediction_horizon)
compare(data,sys1,...,sysN,style,prediction_horizon)
compare(data,sysi,stylel,...,sysN,styleN,prediction_horizon)
compare(data,syst,..., ,opt)

[y,fit,x0] = compare(data, )

compare(data,sys) plots the simulated response of a dynamic system
model, sys, superimposed over validation data, data, for comparison.
The plot also displays the normalized root mean square (NRMSE)
measure of the goodness of the fit.

compare(data,sys,prediction_horizon) compares the predicted
response of sys to the measured response in data. Measured output
values in data up to time t-prediction_horizon are used to predict
the output of sys at time t.

The matching of the input/output channels in data and sys is based on
the channel names. So, it is possible to evaluate models that do not use
all the input channels that are available in data.

compare(data,sys,style,prediction_horizon) allows specification
of the line style, color, or marker for the plot.

compare(data,syst,...,sysN,style,prediction_horizon)
compares multiple dynamic systems responses in a single figure.

compare(data,sys1,styletl,...,sysN,styleN,prediction_horizon)
compares systems responses using the color, linestyle, and
markers specified by the style strings.

compare(data,sysit,..., ,opt) configures the comparison using

an option set, opt.

[y,fit,x0] = compare(data, ) returns the model response,
y, goodness of fit value, fit, and the initial states, Xx0. No plot is
generated.
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Input
Arguments
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data
Validation data.
Specify data as either an iddata or idfrd object.

If sys is an iddata object, then data must be an iddata object with
matching domain, number of experiments and time or frequency vectors.

If sys is a frequency response model (idfrd or frd), then data must be
a frequency response model too.

data can represent either time- or frequency domain data when
comparing with linear models. data must be time-domain data when
comparing with a nonlinear model.

For frequency domain data, the real and imaginary parts of the
corresponding frequency functions are shown in separate axes.

When data is an FRD model, the frequency responses of data and
sys are plotted.

sys

Dynamic system model or data object.

Specify sys as either a dynamic system model or an iddata object.
When the time or frequency units of data do not match those of sys,
Sys is rescaled to match the units of data.

prediction_horizon

Prediction horizon.

Specify prediction_horizon as Inf to obtain a pure simulation of
the system.

prediction_horizon is ignored when sys is an iddata object,

an FRD model or a dynamic system with no noise component.
prediction_horizon is also ignored when using frequency response
validation data.

For time-series models, use a finite value for prediction_horizon.
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Output
Arguments

Default: Inf

style

Line style, marker, and color of both the linear and marker, specified as
a one-, two-, or three-part string enclosed in single quotes (' '). The
elements of the string can appear in any order. The string can specify
only the line style, the marker, or the color.

For more information about configuring the style string, see “Colors,
Line Styles, and Markers” in the MATLAB documentation.

opt

Comparison option set.

opt 1s an option set that specifies, among other options, the following:
¢ handling of initial conditions

e sample range for computing fit numbers

® data offsets

® output weighting

Use compareOptions to create the option set.

Yy

Model response.

Measured output valuesin data up totime t = t-prediction_horizon
are used to predict the output of sys at time ¢.

For multi-model comparisons, y is a cell array, with one entry for each
input model.

For multi-experiment data, y is a cell array, with one entry for each
experiment.

For multi-model comparisons using multi-experiment data, y is an
Nsys-by-Nexp cell array. Here, Nsys is the number of models, and Nexp
is the number of experiments.
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If sys is a model array, then, y is an array, with an entry corresponding
to each model in sys and experiment in data..

fit
NRMSE fitness value.

The fit is calculated (in percentage) using :

fit =100| 1-
Js-mean(s]

where y is the validation data output and y is the output of sys.

For FRD models, fit is calculated by comparing the complex frequency
response; the magnitude and phase curves shown in the plot are not
compared separately.

If data is an iddata object, fit is an Ny-by-1 vector, where Ny is the
number of outputs.

If data is an FRD model with Ny outputs and Nu inputs, fit is an
Ny-by-Nu matrix. Each entry of fit corresponds to an input/output
pair in SYS.

For multi-model comparisons, fit is a cell array, with one entry for
each input model.

For multi-experiment data, fit is a cell array, with one entry for each
experiment.

For multi-model comparisons using multi-experiment data, fit is an
Nsys-by-Nexp cell array. Here, Nsys is the number of models, and Nexp
1s the number of experiments.

x0
Initial conditions used to compute system response.

When sys is an frd or iddata object, X0 is [].
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Examples

For multi-model comparisons, X0 is a cell array, with one entry for each
input model.

For multi-experiment data, X0 is a cell array, with one entry for each
experiment.

For multi-model comparisons using multi-experiment data, X0 is an
Nsys-by-Nexp cell array. Here, Nsys is the number of models, and Nexp
1s the number of experiments.

Compare Estimated Model to Data

Compare the output of an estimated state-space model to measured
data.

Estimate a state-space model for measured data.

load iddatal z1i;
sys = ssest(z1,3)

sys, an idss model, is a continuous-time state-space model.
Compare the 10 step ahead predicted output to the measured output.

prediction_horizon = 10;
compare(zi1,sys,prediction_horizon);
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Compare Multiple Estimated Models

Compare the outputs of an estimated process model, and an estimated
Output-Error polynomial model to measured data.

Estimate a process model and an Output-Error polynomial for frequency
response data.

load demofr % frequency response data
zfr = AMP.*exp(1i*PHA*pi/180);

Ts = 0.1;

data idfrd(zfr,w,Ts);

sysi procest(data, 'P2UDZ");

sys2 oe(data,[2 2 1]);
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sys1, an idproc model, is a continuous-time process model. sys2, an
idpoly model, is a discrete-time Output-Error model.

Compare the frequency response of the estimated models to data.

compare(data,syst1,'g',sys2,'r');
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Compare Estimated Model to Data and Specify Comparison
Options

Compare an estimated model to measured data and specify that the
initial conditions be estimated such that the prediction error of the
observed output is minimized.

Estimate a transfer function for measured data.
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load iddatal zi;
sys = tfest(z1,3)

sys, an idtf model, is a continuous-time transfer function model.
Create an option set to specify the initial condition handling.

opt = compareOptions('InitialCondition','e"');

Compare the estimated transfer function model’s output to the
measured data using the comparison option set.

compare(zi1,sys,opt);

n Figure 1: Campare plot: simulated respanse EI@
&‘5 e S {“‘? lE‘
Qutput: | y1
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See Also compareOptions | sim | predict | resid | forecast | interp
| goodnessOfFit | chgTimeUnit | chgFreqUnit | bode
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Purpose

Syntax

Description

Input
Arguments
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Option set for compare

opt = compareOptions

opt = compareOptions(Name,Value)
opt = compareOptions creates the default options set for compare.
opt = compareOptions(Name,Value) creates an option set with the

options specified by one or more Name,Value pair arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Valuel,...,NameN,ValueN.

Samples

Data for which compare calculates fit values.

Specify Samples as a vector containing the data sample indices. For
multiexperiment data, use a cell array of Ne vectors, where Ne is the
number of experiments.

InitialCondition

Specify how initial conditions are handled.

InitialCondition requires one of the following values:

e 'z' — Zero initial conditions.

e 'e' — Estimate initial conditions such that the prediction error for
observed output is minimized.

e 'd' — Similar to 'e', but absorbs nonzero delays into the model
coefficients. Use this option for discrete-time models only.
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® x0 — Numerical column vector denoting initial states. For
multiexperiment data, use a matrix with Ne columns, where Ne is the
number of experiments. Use this option for state-space models only.

® jo — Structure with the following fields:
= Input
= Output

Use the Input and Output fields to specify the input/output history
for a time interval that starts before the start time of the data used
by compare. If the data used by compare is a time-series model,
specify Input as []. Use a row vector to denote a constant signal
value. The number of columns in Input and Output must always
equal the number of input and output channels, respectively. For
multiexperiment data, specify io as a struct array of Ne elements,
where Ne is the number of experiments.

® x00bj — Specification object created using idpar. Use this object for
discrete-time state-space models only (idss, idgrey) . Use x00bj
to impose constraints on the initial states by fixing their value or
specifying minimum/maximum bounds.

Default: 'e'

InputOffset

Removes offset from time domain input data for model response
computation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
In this case, Nu is the number of inputs and Ne is the number of
experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.
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Output
Arguments
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Default: []

OutputOffset

Removes offset from time domain output data for model response
prediction.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify QutputOffset as a Ny-by-Ne
matrix. In this case, Ny is the number of outputs and Ne is the number
of experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

OutputWeight
Weight of output for initial condition estimation.
OutputWeight requires one of the following values:

® [] — No weighting is used. This option is the same as using eye (Ny)
for the output weight, where Ny is the number of outputs.

® 'noise' — Inverse of the noise variance stored with the model.
® matrix — A positive semi-definite matrix of dimension Ny-by-Ny,

where Ny is the number of outputs.

Default: []

opt

Option set containing the specified options for compare.
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Examples Create Default Options Set for Model Comparison

Create a default options set for compare.
opt = compareOptions;

Specify Options for Model Comparison

Create an options set for compare using zero initial conditions. Set
the input offset to 5.

opt = compareOptions('InitialCondition','z', 'InputOffset',5);

Alternatively, use dot notation to set the values of opt.

opt = compareOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;

See Also compare
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Purpose
Syntax

Description

Input
Arguments
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Estimate impulse response using prewhitened-based correlation
analysis

ir=cra(data)
[ir,R,cl] = cra(data,M,na,plot)

ir=cra(data) estimates the impulse response for the time-domain
data, data.

[ir,R,cl] = cra(data,M,na,plot) estimates correlation/covariance
information, R, and the 99% confidence level for the impulse response,
cl.

cra prewhitens the input sequence; that is, cra filters u through a
filter chosen so that the result is as uncorrelated (white) as possible.
The output y is subjected to the same filter, and then the covariance
functions of the filtered y and u are computed and graphed. The
cross correlation function between (prewhitened) input and output is
also computed and graphed. Positive values of the lag variable then
correspond to an influence from u to later values of y. In other words,
significant correlation for negative lags is an indication of feedback
from y to u in the data.

A properly scaled version of this correlation function is also an estimate
of the system’s impulse response ir. This is also graphed along with
99% confidence levels. The output argument ir is this impulse response
estimate, so that its first entry corresponds to lag zero. (Negative lags
are excluded in ir.) In the plot, the impulse response is scaled so that
it corresponds to an impulse of height 1/7 and duration T, where T is
the sampling interval of the data.

data
Input-output data.

Specify data as an iddata object containing time-domain data only.
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data should contain data for a single-input, single-output experiment.
For the multivariate case, apply cra to two signals at a time, or use
impulse.

M

Number of lags for which the covariance/correlation functions are
computed.

M specifies the number of lags for which the covariance/correlation
functions are computed. These are from -M to M, so that the length of R
1s 2M+1. The impulse response is computed from 0 to M.

Default: 20

na
Order of the AR model to which the input is fitted.
For the prewhitening, the input is fitted to an AR model of order na.

Use na = 0 to obtain the covariance and correlation functions of the
original data sequences.

Default: 10

plot

Plot display control.

Specify plot as one of the following integers:
® 0 — No plots are displayed.

e 1 — Plots the estimated impulse response with a 99% confidence
region.

e 2 — Plots all the covariance functions.

Default: 1
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Output
Arguments

Examples
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ir
Estimated impulse response.

The first entry of ir corresponds to lag zero. (Negative lags are
excluded in ir.)

R
Covariance/correlation information.
® The first column of R contains the lag indices.

® The second column contains the covariance function of the (possibly
filtered) output.

¢ The third column contains the covariance function of the (possibly
prewhitened) input.

® The fourth column contains the correlation function. The plots can
be redisplayed by cra(R).

cl

99 % significance level for the impulse response.

Compare a second-order ARX model’s impulse response with the one
obtained by correlation analysis.

load iddatat

z=z1;

ir = cra(z);

m = arx(z,[2 2 1]);

imp = [1;zero0s(20,1)];
irth = sim(m,imp);
subplot(211)

plot([ir irth])
title('impulse responses')
subplot(212)
plot([cumsum(ir),cumsum(irth)])
title('step responses')
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Alternatives An often better alternative to cra is the functions impulse and step,
which use a high-order FIR model to estimate the impulse response.

See Also impulse | step | impulseest | covf | spa
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Purpose
Syntax

Description

Construction

Tips
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Custom nonlinearity estimator for nonlinear ARX and
Hammerstein-Wiener models

C=customnet(H)
C=customnet (H,PropertyName,PropertyValue)

customnet is an object that stores a custom nonlinear estimator with a
user-defined unit function. This custom unit function uses a weighted
sum of inputs to compute a scalar output.

C=customnet(H) creates a nonlinearity estimator object with a
user-defined unit function using the function handle H. H must point
to a function of the form [f,g,a] = gaussunit(x), where f is the
value of the function, g=df/dx, and a indicates the unit function active
range. Name the function gaussunit.m. g is significantly nonzero in
the interval [ -a a]. Hammerstein-Wiener models require that your
custom nonlinearity have only one input and one output.

C=customnet (H,PropertyName,PropertyValue) creates a nonlinearity
estimator using property-value pairs defined in “customnet Properties”
on page 2-149.

Use customnet to define a nonlinear function y = F(x), where y is
scalar and x is an m-dimensional row vector. The unit function is based
on the following function expansion with a possible linear term L:

F(x) = (x—r)PL+a1f((x—r)le +Cl)+---
+anf((x-r)Qb, +c,)+d
where fis a unit function that you define using the function handle H.

P and @ are m-by-p and m-by-q projection matrices, respectively. The
projection matrices P and @ are determined by principal component
analysis of estimation data. Usually, p=m. If the components of x in
the estimation data are linearly dependent, then p<m. The number of
columns of @, g, corresponds to the number of components of x used
in the unit function.
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customnet
Properties

When used to estimate nonlinear ARX models, q is equal to the size of
the NonlinearRegressors property of the idnlarx object. When used
to estimate Hammerstein-Wiener models, m=q=1 and @ is a scalar.

ris a 1-by-m vector and represents the mean value of the regressor
vector computed from estimation data.

d, a, and c are scalars.
L is a p-by-1 vector.
b represents g-by-1 vectors.

The function handle of the unit function of the custom net must have the
form [f,g,a] = function_name(x). This function must be vectorized,
which means that for a vector or matrix x, the output arguments f and
g must have the same size as x and be computed element-by-element.

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(C)

% Get value of NumberOfUnits property
C.NumberOfUnits

You can also use the set function to set the value of particular
properties. For example:

set(C, 'LinearTerm', 'on')

The first argument to set must be the name of a MATLAB variable.
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Property Name

Description

NumberOfUnits

Integer specifies the number of nonlinearity units in the
expansion.
Default=10.

For example:

customnet (H, 'NumberOfUnits',5)

LinearTerm

Can have the following values:

e 'on'—Estimates the vector L in the expansion.

e 'off'—Fixes the vector L to zero.

For example:

customnet(H, 'LinearTerm', 'on')

Parameters

A structure containing the parameters in the nonlinear
expansion, as follows:

® RegressorMean: 1-by-m vector containing the means of x
in estimation data, r.

® NonLinearSubspace: m-by-g matrix containing Q.

® LinearSubspace: m-by-p matrix containing P.

® |LinearCoef: p-by-1 vector L.

® Dilation: g-by-1 matrix containing the values b,,.

® Translation: 1-by-n vector containing the values c,,.

® OutputCoef: n-by-1 vector containing the values a,,.

® QutputOffset: scalar d.

Typically, the values of this structure are set by estimating a
model with a customnet nonlinearity.

UnitFcn

Stores the function handle that points to the unit function.
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Algorithms

Examples

See Also

How To

customnet uses an iterative search technique for estimating
parameters.

Define custom unit function and save it in gaussunit.m:

function [f, g, a] = GAUSSUNIT(x)

x: unit function variable

f: unit function value

g: df/dx

a: unit active range (g(x) is significantly
nonzero in the interval [-a a])

o® o° o o°

o°

o°

The unit function must be "vectorized": for

a vector or matrix x, the output arguments f and g
must have the same size as x,

computed element-by-element.

o® o°

o°

o°

GAUSSUNIT customnet unit function example
[f, g, a] = gaussunit(x)

f = exp(-x.*Xx);
if nargout>1
g = - 2*x.*f;
a=0.2;
end

Use custom networks in nlarx and nlhw model estimation commands:

Define handle to example unit function.

= @gaussunit;

Estimate nonlinear ARX model using

Gauss unit function with 5 units.

= nlarx(Data,Orders,customnet (H, 'NumberOfUnits',5));

o°® I o°

o°

3

evaluate | nlarx | nlhw

“Identifying Nonlinear ARX Models”
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+ “Identifying Hammerstein-Wiener Models”
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Purpose

Syntax

Description

Custom regressor for nonlinear ARX models

C=customreg(Function,Variables)
C=customreg(Function,Variables,Delays,Vectorized)

customreg class represents arbitrary functions of past inputs and
outputs, such as products, powers, and other MATLAB expressions of
input and output variables.

You can specify custom regressors in addition to or instead of standard
regressors for greater flexibility in modeling your data using nonlinear
ARX models. For example, you can define regressors like tan(u(t-1)),
u(t-1)?, and w(t-1)%y(t-3).

For simpler regressor expressions, specify custom regressors directly
in the GUI or in the nlarx estimation command. For more complex
expressions, create a customreg object for each custom regressor and
specify these objects as inputs to the estimation. Regardless of how you
specify custom regressors, the toolbox represents these regressors as
customreg objects. Use getreg to list the expressions of all standard
and custom regressors in your model.

A special case of custom regressors involves polynomial combinations
of past inputs and outputs. For example, it is common to capture
nonlinearities in the system using polynomial expressions like y(t—1)2,
u(t-1)2, y(t—2)2, y(t—1)*y(t—2), y(t—1)*u(t—1), y(t— 2)*u(t—1). At the
command line, use the polyreg command to generate polynomial-type
regressors automatically by computing all combinations of input and
output variables up to a specified degree. polyreg produces customreg
objects that you specify as inputs to the estimation.

The nonlinear ARX model (idnlarx object) stores all custom regressors
as the CustomRegressors property. You can list all custom regressors
using m.CustomRegressors, where m is a nonlinear ARX model. For
MIMO models, to retrieve the rth custom regressor for output ky, use
m.CustomRegressors{ky}(r).

Use the Vectorized property to specify whether to compute custom
regressors using vectorized form during estimation. If you know
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that your regressor formulas can be vectorized, set Vectorized to 1
to achieve better performance. To better understand vectorization,
consider the custom regressor function handle z=@(x,y)x"2*y. x
and y are vectors and each variable is evaluated over a time grid.
Therefore, z must be evaluated for each (xi,yi) pair, and the results
are concatenated to produce a z vector:

for k = 1:1length(x)
z(k) = x(k)"2*y(k)
end

The above expression is a nonvectorized computation and tends

to be slow. Specifying a Vectorized computation uses MATLAB
vectorization rules to evaluate the regressor expression using matrices
instead of the FOR-loop and results in faster computation:

% ".*" indicates element-wise operation
z=(x."2).*y

C=customreg(Function,Variables) specifies a custom regressor for
a nonlinear ARX model. C is a customreg object that stores custom
regressor. Function is a handle or string representing a function

of input and output variables. Variables is a cell array of strings
that represent the names of model inputs and outputs in the function
Function. Each input and output name must coincide with the strings
in the InputName and OutputName properties of the corresponding
idnlarx object. The size of Variables must match the number of
Function inputs. For multiple-output models with p outputs, the
custom regressor is a p-by-1 cell array or an array of customreg
object, where the kyth entry defines the custom regressor for output
ky. You must add these regressors to the model by assigning the
CustomRegressors model property or by using addreg.

C=customreg(Function,Variables,Delays,Vectorized) create a
custom regressor that includes the delays corresponding to inputs or
outputs in Arguments. Delays is a vector of positive integers that
represent the delays of Variables variables (default is 1 for each
vector element). The size of Delays must match the size of Variables.
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Properties

Vectorized value of 1 uses MATLAB vectorization rules to evaluate
the regressor expression Function. By default, Vectorized value is 0
(false).

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values

get(C)

% Get value of Arguments property
C.Arguments

You can also use the set function to set the value of particular
properties. For example:

set(C, 'Vectorized',1)

Property Name

Description

Function Function handle or string representing a function of standards
regressors.
For example:
cr = @(x,y) x*y

Variables Cell array of strings that represent the names of model input

and output variables in the function Function. Each input and
output name must coincide with the strings in the InputName
and OutputName properties of the idnlarx object—the model
for which you define custom regressors. The size of Variables
must match the number of Function inputs.

For example, Variables correspond to {'y1','ul'} in:

C = customreg(cr,{'y1','ut'},[2 3])
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Property Name

Description

Delays

Vector of positive integers representing the delays of
Variables. The size of Delays must match the size of
Arguments.

Default: 1 for each vector element.

For example, Delays are [2 3] in:

C = customreg(cr,{'y1','ut'},[2 3])

Vectorized

Assignable values:

® O (default)—Function is not computed in vectorized form.

® 1—Function is computed in vectorized form when called
with vector arguments.

Examples
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Define custom regressors as a cell array of strings:

load iddatat

m = nlarx(zi1,[2 2 1]);
C={'ul(t-1)*sin(y1(t-3)) "', 'u1(t-2)"3'};
% ul and y1 are system input and output

m.CustomRegressors = C;
m=pem(zi,m)

Define custom regressors directly in the estimation command nlarx:

m = nlarx(data,[na nb nk],'linear',..
‘CustomRegressors',...
{'ut(t-1)*sin(y1(t-3))"', 'u1(t-2)"3'});

Define custom regressors as an object array of customreg objects:
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See Also

How To

cri1=@(x,y) x*sin(y);

cr2=@(x) x"3;

C=[customreg(cri,{'u" 'y'},[1 3]1),...
customreg(cr2,{'u'},2)];

m=addreg(m,C) ;

Use vectorization rules to evaluate regressor expression during
estimation:

C = customreg(@(x,y) x*sin(y),{'u' 'y'},[1 3])
set(C, 'Vectorized',1)
m = nlarx(data,[na nb nk], 'sigmoidnet', 'CustomReg',C)

addreg | getreg | idnlarx | nlarx | polyreg

+ “Identifying Nonlinear ARX Models”
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Purpose

Syntax

Description

Tips

Input
Arguments
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Convert model from discrete to continuous time

sysc = d2c(sysd)

sysc d2c(sysd,method)

sysc d2c(sysd,opts)

[sysc,G] = d2c(sysd,method,opts)

sysc = d2c(sysd) produces a continuous-time model sysc that is
equivalent to the discrete-time dynamic system model sysd using
zero-order hold on the inputs.

sysc = d2c(sysd,method) uses the specified conversion method
method.

sysc = d2c(sysd,opts) converts sysd using the option set opts,
specified using the d2cOptions command.

[sysc,G] = d2c(sysd,method,opts) returns a matrix G that maps the
states xd[ k] of the state-space model sysd to the states xc(t) of sysc.

e Use the syntax sysc = d2c(sysd, 'method') to convert sysd using
the default options for 'method'. To specify tustin conversion with a
frequency prewarp (formerly the 'prewarp' method), use the syntax
sysc = d2c(sysd,opts). See the d2cOptions reference page for
more information.

sysd

Discrete-time dynamic system model

You cannot directly use an idgrey model with FcnType='d"' with d2c.
Convert the model into idss form first.

method

String specifying a discrete-to-continuous time conversion method:

® 'zoh' — Zero-order hold on the inputs. Assumes the control inputs
are piecewise constant over the sampling period.
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Output
Arguments

e 'foh' — Linear interpolation of the inputs (modified first-order
hold). Assumes the control inputs are piecewise linear over the
sampling period.

e 'tustin' — Bilinear (Tustin) approximation to the derivative.

®* 'matched' — Zero-pole matching method of [1] (for SISO systems
only).

Default: 'zoh'

opts

Discrete-to-continuous time conversion options, created using
d2cOptions.

sysc
Continuous-time model of the same type as the input system sysd.
When sysd is an identified (IDLTI) model, sysc:

¢ Includes both the measured and noise components of sysd. If the
noise variance is A in sysd, then the continuous-time model sysc has
an indicated level of noise spectral density equal to Ts*A.

® Does not include the estimated parameter covariance of sysd. If you
want to translate the covariance while converting the model, use
translatecov.

G

Matrix mapping the states xd[k] of the state-space model sysd to the
states xc(t) of sysc:

xc(kTs):G{xd [k]}.

ulk]
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Given an initial condition x0 for sysd and an initial input u0 = u[0],
the corresponding initial condition for sysc (assuming u[k] = 0 for k
< 0 1s given by:

xc(0)=G{x0}.

Uy

Example 1

Consider the discrete-time model with transfer function

-1

H(z)= 22—
z“+2z+0.3

and sample time 7, = 0.1 s. You can derive a continuous-time

zero-order-hold equivalent model by typing

Hc = d2c(H)

Discretizing the resulting model Hc with the default zero-order hold
method and sampling time 7', = 0.1s returns the original discrete model
H(2):

c2d(Hc,0.1)

To use the Tustin approximation instead of zero-order hold, type

Hc = d2c(H, 'tustin')

As with zero-order hold, the inverse discretization operation

c2d(Hc,0.1, 'tustin')

gives back the original H(z).
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Example 2

Convert an identified transfer function and compare its performance
against a directly estimated continuous-time model.

load iddatat

sysid = tfest(z1, 2, 'Ts', 0.1);
sysic = d2c(sysi1d, 'zoh');

sys2c tfest(z1, 2);

compare(z1, sysic, sys2c)

The two systems are virtually identical.

. Qutput: |yl
Time Response Comparison
15 T T T
System Fit %
sysle 69.2
10+ E sys2c 70.77
g+
5
£= 0
£
5
-0
15 L L | 1 |
5 10 15 20 25 30
Time (seconds)
Example 3

Analyze the effect of parameter uncertainty on frequency response
across d2c operation on an identified model.

load iddatat
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Algorithms

Limitations
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sysd tfest(z1, 2, 'Ts', 0.1);
sysc = d2c(sysd, 'zoh');

sysic has no covariance information. Regenerate it using a zero
iteration update with the same estimation command and estimation
data:

opt = tfestOptions;
opt.SearchOption.MaxIter = 0;
sysic = tfest(z1, sysc, opt);

h = bodeplot(sysd, sysc);
showConfidence(h)

The uncertainties of sysc and sysd are comparable up to the Nyquist
frequency. However, sysc exhibits large uncertainty in the frequency
range for which the estimation data does not provide any information.

If you do not have access to the estimation data, use translatecov
which is a Gauss-approximation formula based translation of covariance
across model type conversion operations.

d2c performs the 'zoh' conversion in state space, and relies on the
matrix logarithm (see 1ogm in the MATLAB documentation).

See “Continuous-Discrete Conversion Methods” for more details on the
conversion methods.

The Tustin approximation is not defined for systems with poles at z=-1
and is ill-conditioned for systems with poles near z = —1.

The zero-order hold method cannot handle systems with poles at z = 0.
In addition, the 'zoh' conversion increases the model order for systems
with negative real poles, [2]. The model order increases because the
matrix logarithm maps real negative poles to complex poles. Single
complex poles are not physically meaningful because of their complex
time response.
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Instead, to ensure that all complex poles of the continuous model
come in conjugate pairs, d2¢ replaces negative real poles z = —a with
a pair of complex conjugate poles near —a. The conversion then yields
a continuous model with higher order. For example, to convert the
discrete-time transfer function

z+0.2
(2+0.5)(2% +2+0.4)

H(z)=

type:

Ts = 0.1 % sample time 0.1 s

H = zpk(-0.2,-0.5,1,Ts) * tf(1,[1 1 0.4],Ts)
Hc = d2c(H)

These commands produce the following result.

Warning: System order was increased to handle real negative poles.

Zero/pole/gain:
-33.6556 (s-6.273) (s"2 + 28.29s + 1041)

(s"2 + 9.163s + 637.3) (s°2 + 13.86s + 1085)
To convert Hc back to discrete time, type:
c2d(Hc,Ts)
yielding
Zero/pole/gain:

(z+0.5) (z+0.2)

(z+t0.5)"2 (z"2 + z + 0.4)

Sampling time: 0.1
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This discrete model coincides with H(z) after canceling the pole/zero
pair at z = —0.5.

References [1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of
Dynamic Systems (3rd Edition), Prentice Hall, 1997..

[2] Kollar, 1., G.F. Franklin, and R. Pintelon, "On the Equivalence of
z-domain and s-domain Models in System Identification," Proceedings

of the IEEE® Instrumentation and Measurement Technology Conference,
Brussels, Belgium, June, 1996, Vol. 1, pp. 14-19.

See Also d2cOptions | c2d | d2d | translatecov | logm
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Purpose

Syntax

Description

Input
Arguments

Create option set for discrete- to continuous-time conversions

opts = d2cOptions

opts = d2cOptions(Name,Value)
opts = d2cOptions returns the default options for d2c.
opts = d2cOptions(Name,Value) creates an option set with the

options specified by one or more Name,Value pair arguments.

Name-Value Pair Arguments

method

Discretization method, specified as one of the following values:

'zoh' Zero-order hold, where d2c assumes the control inputs
are piecewise constant over the sampling period Ts.

'foh' Linear interpolation of the inputs (modified first-order
hold). Assumes the control inputs are piecewise linear
over the sampling period.

"tustin' Bilinear (Tustin) approximation. By default, d2c
converts with no prewarp. To include prewarp, use
the PrewarpFrequency option.

'matched'’ Zero-pole matching method. (See [1], p. 224.)

Default: 'zoh'

PrewarpFrequency

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit,
where TimeUnit is the time units, specified in the TimeUnit property,
of the discrete-time system. Specify the prewarp frequency as a positive
scalar value. A value of 0 corresponds to the 'tustin' method without
prewarp.
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Examples

References

See Also
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Default: 0

For additional information about conversion methods, see
“Continuous-Discrete Conversion Methods”.

Convert a discrete-time model to continuous-time using the 'tustin'
method with frequency prewarping.

Create the discrete-time transfer function

z+1

2Ziz+1

hd = tf([1 1], [1 1 1], 0.1); % 0.1s sampling time

To convert to continuous-time, use d2cOptions to create the option set.

opts = d2cOptions('Method', 'tustin', 'PrewarpFrequency', 20);
hc = d2c(hd, opts);

You can use opts to resample additional models using the same options.

[1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of
Dynamic Systems (3rd Edition), Prentice Hall, 1997.
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Purpose

Syntax

Description

Tips

Examples

Resample discrete-time model

sysi1 = d2d(sys, Ts)
sys1 d2d(sys, Ts, 'method')
syst d2d(sys, Ts, opts)

sys1 = d2d(sys, Ts) resamples the discrete-time dynamic system
model sys to produce an equivalent discrete-time model sys1 with the
new sample time Ts (in seconds), using zero-order hold on the inputs.

sys1 = d2d(sys, Ts, 'method') uses the specified resampling
method 'method':

® 'zoh' — Zero-order hold on the inputs
® 'tustin' — Bilinear (Tustin) approximation

sys1 = d2d(sys, Ts, opts) resamples sys using the option set with
d2dOptions.

® Use the syntax sys1 = d2d(sys, Ts, 'method') to resample sys
using the default options for 'method'. To specify tustin resampling
with a frequency prewarp (formerly the 'prewarp' method), use the
syntax sys1 = d2d(sys, Ts, opts). See the d2dOptions reference
page.

® When sys is an identified (IDLTI) model, sys1 does not include the
estimated parameter covariance of sys. If you want to translate the
covariance while converting the model, use translatecov.

Example 1
Consider the zero-pole-gain model

z-0.7

H(z)="=05

with sample time 0.1 s. You can resample this model at 0.05 s by typing

H = zpk(0.7,0.5,1,0.1)
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See Also
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H2 = d2d(H,0.05)
Zero/pole/gain:
(z-0.8243)

(z-0.7071)
Sampling time: 0.05

The inverse resampling operation, performed by typing d2d (H2,0.1),
yields back the initial model H(z).

Zero/pole/gain:
(z-0.7)

Sampling time: 0.1

Example 2

Suppose you estimates a discrete-time model of a sample time
commensurate with the estimation data (Ts = 0.1 seconds). However,
your deployment application demands a faster sampling frequency (Ts
= 0.01 seconds).

load iddatat
sys = oe(z1, [2 2 1]);
sysFast = d2d(sys, 0.01, 'zoh')

bode(sys, sysFast)

d2dOptions | c2d | d2c | upsample | translatecov



d2dOptions

Purpose

Syntax

Description

Input
Arguments

Create option set for discrete-time resampling

opts = d2dOptions

opts = d2dOptions('OptionName', OptionValue)
opts = d2dOptions returns the default options for d2d.
opts = d2dOptions('OptionName', OptionValue) accepts one or

more comma-separated name/value pairs that specify options for the
d2d command. Specify OptionName inside single quotes.

This table summarizes the options that the d2d command supports.

Name-Value Pair Arguments

Method
Discretization method, specified as one of the following values:
‘zoh' Zero-order hold, where d2d assumes the control inputs
are piecewise constant over the sampling period Ts.

"tustin' Bilinear (Tustin) approximation. By default, d2d
resamples with no prewarp. To include prewarp, use
the PrewarpFrequency option.

Default: 'zoh'

PrewarpFrequency

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit,
where TimeUnit is the time units, specified in the TimeUnit property,
of the resampled system. Takes positive scalar values. The prewarp
frequency must be smaller than the Nyquist frequency before and after
resampling. A value of 0 corresponds to the standard 'tustin' method
without prewarp.

Default: 0
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Resample a discrete-time model using the 'tustin' method with
frequency prewarping.

Create the discrete-time transfer function

z+1

2Ziz+1

hi = tf([1 1], [1 1 1], 0.1); % 0.1s sampling time

To resample to a different sampling time, use d2dOptions to create
the option set.

opts = d2dOptions('Method', 'tustin', 'PrewarpFrequency', 20);
h2 = d2d(h1, 0.05, opts);

You can use opts to resample additional models using the same options.
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Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Natural frequency; damping ratio

damp (sys)
[Wn,zeta] = damp(sys)
[Wn,zeta,P] = damp(sys)

damp (sys) calculates the damping ratio (also called damping factor) and
natural frequency of the poles of the linear model sys. When invoked
without output arguments, damp displays a table of the eigenvalues

of sys, along with the corresponding damping ratios and natural
frequencies. For discrete-time sys, the table includes the magnitude
of each pole and the damping ratio and frequencies of equivalent
continuous-time poles (see “Algorithms” on page 2-173). Frequencies
are expressed in units of the reciprocal of the TimeUnit property of sys.

[Wn,zeta] = damp(sys) returns vectors Wn and zeta containing the
natural frequencies @, and damping ratios ¢ of the poles of sys.

[Wn,zeta,P] = damp(sys) also returns a vector P containing the poles
of sys.

sys

Any linear dynamic system model.

Wn

Vector containing the natural frequencies of each pole of sys, in order
of increasing frequency. Frequencies are expressed in units of the
reciprocal of the TimeUnit property of sys.

If sys is a discrete-time model with specified sampling time, Wn contains
the natural frequencies of the equivalent continuous-time poles (see
“Algorithms” on page 2-173). If sys has unspecified sampling time

(Ts = -1), Wn is empty.

zeta
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Vector containing the damping ratios of each pole of sys, in the same
order as Wn.

If sys is a discrete-time model with specified sampling time, zeta
contains the damping ratios of the equivalent continuous-time poles
(see “Algorithms” on page 2-173). If sys has unspecified sampling time
(Ts = -1), zeta is empty.

P

Vector containing the poles of sys, in order of increasing natural
frequency. P is the same as the output of pole(sys), up to ordering.
Natural Frequency, Damping Ratio, and Poles of a
Continuous-Time Transfer Function

Compute the natural frequency, damping ratio and poles of a
continuous-time transfer function.

Create the transfer function:

252 +5s+1

s2+25+3

H(s)=

H=1tf([2 5 1],[1 2 3]);

Display the natural frequencies, damping ratios, and poles of H.

damp (H)
Eigenvalue Damping Frequency
-1.00e+000 + 1.41e+0001 5.77e-001 1.73e+000
-1.00e+000 - 1.41e+0001 5.77e-001 1.73e+000

(Frequencies expressed in rad/seconds)

The system eigenvalues are the pole locations.
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Obtain vectors containing the natural frequencies and damping ratios

of the poles.

[Wn,zeta] = damp(H);

Natural Frequency, Damping Ratio and Poles of a Discrete-Time

Transfer Function

Compute the natural frequency, damping ratio and poles of a
discrete-time transfer function.

H=tf([53 1],[1 6 4 4],0.01);

Display information about the poles of H.

damp (H)

Eigenvalue Magnitude Damping
-3.02e-001 + 8.06e-0011 8.61e-001 7.74e-002
-3.02e-001 - 8.06e-0011 8.61e-001 7.74e-002
-5.40e+000 5.40e+000 -4.73e-001

(Frequencies expressed in rad/seconds)

The system eigenvalues are the pole locations.

Frequency

1.93e+002
1.93e+002
3.57e+002

Obtain vectors containing the natural frequencies and damping ratios

of the poles.

[Wn,zeta] = damp(H);

For a continuous-time linear system G(s), the natural frequency @, of a

pole at s = R is given by:

®,= |RI.
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For a discrete-time linear system G(z) with a pole at z = R, damp returns
the natural frequencies and damping ratios of equivalent continuous
time poles. The locations of the equivalent poles are given by

T, is the sampling time.

The natural frequency, time constant, and damping ratio of the system
poles are defined as follows.

Continuous Time

Discrete Time

Location of Pole

Real or complex
eigenvalue at s = R

Real or complex
eigenvalue at z = R

Natural Frequency

Wn = abs(R)

Wn = abs(log(R))/Ts

Damping Ratio

zeta = -cos(angle(R

yzeta = -cos(angle(log(R)))

Time Constant

e tau = 1/(zeta*Wn)
for zeta > 0

e Inf otherwise

® tau = 1/(zeta*Wn)
for zeta > 0

e Inf otherwise

eig | esort | dsort | pole | pzmap | zero
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Purpose

Syntax

Description

Input
Arguments

Map past input/output data to current states of nonlinear ARX model

X = data2state (MODEL,IOSTRUCT)
X = data2state(MODEL,DATA)
X = data2state(MODEL,IOSTRUCT) maps the input and output samples

in IOSTRUCT to the current states of MODEL, X. For a definition of the
states of idnlarx models, see “Definition of idnlarx States” on page
2-354. The data in IOSTRUCT is interpreted as past samples of data, so
that the returned state values must be interpreted as values at the
time immediately after the time corresponding to the last (most recent)
sample in the data.

X = data2state(MODEL,DATA) maps the input and output samples
from DATA to the current states, X, of the model.

e MODEL: idnlarx model.

® TOSTRUCT: Structure with fields Input and Output. Samples in
IOSTRUCT must be in the order of increasing time (the last row of
values corresponds to the most recent time). Each field contains
data samples corresponding to the past input and output of MODEL
respectively.

= Input: Matrix of NU columns, where NU is the number of inputs.
The number of rows can be equal to either of the following:

Maximum input delay in MODEL (maximum across all input
variables).

1 to specify steady-state (constant) input values.

= Output: Matrix of NY columns, where NY is the number of outputs.
The number of rows can be equal to either of the following:

Maximum input delay in MODEL (maximum across all output
variables).

1 to specify steady-state (constant) output values.
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® DATA: iddata object containing data samples. Samples in DATA must
be in the order of increasing time (the last row of values corresponds
to the most recent time). The number of samples in DATA must be
greater than or equal to the maximum delay in the model across
all input and output variables.

Note To determine maximum delay in each input and output channel
of MODEL, use the getDelayInfo command. For more information, see
the getDelayInfo reference page.

OUi‘pUi‘ X is the state vector of MODEL corresponding to the time after the most
Arguments recent sample in the input data (IOSTRUCT or DATA).
Examples In this example you determine the current state of an idnlarx model.

1 Load your data and create a data object.

load motorizedcamera;
z = iddata(y,u,0.02, 'Name', 'Motorized Camera',
"TimeUnit','s"');

2 Estimate an idnlarx model from the data. The model has 6 inputs
and 2 outputs.

mwi = nlarx(z,[ones(2,2),ones(2,6),o0nes(2,6)],wavenet);
3 Compute the maximum delays across all output variables in mw1.
MaxDelays = getDelayInfo(mwl);
4 Represent the past input and output samples:

IOData = struct('Input',
rand (max (MaxDelays(3+1:end)),6),...
"Output’,
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rand(max (MaxDelays(1:3)),2));

5 Compute the current states of mwi1 based on the past data in
IOSTRUCT.

X = data2state(mw1,IOData)

The previous command computes the state vector.

Note You can specify constant input levels with scalar values
(10,20,30,40,50,60) for the input variables by setting

IOSTRUCT.Input = [10, 20, 30, 40, 50, 60] instead of a matrix of
values.

See Also findop(idnlarx) | findstates(idnlarx) | getDelayInfo
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Purpose Convert decibels (dB) to magnitude

Syntax = db2mag(ydb)

<
|

Description y
decibel (dB) value ydb. The relationship between magnitude and

db2mag (ydb) returns the corresponding magnitude y for a given

decibels is ydb = 20:*logqo(y) .

See Also mag2db
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Purpose
Syntax

Description

Tips

Examples

Low-frequency (DC) gain of LTI system

x
|

= dcgain(sys)

k = dcgain(sys) computes the DC gain k of the LTI model sys.

Continuous Time

The continuous-time DC gain is the transfer function value at the
frequency s = 0. For state-space models with matrices (4, B, C, D),
this value is

K=D-CA'B

Discrete Time

The discrete-time DC gain is the transfer function value at z= 1. For
state-space models with matrices (A, B, C, D), this value is

K=D+CI-A"B
The DC gain is infinite for systems with integrators.

Example 1
To compute the DC gain of the MIMO transfer function

s—1
1 2
H(S): 1 ’ s++82+3

s+1 s—3
type

H= [1tf([1 -1],[1 1 3]) ; tf(1,[1 1]) tF([1 2],[1 -3])];
dcgain(H)

to get the result:
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ans =
1.0000 -0.3333
1.0000 -0.6667
Example 2

To compute the DC gain of an identified process model, type;

load iddatat

sys = idproc('pi1d');
syse = procest(z1, sys)
dcgain(syse)

The DC gain is stored same as syse.Kp.

See Also evalfr | norm
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Purpose

Syntax

Description

Tips

Properties

Class representing dead-zone nonlinearity estimator for
Hammerstein-Wiener models

s=deadzone(ZeroInterval,I)

deadzone is an object that stores the dead-zone nonlinearity estimator
for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

s=deadzone(ZeroInterval,I) creates a dead-zone nonlinearity
estimator object, initialized with the zero interval I.

Use evaluate(d,x) to compute the value of the function defined by
the deadzone object d at x.

Use deadzone to define a nonlinear function y = F(x), where F'is a
function of x and has the following characteristics:

a<x<b F(x)=0
x<a Flx)=x-a
x=>b Flx)=x-b

y and x are scalars.

You can specify the property value as an argument in the constructor
to specify the object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List ZerolInterval property value
get(d)
d.ZerolInterval

You can also use the set function to set the value of particular
properties. For example:
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set(d, 'ZeroInterval', [-1.5 1.5])

The first argument to set must be the name of a MATLAB variable.

Property Name

Description

Zerolnterval

1-by-2 row vector that specifies the initial zero interval of the
nonlinearity.
Default=[NaN NaN].

For example:

deadzone('ZeroInterval',[-1.5 1.5])

Examples

See Also
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Use deadzone to specify the dead-zone nonlinearity estimator in
Hammerstein-Wiener models. For example:

m=nlhw(Data,Orders,deadzone([-1 1]),[]1);

The dead-zone nonlinearity is initialized at the interval [-1 1]. The
interval values are adjusted to the estimation data by nlhw.

nlhw
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Purpose

Syntax

Description

Estimate time delay (dead time) from data

nk
nk

delayest(Data)
delayest(Data,na,nb,nkmin,nkmax,maxtest)

Data is an iddata object containing the input-output data. It can also be
an idfrd object defining frequency-response data. Only single-output
data can be handled.

nk is returned as an integer or a row vector of integers, containing the
estimated time delay in samples from the input(s) to the output in Data.

The estimate is based on a comparison of ARX models with different
delays:

y®+a1yt-D+...+a,,yt—na) =
biu(t —nk)+...+ bpu(t —nb—nk+1) +e(t)

The integer na is the order of the A polynomial (default 2). nb is a row
vector of length equal to the number of inputs, containing the order(s) of
the B polynomial(s) (default all 2).

nkmin and nkmax are row vectors of the same length as the number of
inputs, containing the smallest and largest delays to be tested. Defaults
are nkmin = 0 and nkmax = nkmin+20.

If nb, nkmax, and/or nkmin are entered as scalars in the multiple-input
case, all inputs will be assigned the same values.

maxtest is the largest number of tests allowed (default 10,000).
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Purpose

Syntax

Description

Examples
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Subtract offset or trend from data signals

data_d = detrend(data)

data_d detrend(data,Type)
[data_d,T] = detrend(data,Type)
data_d = detrend(data,1,brkp)

data_d detrend(data) subtracts the mean value from each
time-domain or time-series signal data. data_d and data are iddata
objects.

data_d = detrend(data,Type) subtracts a mean value from each
signal when Type = 0, a linear trend (least-squares fit) when Type =
1, or a trend specified by a TrendInfo object when Type = T.

[data_d,T] = detrend(data,Type) stores the trend information as a
TrendInfo object T.

data_d = detrend(data,1,brkp) subtracts a piecewise linear
trend at one or more breakpoints brkp. brkp is a data index where
discontinuities between successive linear trends occur. When brkp
contains breakpoints that match the time vector, detrend subtracts a
continuous piecewise linear trend. You cannot store piecewise linear
trend information as an output argument.

Subtract mean values from input and output signals and store the
trend information:

% Load SISO data containing vectors u2 and y2.

load dryer2

% Create data object with sampling interval of 0.08 sec.
data=iddata(y2,u2,0.08)

% Plot data on a time plot. Data has a nonzero mean.
plot(data)

% Remove the mean from the data.

[data_d,T] = detrend(data,0)

% Plot detrended data on the same plot.

hold on
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See Also

How To

plot(data_d)
Remove specified offset from input and output signals:

% Load SISO data containing vectors u2 and y2.

load dryer2

% Create data object with sampling time of 0.08 sec.
data=iddata(y2,u2,0.08)

plot(data)

% Create a TrendInfo object for storing offsets and trends.
= getTrend(data)

Assign offset values to the TrendInfo object.
.InputOffset=5;

.QutputOffset=5;

% Subtract offset from the data.

data_d = detrend(data,T)

% Plot detrended data on the same plot.

hold on

plot(data_d)

-

o°

- -

Subtract several linear trends that connect at three breakpoints [30
60 90]:

data = detrend(data,1,[30 60 90]);
% [30 60 90] are data indexes where breakpoints occur.

Subtract a mean value from the input signal and a V-shaped trend
from the output signal, such that the V peak occurs at the breakpoint
value of 119:

zdl = z(:,:,[1); zd2 = z(:,[],:);
zd1(:,1,[]) = detrend(z(:,1,[]1),1,119);
zd2(:,[]1,1) = detrend(z(:,[],1));

zd = [zd1,zd2];

getTrend | | TrendInfo

+ “Handling Offsets and Trends in Data”
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Purpose Difference signals in iddata objects
Syntax zdi = diff(z)
zdi = diff(z,n)
Description z is a time-domain iddata object. diff(z) and diff(z,n) apply this

command to each of the input/output signals in z.
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Purpose

Syntax

Description

Estimate empirical transfer functions and periodograms

etfe(data)
etfe(data,M,N)

Q «Q
I

etfe estimates the transfer function g as an idfrd object of the general
linear model:

y(@#) = G(@u(t) + v(?)

data contains the output-input data and is an iddata object (time or
frequency domain).

g is given as an idfrd object with the estimate of G(eiw) at the
frequencies

w = [1:N]/N*pi/T

The default value of N is 128.

In case data contains a time series (no input channels), g is returned as
the periodogram of y.

When M is specified other than the default value M = [], a smoothing
operation is performed on the raw spectral estimates. The effect of M is
then similar to the effect of M in spa. This can be a useful alternative to
spa for narrowband spectra and systems, which require large values
of M.

When etfe is applied to time series, the corresponding spectral estimate
is normalized in the way that is defined in “Spectrum Normalization”.
etfe normalization differs from the spectrum normalization in the
Signal Processing Toolbox product.

If the (input) data is marked as periodic (data.Period = integer) and
contains an even number of periods, the response is computed at the
frequencies k*2*pi/period for k = 0 up to the Nyquist frequency.
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Examples

Algorithms

See Also
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Compare an empirical transfer function estimate to a smoothed spectral
estimate.

load iddata z1;
ge = etfe(z1);
gs = spa(zl);
bode (ge,gs)

Generate a periodic input, simulate a system with it, and compare the
frequency response of the estimated model with the true system at the
excited frequency points.

m idpoly([1 -1.5 0.7]1,[0 1 0.5]);

u iddata([],idinput([50,1,10], 'sine'));
u.Period = 50;

y = sim(m,u);
m

b

e = etfe([y u])
ode(me, 'b*' ,m,'r")

The empirical transfer function estimate is computed as the ratio of the
output Fourier transform to the input Fourier transform, using fft.
The periodogram is computed as the normalized absolute square of the
Fourier transform of the time series.

You obtain the smoothed versions (M less than the length of z) by
applying a Hamming window to the output fast Fourier transform
(FFT) times the conjugate of the input FFT, and to the absolute square
of the input FFT, respectively, and subsequently forming the ratio of
the results. The length of this Hamming window is equal to the number
of data points in z divided by M, plus one.

bode | | freqresp | idfrd | nyquist | spa | spafdr | impulseest
| spectrum
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Purpose
Syntax

Description

Examples

Evaluate frequency response at given frequency
frsp = evalfr(sys,f)

frsp = evalfr(sys,f) evaluates the transfer function of the TF, SS,
or ZPK model sys at the complex number f. For state-space models

with data (A, B, C, D), the result is
HpH) =D+ C{I-A"'B

evalfris a simplified version of freqresp meant for quick evaluation of
the response at a single point. Use freqresp to compute the frequency
response over a set of frequencies.

Example 1

To evaluate the discrete-time transfer function

z-1

H(@_ 2+z+1

z
atz=1+j, type
H=tf([1 -1],[1 1 1],-1);
z = 1+4j;
evalfr(H,z)
to get the result:

ans =
2.3077e-01 + 1.5385e-01i

Example 2

To evaluate the frequency response of a continuous-time IDTF model at
frequency w = 0.1 rad/s, type:

sys = idtf(1,[1 2 1]);

2-189



evalfr

Limitations

See Also
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w=0.1;

S = 1j*w;

evalfr(sys, s)

The result is same as freqresp(sys, w).

The response is not finite when f is a pole of sys.

bode | freqresp | sigma
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Purpose
Syntax

Arguments

Description

Examples

See Also

Value of nonlinearity estimator at given input
value = evaluate(nl,x)

nl
Nonlinearity estimator object.

Value at which to evaluate the nonlinearity.

If nl is a single nonlinearity estimator, then x is a 1-by-nx row
vector or an nv-by-nx matrix, where nx is the dimension of the
regression vector input to nl (size(nl)) and nv is the number of
points where nl is evaluated.

If n1 is an array of ny nonlinearity estimators, then x is a 1-by-ny
cell array of nv-by-nx matrices.

value = evaluate(nl,x) computes the value of a nonlinear estimator
object of type customnet, deadzone, 1linear, neuralnet, pwlinear,
saturation, sigmoidnet, treepartition, or wavenet.

The following syntax evaluates the nonlinearity of an estimated
nonlinear ARX model m:

value = evaluate(m.Nonlinearity,x)

where m.Nonlinearity accesses the nonlinearity estimator of the
nonlinear ARX model.

idnlarx | idnlhw
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Purpose
Syntax

Description

See Also
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Concatenate FRD models along frequency dimension

sys = fcat(syst1,sys2,...)

sys = fcat(sys?,sys2,...) takes two or more frd models and
merges their frequency responses into a single frd model sys. The
resulting frequency vector is sorted by increasing frequency. The
frequency vectors of sys1, sys2,... should not intersect. If the
frequency vectors do intersect, use fdel to remove intersecting data
from one or more of the models.

fdel | fselect | interp | frd | idfrd
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Purpose
Syntax

Description

Tips

Input
Arguments

Output
Arguments

Examples

Delete specified data from frequency response data (FRD) models
sysout = fdel(sys, freq)

sysout = fdel(sys, freq) removes from the frd model sys the data
nearest to the frequency values specified in the vector freg.

e Use fdel to remove unwanted data (for example, outlier points) at
specified frequencies.

e Use fdel to remove data at intersecting frequencies from frd models
before merging them with fcat. fcat produces an error when you
attempt to merge frd models that have intersecting frequency data.

® To remove data from an frd model within a range of frequencies,
use fselect.

sys
frd model.

freq

Vector of frequency values.

sysout

frd model containing the data remaining in sys after removing the
frequency points closest to the entries of freq.

Remove selected data from a frd model. In this example, first obtain an
frd model:

sys = frd(tf([1],[1 1]), logspace(0,1,10))

Frequency(rad/s) Response
1.0000 0.5000 - 0.5000i1
1.2915 0.3748 - 0.48411i
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1.6681 0.2644 - 0.44101
2.1544 0.1773 - 0.38191
2.7826 0.1144 - 0.31831
3.5938 0.0719 - 0.25831i
4.6416 0.0444 - 0.2059i
5.9948 0.0271 - 0.16231
7.7426 0.0164 - 0.12701
10.0000 0.0099 - 0.0990i

Continuous-time frequency response.

The following commands remove the data nearest 2, 3.5, and 6 rad/s

from sys.

freq = [2, 3.5, 6];

sysout = fdel(sys, freq)

Frequency(rad/s) Response

1.0000 0.5000 - 0.5000i
1.2915 0.3748 - 0.48411
1.6681 0.2644 - 0.44101
2.7826 0.1144 - 0.31831
4.6416 0.0444 - 0.20591
7.7426 0.0164 - 0.12701
10.0000 0.0099 - 0.0990i

Continuous-time frequency response.

You do not have to specify the exact frequency of the data to remove.
fdel removes the data nearest to the specified frequencies.

See Also fcat | fselect | frd | idfrd
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Purpose
Syntax

Description

See Also

Identify possible feedback data
[fbck,fbckO,nudir] = feedback(Data)

Data is an iddata set with Ny outputs and Nu inputs.

fbck is an Ny-by-Nu matrix indicating the feedback. The ky,ku entry
is a measure of feedback from output ky to input ku. The value is a
probability P in percent. Its interpretation is that if the hypothesis that
there is no feedback from output ky to input ku were tested at the level
P, it would have been rejected. An intuitive but technically incorrect
way of thinking about this is to see P as “the probability of feedback.”
Often only values above 90% are taken as indications of feedback. When
fbck is calculated, direct dependence at lag zero between u(t) and y(¢) 1s
not regarded as a feedback effect.

fbck0: Same as fbck, but direct dependence at lag 0 between u(¢) and
y(t) is viewed as feedback effect.

nudir: A vector containing those input numbers that appear to have a
direct effect on some outputs, that is, no delay from input to output.

advice | iddata
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Purpose

Syntax

Description

2-196

Compute and plot frequency response magnitude and phase for linear
frequencies

Note ffplot will be removed in a future release. Use bode or
bodeplot instead.

ffplot(m)

ffplot(m,w)

ffplot(m('noise')
ffplot(mil,...,mN, 'sd',sd, 'mode', 'same','ap',ap, ' 'fill')
[mag,phase,w] = ffplot(m)

[mag,phase,w,sdmag,sdphase] = ffplot(m)

ffplot(m) plots a frequency response plot for the model m, which can
be an idpoly, idss, idarx, idgrey, or idfrd object. This frequency
response is a function of linear frequencies in units of inverse time
(stored as the TimeUnit model property). The default frequency values
are determined from the model dynamics. For time series spectra,
phase plots are omitted. For MIMO models, press Enter to view the
next plot in the sequence of different I/O channel pairs, annotated using
the InputNames and OuputNames model properties.

ffplot(m,w) plots a frequency response plot at specified frequencies w
In inverse time units, which can be:

e A vector of values.

e {wmin,wmax}, which specifies 100 linearly spaced frequency values
ranging from a minimum value wmin and a maximum value wmax.

e {wmin,wmax,np}, which specifies np linearly spaced frequency values.

Note For idfrd models, you cannot specify individual frequencies
and can only limit the frequencies range for the internally stored
frequencies using {wmin,wmax}.
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See Also

ffplot(m('noise') plots a frequency response plot of the output noise
spectra when the model contains noise spectrum information.

ffplot(mi,...,mN, " 'sd',sd, 'mode', 'same', 'ap',ap, ' 'fill"') plots
a frequency response plot for several models. sd specifies the confidence
region as a positive number that represents the number of standard
deviations. The argument 'fill' indicates that the confidence region
1s color filled. mode = 'same' displays all I/O channels in the same
plot. Set ap = 'A' to show only amplitude plots, or ap = 'P' to show
only phase plots.

[mag,phase,w] = ffplot(m) computes the magnitude mag and

phase values of the frequency response, which are 3-D arrays with
dimensions (number of outputs)-by-(number of inputs)-by-(length of
w). w specifies the frequency values for computing the response even

if you did not specify it as an input. For SISO systems, mag(1,1,k)
and phase(1,1,k) are the magnitude and phase (in degrees) at the
frequency w(k). For MIMO systems, mag(i,j,k) is the magnitude of
the frequency response at frequency w(k) from input j to output i, and
similarly for phase(i,j, k). When mis a time series, mag is its power
spectrum and phase is zero.

[mag,phase,w,sdmag,sdphase] = ffplot(m) computes the standard
deviations of the magnitude sdmag and the phase sdphase. sdmag is an
array of the same size as mag, and sdphase is an array of the same
size as phase.

bode | etfe | freqresp | idfrd | nyquist | spa | spafdr
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Purpose

Syntax

Description

See Also
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Transform iddata object to frequency domain data

Datf = fft(Data)
Datf = fft(Data,N)
Datf = fft(Data,N, 'complex')

If Data is a time-domain iddata object with real-valued signals and with
constant sampling interval Ts, Datf is returned as a frequency-domain
iddata object with the frequency values equally distributed from
frequency 0 to the Nyquist frequency. Whether the Nyquist frequency
actually is included or not depends on the signal length (even or odd).
Note that the FFTs are normalized by dividing each transform by the
square root of the signal length. That is in order to preserve the signal
power and noise level.

In the default case, the length of the transformation is determined by
the signal length. A second argument N will force FFT transformations
of length N, padding with zeros if the signals in Data are shorter and
truncating otherwise. Thus the number of frequencies in the real signal
case will be N/2 or (N+1) /2. If Data contains several experiments, N can
be a row vector of corresponding length.

For real signals, the default is that Datf only contains nonnegative
frequencies. For complex-valued signals, negative frequencies are also
included. To enforce negative frequencies in the real case, add a last
argument, 'Complex’.

iddata | ifft | spa



findop(idnlarx)

Purpose

Syntax

Description

Input
Arguments

Compute operating point for nonlinear ARX model

[X,U] = findop(SYS, 'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)

[X,U] findop (SYS, 'snapshot',T,UIN,X0)
[X,U,REPORT] = findop(...)

findop(SYS,...,PVPairs)

[X,U] = findop(SYS, 'steady',InputLevel,OutputLevel) computes
operating-point state values, X, and input values, U, from steady-state
specifications for an idnlarx model. For more information about the
states of an idnlarx model, see “Definition of idnlarx States” on page
2-354.

[X,U] = findop(SYS,SPEC) computes the equilibrium operating point
using the specifications in the object SPEC. Whereas the previous
command only lets you specify the input and output level, SPEC provides
additional specification for computing the steady-state operating point.

[X,U] = findop(SYS, 'snapshot',T,UIN,X0) computes the operating
point at a simulation snapshot of time T using the specified input and
initial state values.

[X,U,REPORT] = findop(...) creates a structure, REPORT, containing
information about the algorithm for computing an operating point.

findop(SYS, ...,PVPairs) specifies property-value pairs for setting
algorithm options.
® SYS: idnlarx (nonlinear ARX) model.

* 'steady': Computes operating point using steady-state input and
output levels.

® 'snapshot': Computes operating point at simulating snapshot of
model SYS at time T.

e InputLevel: Steady-state input level for computing operating point.
Use NaN when the value is unknown.
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Output
Arguments

2-200

OutputLevel: Steady-state output level for computing the operating
point. Use NaN when the value is unknown.

SPEC: Operating point specifications object. Use SPEC =
OPERSPEC(SYS) to construct the SPEC object for model SYS. Then,
configure SPEC options, such as signal bounds, known values, and
initial guesses. See operspec(idnlarx) for more information.

T: Simulation snapshot time at which to compute the operating point.

UIN: Input for simulating the model. UIN is a double matrix or an
iddata object. The number of input channels in UIN must match
the number of SYS inputs.

X0: Initial states for model simulation.
Default: Zero.

PVPairs: Property-value pairs for customizing the model Algorithm
property fields, such as SearchMethod, MaxSize, and Tolerance.

X: Operating point state values.
U: Operating point input value.
REPORT: Structure containing the following fields:

= SearchMethod: String indicating the value of the SearchMethod
property of MODEL .Algorithm.

WhyStop: String describing why the estimation stopped.
Iterations: Number of estimation iterations.

FinalCost: Final value of the sum of squared errors that the
algorithm minimizes.

= FirstOrderOptimality: Measure of the gradient of the search
direction at the final parameter values when the search algorithm
terminates. It is equal to the o -norm of the gradient vector.

= Signallevels: Structure containing fields Input and Output,
which are the input and output signal levels of the operating point.
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Algorithms

findop computes the operating point from steady-state operating point
specifications or at a simulation snapshot.

Computing the Operating Point from Steady-State
Specifications

You specify to compute the steady-state operating point by calling
findop in either of the following ways:

[X,U] = findop(SYS, 'steady',InputLevel,QutputlLevel)
[X,U] findop (SYS,SPEC)

When you use the syntax [X,U] =
findop(SYS, 'steady',InputLevel,OutputLevel), the algorithm
assumes the following operating-point specifications:

e All finite input values are fixed values. Any NaN values specify an
unknown input signal with the initial guess of 0.

e All finite output values are initial guess values. Any NaN values
specify an unknown output signal with the initial guess of 0.

® The minimum and maximum bounds have default values (-/+ Inf) for
both Input and Output properties in the specification object.

Using the syntax [X,U] = findop(SYS,SPEC), you can specify
additional information, such as the minimum and maximum constraints
on the input/output signals and whether certain inputs are known
(fixed).

To compute the states, X, and the input, U, of the steady-state operating
point, findop uses the algorithm specified in the SearchMethod
property of MODEL .Algorithm to minimize the norm of the error e(t) =
y(@)-f(x(t), u(t)), where f is the nonlinearity estimator, x(¢) are the model
states, and u(t) is the input.

The algorithm uses the following independent variables for
minimization:

¢ Unknown (unspecified) inputs

¢ Qutput signals
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Examples

See Also
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Because the states of a nonlinear ARX (idnlarx) model are delayed
samples of the input and output variables, the values of all the states
are the constant values of the corresponding steady-state inputs and
outputs. For more information about the definition of nonlinear ARX
model states, see “Definition of idnlarx States” on page 2-354.

Computing the Operating Point at a Simulation Snapshot

When you use the syntax [X,U] =

findop(SYS, 'snapshot',T,UIN,X0), the algorithm simulates the
model output until the snapshot time, T. At the snapshot time, the
algorithm passes the input and output samples to the data2state
command to map these values to the current state vector.

Note For snapshot-based computations, findop does not perform
numerical optimization.

In this example, you compute the operating point of an idnlarx model
for a steady-state input level of 1.

1 Estimate an idnlarx model from sample data iddata2.

load iddata2;
M = nlarx(z2,[4 3 2], 'wavenet');

2 Compute the steady-state operating point for an input level of 1.

x0 = findop(M, 'steady',1,NaN)

data2state(idnlarx) | operspec(idnlarx) | sim(idnlarx)
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Purpose

Syntax

Description

Input
Arguments

Compute operating point for Hammerstein-Wiener model

[X,U] = findop(SYS, 'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)

[X,U] findop (SYS, 'snapshot',T,UIN,X0)
[X,U,REPORT] = findop(...)

findop(SYS,...,PVPairs)

[X,U] = findop(SYS, 'steady',InputLevel,OutputLevel) computes
operating-point state values, X, and input values, U, from steady-state
specifications for an idnlhw model. For more information about the
states of an idnlhw model, see “idnlhw States” on page 2-389.

[X,U] = findop(SYS,SPEC) computes the equilibrium operating point
using the specifications in the object SPEC. Whereas the previous
command only lets you specify the input and output level, SPEC provides
additional specification for computing the steady-state operating point.

[X,U] = findop(SYS, 'snapshot',T,UIN,X0) computes the operating
point at a simulation snapshot of time T using the specified input and
initial state values.

[X,U,REPORT] = findop(...) creates a structure, REPORT, containing
information about the algorithm for computing an operating point.

findop(SYS, ...,PVPairs) specifies property-value pairs for setting
algorithm options.

® SYS: idnlhw (Hammerstein-Wiener) model.

® 'steady': Computes operating point using steady-state input and
output levels.

® 'snapshot': Computes operating point at simulating snapshot of
model SYS at time T.

e InputLevel: Steady-state input level for computing operating point.
Use NaN when the value is unknown. Do not enter OutputLevel
when InputLevel does not contain any NaN values.
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Output
Arguments
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OutputLevel: Steady-state output level for computing the operating
point. Use NaN when the value is unknown.

SPEC: Operating point specifications object. Use SPEC =
OPERSPEC(SYS) to construct the SPEC object for model SYS. Then,
configure SPEC options, such as signal bounds, known values, and
initial guesses. See operspec(idnlhw) for more information.

T: Simulation snapshot time at which to compute the operating point.

UIN: Input for simulating the model. UIN is a double matrix or an
iddata object. The number of input channels in UIN must match
the number of SYS inputs.

X0: Initial states for model simulation.
Default: Zero.

PVPairs: Property-value pairs for customizing the model Algorithm
property fields, such as SearchMethod, MaxSize, and Tolerance.

X: Operating point state values.
U: Operating point input value.
REPORT: Structure containing the following fields:

= SearchMethod: String indicating the value of the SearchMethod
property of MODEL .Algorithm.

WhyStop: String describing why the estimation stopped.
Iterations: Number of estimation iterations.

FinalCost: Final value of the sum of squared errors that the
algorithm minimizes.

= FirstOrderOptimality: Measure of the gradient of the search
direction at the final parameter values when the search algorithm
terminates. It is equal to the o -norm of the gradient vector.

= Signallevels: Structure containing fields Input and Output,
which are the input and output signal levels of the operating point.
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Algorithms

findop computes the operating point from steady-state operating point
specifications or at a simulation snapshot.

Computing the Operating Point from Steady-State
Specifications

You specify to compute the steady-state operating point by calling
findop in either of the following ways:

[X,U] = findop(SYS, 'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)

When you use the syntax [X,U] =
findop(SYS, 'steady',InputLevel,OutputLevel), the algorithm
assumes the following operating-point specifications:

e All finite input values are fixed values. Any NaN values specify an
unknown input signal with the initial guess of 0.

e All finite output values are initial guess values. Any NaN values
specify an unknown output signal with the initial guess of 0.

¢ The minimum and maximum bounds have default values (-/+ Inf) for
both Input and Output properties in the specification object.

Using the syntax [X,U] = findop(SYS,SPEC), you can specify
additional information, such as the minimum and maximum constraints
on the input/output signals and whether certain inputs are known
(fixed).

findop uses a different approach to compute the steady-state operating
point depending on how much information you provide for this
computation:

® When you specify values for all input levels (no NaN values).
For a given input level, U, the equilibrium state values are X =
inv(I-A)*B*f(U), where [A,B,C,D] = ssdata(model.LinearModel),
and f() is the input nonlinearity.

® When you specify known and unknown input levels. findop
uses numerical optimization to minimize the norm of the error
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and compute the operating point. The total error is the union of
contributions from e, and e, , e(?) = (e,(D)ex(?)), such that:

= ¢, applies for known outputs and the algorithm minimizes e, = y-
2(L(x,f(u))), where f is the input nonlinearity, L(x,u) is the linear
model with states x, and g is the output nonlinearity.

= e, applies for unknown outputs and the error is a measure of
whether these outputs are within the specified minimum and
maximum bounds. If a variable is within its specified bounds, the
corresponding error is zero. Otherwise, the error is equal to the
distance from the nearest bound. For example, if a free output
variable has a value z and its minimum and maximum bounds are
L and U, respectively, then the error is e,= max[z-U, L-z, 0].

The independent variables for the minimization problem are the
unknown inputs. In the error definition e, both the input u and the
states x are free variables. To get an error expression that contains
only unknown inputs as free variables, the algorithm findop specifies
the states as a function of inputs by imposing steady-state conditions:
x = 1nv(I-A)*B*f(U), where [A,B,C,D] are state-space parameters
corresponding to the linear model L(x,u). Thus, substituting x =
inv(l-A)*B*f(U) into the error function results in an error expression
that contains only unknown inputs as free variables computed by the
optimization algorithm.

Computing the Operating Point at a Simulation Snapshot

When you use the syntax [X,U] =

findop(SYS, 'snapshot',T,UIN,X0), the algorithm simulates the
model output until the snapshot time, T. At the snapshot time, the
algorithm computes the inputs for the linear model block of the
Hammerstein-Wiener model (LinearModel property of the idnlhw
object) by transforming the given inputs using the input nonlinearity: w
= f(u). findop uses the resulting w to compute x until the snapshot time
using the following equation: x(t+1) = Ax(t) + Bw(t), where [A,B,C,D]

= ssdata(model.LinearModel).
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Examples

See Also

Note For snapshot-based computations, findop does not perform
numerical optimization.

In this example, you compute the operating point of an idnlhw model
for a steady-state input level of 1.

1 Estimate an idnlhw model from sample data iddata2.

load iddata2;
M = nlhw(z2,[4 3 2], 'wavenet', 'pwl');

2 Compute the steady-state operating point for an input level of 1.

x0 = findop(M, 'steady',1,NaN)

findstates(idnlhw) | operspec(idnlhw) | sim(idnlhw)
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Purpose Estimate initial states of identified linear state-space model from data

Syntax x0 = findstates(sys,data)
x0 = findstates(sys,data,K)
x0 = findstates(sys,data,K,opt)

Description X0 = findstates(sys,data) estimates the initial state values of a
state-space model, SyS, to maximize the least squares fit between the
measured output data, data, and the model response.

x0 = findstates(sys,data,K) specifies the prediction horizon, K, for
computing the response of Sys.

x0 = findstates(sys,data,K,opt) estimates the initial state using
the option set, opt, to specify initial condition constraints, signal
offsets, etc.

Input sys

Arguments Identified linear state-space model.

Specify sys as an idss or idgrey model.

data
Input-output data.

Specify data as an iddata object with input/output dimensions that
match sys.

data can be a frequency-domain iddata object. Ideally, the frequency
vector of data should be symmetric about the origin.

If you are converting time-domain data into frequency-domain data, use
fft. Use the 'compl' input argument with fft and ensure that there is
sufficient zero padding. Note that for an N-point fft, the input/output
signals are scaled by 1/sqrt (N). Therefore, the estimated X0 vector is
also scaled by this factor. So, scale your data appropriately when you
compare X0 between the time-domain and frequency-domain.
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Output
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Examples

K
Prediction horizon for computing the response of sys.

Specify K as a positive integer between 1 and Inf. The most common
values used are:

® K=1 — Minimizes the 1-step prediction error. That is, the 1-step
ahead prediction response of Sys is compared to the output signals
in data to determine xO0.

e K=Inf — Minimizes the simulation error. That is, the difference
between the measured output, data.y, and the simulated response
of sys to the measured input data, data.u.

For continuous-time models, specify K as either 1 or Inf.

For continuous-time frequency-domain data, specify K as Inf.
Default: 1 (for all data except continuous-time frequency-domain
data)

opt

Option set.

opt is an options set that allows you to constrain the initial state,
remove signal offsets, etc.

Use findstatesOptions to create the options set.

x0

Estimated initial state.

For multi-experiment data, X0 is a matrix with one column for each
experiment.

Estimate Initial States of State-Space Model

Estimate an idss model and simulate it such that the response of the
estimated model matches the estimation data’s output signal as closely
as possible.
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See Also
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Load sample data.

load iddatail z1; % estimation data z1;

Estimate a linear model from the data.

model = ssest(z1,2);

Estimate the value of the initial states to best fit the measured output
z1.y.

x0est = findstates(model,z1,Inf);

Simulate the model.

opt = simOptions('InitialCondition',x0est)
sim(model,z1.u,opt)

findstatesOptions | idpar | pe | compare | sim | predict
| forecast | findstates(idnlarx) | findstates(idnlhw) |
findstates(idnlgrey) | ssest
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Purpose Estimate initial states of nonlinear ARX model from data

MODEL ,DATA)

MODEL ,DATA,XOINIT)

X0 = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM)

X0 = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM,PVPairs)
[XO, REPORT] = findstates(...)

Syntax X0 = findstates
X0 = findstates

—_~ e~~~

Description X0 = findstates(MODEL,DATA) estimates the initial states of
an idnlarx model that minimize the error between the output
measurements in DATA and the predicted output of the model. The states
of an idnlarx model are defined as the delayed samples of input and
output variables. For more information about the definition of states for
idnlarx models, see “Definition of idnlarx States” on page 2-354.

X0 = findstates(MODEL,DATA,XOINIT) specifies an initial guess for
estimating the initial states.

X0 = findstates(MODEL,DATA,XOINIT,PRED _OR_SIM) allows
switching between prediction-error (default) and simulation-error
minimization.

X0 = findstates(MODEL,DATA,XOINIT,PRED OR_SIM,PVPairs)
lets you specify the algorithm properties that control the numerical
optimization process as property-value pairs.

[X0, REPORT] = findstates(...) creates a report to summarize
results of numerical optimization that is performed to search for the
model states.

Input * MODEL: idnlarx model.

Arguments ® DATA: iddata object from which to estimate the initial states of MODEL.

® XOINIT: Initial guess for value of X0. Must be a vector of length equal
to the number of the states of MODEL (sum(getDelayInfo(MODEL))).

® PRED_OR_SIM: Specifies minimization criteria using one of the
following values:
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= ‘'prediction': (Default) Estimation of initial states by
minimizing the difference between the measured output data and
1-step-ahead predicted response of the model.

= 'simulation': Estimation of initial states by minimizing the
difference between the measured output and the simulated
response of the model. This estimation algorithm can be slower
than 'prediction’.

® PVPairs: Property-value pairs that specify the algorithm properties
that control numerical optimization process. By default, algorithm
properties are read from the Algorithm property of MODEL. You can
override MODEL .Algorithm properties using property-value pairs.
For example you might set SearchMethod, MaxSize, Tolerance, and
Display.

® X0: Estimated initial state vector corresponding to time DATA.TStart.
For multi-experiment data, X0 is a matrix with as many columns
as there are experiments.

® REPORT: Structure containing the following fields:

= 'EstimationCriterion': String containing the minimization
method used.

= 'SearchMethod': String indicating the value of the SearchMethod
property of MODEL .Algorithm.

= 'WhyStop': String describing why the estimation was stopped.
= 'Iterations': Number of iterations carried out during estimation.

= 'FinalCost': The final value of the sum of squared errors that
the search method attempts to minimize

= 'FirstOrderOptimality': Measure of the gradient of the search
direction at the final value of the parameter set when the search
algorithm terminates. It is equal to the o -norm of the gradient
vector.
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Examples

Estimating Initial States

In this example, you use sample data z1 to create a nonlinear ARX
model. You use findstates to compute the initial states of the model
such that the difference between the predicted output of the model and
the output data in z2 is minimized.

1 Load the sample data and create two data objects z1 and z2.

load twotankdata

% Create data objects z1 and z2.

z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000); z2 = z(1001:2000);

2 Estimate the idnlarx model.

% Estimate a nonlinear ARX model from data in z1.
mwi = nlarx(z1,[5 1 3],wavenet('NumberOfUnits',8));

3 Estimate the initial states of the model.

% Find the initial states X0 of mwi that minimize
the error between the output data of z2 and the
% simulated output of mwi.

X0 = findstates(mwil,z2,[], 'sim')

o°

Estimating Initial States for Multiple-Experiment Data

In this example, you estimate the initial states for each data set in a
multiple-experiment data object.

1 Create a multi-experiment data set from z1 and z2:

% Create a multi-experiment data set.
zm = merge(z1,z2);
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2 Estimate the initial states for each experiment in the data set, such
that the one-step-ahead prediction error is minimized for each data
set.

% Estimate initial states for each data set in zm.
X0 = findstates(mwil,zm)

See Also data2state(idnlarx) | getDelayInfo | findop(idnlarx) |
findstates(idParametric) | findstates(idnlhw)
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Purpose

Syntax

Description

Input
Arguments

Estimate initial states of nonlinear grey-box model from data

X0 =

findstates(NLSYS,DATA);

[X0,ESTINFO] = findstates(NLSYS,DATA);
[X0,ESTINFO] = findstates(NLSYS,DATA,XOINIT);

X0 =
idnlgrey model from given data. For more information about the states

findstates (NLSYS,DATA) ; estimates the initial states of an

of idnlgrey models, see “Definition of idnlgrey States” on page 2-375.

[X0,ESTINFO] = findstates(NLSYS,DATA); returns basic information
about the estimation.

[X0,ESTINFO] = findstates(NLSYS,DATA,XOINIT); specifies an
initial guess for XO.

® NLSYS: idnlgrey model whose output is to be predicted.

e DATA: Input/output data DATA = [Y U], where U and Y are the
following:

= U: Input data that can be given either as an iddata object or as a

matrix U = [U1 U2 ...Um], where the k% column vector is input
Uk

= Y: Either an iddata object or a matrix of outputs (with as many

columns as there are outputs).

Note For time-continuous idnlgrey models, DATA passed as a
matrix will cause the data sample interval Ts to be assumed to be
equal to 1.

® XOINIT: Initial state strategy to use:

'zero': Use zero initial state and estimate all states
(NLSYS.InitialStates.Fixed is thus ignored). Notice that all
states are estimated, whereas they are fixed in predict.
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= 'estimate': NLSYS.InitialStates determines the
values of the states, but all initial states are estimated
(NLSYS.InitialStates.Fixed is thus ignored).

= ‘'model': (Default) NLSYS.InitialStates determines the values
of the initial states, which initial states to estimate, as well as
their maximum and minimum values.

vector/matrix: Column vector of appropriate length to be used
as an initial guess for initial states. For multiple experiment
DATA, XOINIT may be a matrix whose columns give different
initial states for each experiment. With this option, all
initial states are estimated (and not fixed as in predict)
(NLSYS.InitialStates.Fixed is thus ignored).

struct array: Nx-by-1 structure array with fields:
Name: Name of the state (a string).
Unit: Unit of the state (a string).

Value: Value of the states (a finite real 1-by-Ne vector, where Ne
1s the number of experiments).

Minimum: Minimum values of the states (a real 1-by-Ne vector
or a real scalar, in which case all initial states have the same
minimum value).

Maximum: Maximum values of the states (a real 1-by-Ne vector
or a real scalar, in which case all initial states have the same
maximum value).

Fixed: Boolean 1-by-Ne vector, or a scalar Boolean (applicable
for all states) specifying whether the initial state is fixed or not.

® X0: Matrix containing the initial states. In the single experiment
case it is a column vector of length Nx. For multi-experiment data, X0
1s a matrix with as many columns as there are experiments.

® ESTINFO: Structure or Ne-by-1 structure array containing basic
information about the estimation result (some of the fields normally
stored in NLSYS.EstimationInfo). For multi-experiment data,
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Examples

ESTINFO is an Ne-by-1 structure array with elements providing initial
state estimation information related to each experiment.

Estimating Individual Initial States Selectively

In this example you estimate the initial states of a model selectively,
fixing the first state and allowing the second state of the model to be
estimated. First you create a model from sample data and set the Fixed
property of the model such that the second state is free and the first

is fixed.

1 Specify the file describing the model structure, the model orders, and
model parameters.

% Specify the file describing the model structure:
FileName = 'dcmotor_m';

% Specify the model orders [ny nu nx]

Order = [2 1 2];

% Specify the model parameters

% (see idnlgreydemol for more information)
Parameters = [0.24365; 0.24964];

2 Estimate the model parameters and set the model properties:

nlgr = idnlgrey(FileName, Order, Parameters);
set(nlgr, 'InputName', 'Voltage', 'OutputName’,
{'Angular position', 'Angular velocity'});

3 Free the second state while keeping the first one fixed.

setinit(nlgr, 'Fixed',{1 0});

4 Load the estimation data.

load(fullfile(matlabroot, 'toolbox', 'ident',...
'iddemos', 'data', 'dcmotordata'));

z = iddata(y,u,0.1,'Name', 'DC-motor',...
"InputName', 'Voltage', 'OutputName',...
{'Angular position', 'Angular velocity'});
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5 Estimate the free states of the model.

[X0,EstInfo] = findstates(nlgr,z)

Estimating Initial States Starting from States Stored in Model

This example shows how you can estimate all of the initial states,
starting from the initial state 0, then from the initial states stored in
the model nlgr, and finally using a numerical initial states vector as
the initial guess.

1 Estimate all the initial states starting from 0.

X0 = findstates(nlgr,z, 'zero');

2 Estimate the free initial states specified by nlgr, starting from the
initial state stored in nlgr.

X0 = findstates(nlgr, z, 'mod');

3 Estimate all the initial states, starting from an initial state vector
that you specify.

nlgr.Algorithm.Display = 'full';

% Starting from an initial state vector [10;10]
X0 = findstates(nlgr,z,[10;10])

Advanced Use of findstates(idnlgrey)

The following example shows advanced use of findstates. Here you
estimate states for multi-experiment data, such that the states of model
nlgr are estimated separately for each experiment. After creating

a 3-experiment data set z3, you estimate individual initial states
separately.

1 Create a three-experiment data set.
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z3 = merge(z, z, z); % 3-experiment data

2 Fix some initial states and only estimate the free initial states
starting of with the initial state in nlgr. This means that both
elements of state vector 1 will be estimated, that no state of the
second state vector will be estimated, and that only the first state of
state vector 3 is estimated.

% prepare model for 3-experiment data
nlgr = pem(z3, nlgr, 'Display', 'off');

3 Specify which initial states to fix, and set the Display property of
Algorithm to 'full'.

nlgr.InitialStates(1).Fixed = [true false truel;
nlgr.InitialStates(2).Fixed [true false false];
nlgr.Algorithm.Display = 'full';

4 Estimate the initial states and obtain information about the
estimation.

[XO0, EstInfo] = findstates(nlgr, z3);

See Also findstates(idnlarx) | findstates(idnlhw) | predict | sim
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Estimate initial states of nonlinear Hammerstein-Wiener model from
data

X0 = findstates(MODEL,DATA)
X0 = findstates(MODEL,DATA,XOINIT)
X0 = findstates(MODEL,DATA,XOINIT,PVPairs)

[XO, REPORT] = findstates(...)

X0 = findstates(MODEL,DATA) estimates the initial states of an
idnlhw model from given data. The states of an idnlhw model are
defined as the states of its embedded linear model (Model.LinearModel).
For more information about the states of idnlhw models, see “idnlhw
States” on page 2-389.

X0 = findstates(MODEL,DATA,XOINIT) specifies an initial guess for
value of X0 using XOINIT.

X0 = findstates(MODEL,DATA,XOINIT,PVPairs) specifies
property-value pairs representing the algorithm properties that control
the numerical optimization process.

[X0, REPORT] = findstates(...) creates a report to summarize
results of numerical optimization that is performed to search for the
model states.

® MODEL: idnlhw model.
® DATA: iddata object from which to estimate the initial states of MODEL.

® XOINIT: Initial guess for value of X0. Must be a vector of length equal
to the number of the states of MODEL.

® PVPairs: Property-value pairs that specify the algorithm properties
that control numerical optimization process. By default, algorithm
properties are read from the Algorithm property of MODEL. You can
override MODEL .Algorithm properties using property-value pairs.
For example you might set SearchMethod, MaxSize, Tolerance, and
Display.



findstates(idnlhw)

OUprf ® X0: Estimated initial state vector corresponding to time DATA.TStart.
Arguments For multi-experiment data, X0 is a matrix with as many columns
as there are experiments.

® REPORT: Structure containing the following fields:

'"EstimationCriterion': String containing the minimization
method used.

'SearchMethod': String indicating the value of the SearchMethod
property of MODEL .Algorithm.

'"WhyStop': String describing why the estimation was stopped.
'Iterations': Number of iterations carried out during estimation.

'FinalCost': The final value of the sum of squared errors that
the search method attempts to minimize

'FirstOrderOptimality': Measure of the gradient of the search
direction at the final value of the parameter set when the search
algorithm terminates. It is equal to the < -norm of the gradient
vector.

Examples In this example, you create an idnlarx model from sample data and
estimate initial states using another data set. Next you jointly estimate
the states for separate data sets contained in multi-experiment data.

1 Load the data and create iddata objects z1 and z2.

load twotankdata

z = iddata(y, u, 0.2, 'Name', 'Two tank system');

z1

= z(1:1000); z2 = z(1001:2000);

2 Estimate an idnlhw model from data.

mi=nlhw(z1,[4 2 1], 'unitgain' , 'pwlinear')

3 Estimate the initial states of m1 using data z2.

2-221



findstates(idnlhw)

See Also

2-222

% Estimate initial states. View estimation trace and use
% only 5 iterations in the search algorithm
X0 = findstates(m1,z2,[], 'MaxIter',5,'Display','on')

Estimate states using multiple-experiment data. There are separate
sets of initial states for each experiment. The states of all data
experiments are jointly estimated, and X0 is returned as a matrix
with as many columns as there are data experiments.

zm merge(z1,z2);
X0 = findstates(m1, zm)

findstates(idnlarx) | findstates(idParametric)
findop (idnlhw)
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Purpose

Syntax

Description

Input
Arguments

Option set for findstates

opt = findstatesOptions
opt findstatesOptions(Name,Value)

opt = findstatesOptions creates the default options set for
findstates(idParametric).

opt = findstatesOptions(Name,Value) creates an option set with
the options specified by one or more Name,Value pair arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Valuetl,...,NameN,ValueN.

InitialState

Specify how initial states are handled.

InitialState takes one of the following:

e 'e' — Estimate initial state such that the prediction error for
observed output is minimized.

e 'd' — Similar to 'e', but absorbs nonzero delays into the model
coefficients. Use this option for discrete-time models only.

® x00bj — Specification object created using idpar. Use this object for
discrete-time state-space models only and when K is 1 or Inf. Use
x00bj to impose constraints on the initial states by fixing their value
or specifying minimum/maximum bounds.

Default: 'e'

InputOffset
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Removes offset from time domain input data during estimation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu 1s the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

OvutputOffset
Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments. Each entry specified by OutputOffset is subtracted
from the corresponding output data.

Default: []

OvutputWeight

Weight of output for initial condition estimation.

OutputWeight takes one of the following:

® 'noise' — Inverse of the noise variance stored with the model.

® matrix — A positive semi-definite matrix of dimension Ny-by-Ny,
where Ny is the number of outputs.

Default: 'noise’
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opt

Option set containing the specified options for
findstates(idParametric).

Create Default Options Set for State Identification

Create a default options set for findstates (idParametric).
opt = findstatesOptions;

Identify Initial States using Options Set

Create an options set for findstates(idParametric) by using an
initial state specification object.

Identify a state-space model from data.

load iddata8 z8;

ssest_opt = ssestOptions('Focus', 'simulation');

sys = ssest(z8,4,ssest_opt);

z8 1s an iddata object containing time-domain system response data.

ssest_opt specifies the 'Focus' option for state-space estimation as
‘simulation’.

sys is a fourth-order idss model that is identified from the data.
Configure a specification object for the initial states of sys.

x00bj = xOpar([1;nan(3,1)1);
x00bj.Free(1) = false;
x00bj.Minimum(2) = 0;
x00bj.Maximum(2) = 1;

x00bj specifies estimation constraints on the initial conditions.

The value of the first state is specified as 1 when x00bj is created.
x00bj.Free(1) = false specifies the first initial state as a fixed
estimation parameter.
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The second state is unknown. But, x0obj.Minimum(2) = 0 and
x00bj.Maximum(2) = 1 specify the lower and upper bounds of the
second state as 0 and 1, respectively.

Create an option set for findstates to identify the initial states of sys.

opt = findstatesOptions('InitialState',x00bj);

Alternatively, use dot notation to set the values of opt.

opt = findstatesOptions;
opt.InitialState = x0obj;

Identify the initial states of sys.

x0_estimated = findstates(sys,z8,Inf,opt);

findstates(idParametric) | idpar
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Pointwise peak gain of FRD model

fnrm = fnorm(sys)
fnrm fnorm(sys,ntype)

fnrm = fnorm(sys) computes the pointwise 2-norm of the frequency
response contained in the FRD model sys, that is, the peak gain at
each frequency point. The output fnrmis an FRD object containing
the peak gain across frequencies.

fnrm = fnorm(sys,ntype) computes the frequency response gains
using the matrix norm specified by ntype. See norm for valid matrix
norms and corresponding NTYPE values.

norm | abs
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Forecast linear system response into future

yf = forecast(model,past_data,K)
yf = forecast(model,past_data,K,future_inputs)
yf = forecast(model,past_data,K, ,opt)

[yf,x0efmod] forecast(model,past_data,K, __ )

yf = forecast(model,past_data,K) forecasts the output of a linear
identified time series model, model, K steps into the future using the
historical output data record, past_data. Here, “future” denotes the
time samples beyond the last sample time in past_data.

yf = forecast(model,past_data,K,future_inputs) uses the future
values of the inputs to model, future_inputs to forecast the response
of an input-output model.

yf = forecast(model,past_data,K, ,opt) forecasts the future
output of model using the option set opt to specify the forecasting
algorithm options.

[yf,x0efmod] = forecast(model,past_data,K, ) returns the
estimated values for initial states, x0e, and a forecasting model, fmod.

model

Identified linear model.

past_data
Historical input/output values.

If model is a time-series model, which do not have input signals,
past_data may be specified as an iddata object with no inputs. Or,
past_data may be a matrix of historical time-series data.

K

Time horizon of the forecast.
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Output
Arguments

K must be a positive integer that is a multiple of the sampling time of
the data, past_data.Ts.

future_inputs

Future values of inputs to model.

Specify future_inputs for the time interval past_data.Tstart
+ (N+1:N+K)*past_data.Ts, where N is the number of samples in
past_data.

future_inputs must be a matrix of size [K, Nu], where K is forecast
horizon and Nu is the number of inputs.

future_inputs is only relevant if model is not a time-series model.
Alternatively, use an iddata model to specify future_ inputs.
Use [] if model is a time-series model.

If past_data is specified for multiple experiments, then specify
future_inputs as:

® a multi-experiment iddata object.
e cell array of matrices, with an array entry for each corresponding
past_data experiment data set.

Default: 0

opt
Options set for forecast.

Use forecastOptions to define options.

yf

Forecasted response.

yT is the forecasted response at times after the last sample time in
past_data. Let N be the number of samples in past_data. In true
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time, yT contains data for the time interval past_data.Tstart +
(N+1:N+K)*past_data.Ts.

x0e

Estimated initial states.

x0e is returned only for state-space systems.

fmod
Forecasting model.

fmod is a dynamic system whose simulation, using future_inputs
and x0e, yields yf as the output.

fmod is always a discrete-time system.

If past_data is specified for multiple experiments, then fmod is
an array of dynamic models, with each entry corresponding to an
experiment in past_data.

Examples Forecast Response of Time Series Model

Forecast the response of a time series model for a given number of time
steps in the future.

Obtain a time series model and past data.

load iddata9 z9
model = ar(z9,4);
past_data = z9.OutputData(1:51); % double data

z9 is an iddata object that contains the measured output only.
model is an idpoly time-series model.

past_data contains the first 51 data points of z9.
Forecast the system response into the future for a given time horizon.

K = 100;
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yf = forecast(model,past_data(1:50),K);

K specifies the forecasting time horizon as 100 samples, with the same
sampling time as past_data.

yf is the forecasted model response.
Analyze the forecasted data.

t = z9.SamplingInstants;

t1 = t(1:51);

t2 = t(51:150)';
plot(t1,past_data,t2,yf,'r")
legend('Measured', 'Forecasted')

feasured
Forecasted

0.7

Forecast Model Response Using Future Inputs

Forecast the response of a model using the knowledge of its future
inputs.

Obtain past data, future inputs and identified linear model.
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load iddatal zi

z1 = iddata(cumsum(z1.y),cumsum(z1.u),z1.Ts, 'InterSample','foh');

past _data = z1(1:100);
future_inputs = z1.u(101:end);
model = polyest(z1, [2 2 2 0 0 1], " 'IntegrateNoise',true);

z11is an iddata object that contains integrated data.
model is an idpoly model.
past_data contains the first 100 data points of z1.

future_inputs contains the last 200 data points of z1.

Forecast the system response into the future for a given time horizon
and future inputs.

K = 200;
yf = forecast(model,past_data,K,future_inputs);

K specifies the forecasting time horizon as 200 samples, with the same
sampling time as past_data.

yf is the forecasted model response.
Analyze the forecasted data.

plot(past_data,yf);
legend('Measured', 'Forecasted')

[
o

integ
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See Also forecastOptions | predict | compare | sim | 1lsim | ar | arx

| n4sid | iddata

2-233



forecastOptions

Purpose

Syntax

Description

Input
Arguments
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Option set for forecast

opt = forecastOptions

opt = forecastOptions(Name,Value)
opt = forecastOptions returns the default option set for forecast.
opt = forecastOptions(Name,Value) creates an option set with the

options specified by one or more Name,Value pair arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Valuel,...,NameN,ValueN.

InitialCondition

Specify initial conditions.

InitialCondition takes one of the following:
e 'z' — Zero initial conditions.

e 'e' — Estimate initial conditions such that the 1-step prediction
error is minimized for the observed output.

e 'd' — Similar to 'e', but absorbs nonzero delays into the model
coefficients.

® x0 — Numerical column vector denoting initial states. For
multi-experiment data, use a matrix with Ne columns, where Ne is
the number of experiments. Use this option for state-space models
only.

® x0obj — Specification object created using idpar. Use this object
for discrete-time state-space models only. Use x00bj to impose
constraints on the initial states by fixing their value or specifying
minimum/maximum bounds.



forecastOptions

The effects of initial conditions on the forecasted response is negligible if
the observed data is for a sufficiently long time interval, or if the model
has finite memory. For such systems, using zero initial conditions is
sufficient. Otherwise, the initial conditions will influence the forecasted
values; the influence will usually diminish over the forecasted time
interval.

Default: 'e'

InputOffset
Input signal offset.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multi-experiment data, specify InputOffset as a Nu-by-Ne matrix.
Here Nu is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset will be subtracted from the
corresponding input data before it is used to simulate the model.

Default: []

OvutputOffset
Output signal offset.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify QutputOffset as a Ny-by-Ne
matrix. Here Ny is the number of outputs and Ne is the number of
experiments.

Each entry specified by OutputOffset will be subtracted from the
corresponding output data.
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Default: []

OutputWeight
Weight of output for initial condition estimation.
OutputWeight takes one of the following:

® '[1' — No weighting. This is the same as using eye (Ny), where Ny
1s the number of outputs.

e 'noise' — Inverse of the noise variance stored with the model.

® matrix — A positive semi-definite matrix of dimension Ny-by-Ny,
where Ny is the number of outputs.

Default: '[]'

Output opt

Arguments Option set containing the specified options for forecast.

Examples Create Default Options Set for Model Forecasting

Create a default options set for forecast.
opt = forecastOptions;

Specify Options for Model Forecasting

Create an options set for forecast using zero initial conditions and set
the input offset to 5.

opt = forecastOptions('InitialCondition','z', 'InputOffset',5);
Alternatively, use dot notation to set the values of opt.

opt = forecastOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;

See Also forecast | idpar
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Purpose
Syntax

Description

Definitions

Akaike Final Prediction Error for estimated model
fp = fpe(Modeli,Model2,Model3,...)

Model is the name of an idtf, idgrey, idpoly, idproc, idss, idnlarx,
idnlhw, or idnlgrey model object.

fp is returned as a row vector containing the values of the Akaike Final
Prediction Error (FPE) for the different models.

Akaike’s Final Prediction Error (FPE) criterion provides a measure of
model quality by simulating the situation where the model is tested on
a different data set. After computing several different models, you can
compare them using this criterion. According to Akaike’s theory, the
most accurate model has the smallest FPE.

Note If you use the same data set for both model estimation and
validation, the fit always improves as you increase the model order and,
therefore, the flexibility of the model structure.

Akaike’s Final Prediction Error (FPE) is defined by the following
equation:

FPE=V{1+%’]

1-9y

where Vis the loss function, d is the number of estimated parameters,
and N is the number of values in the estimation data set.

The toolbox assumes that the final prediction error is asymptotic for
d<<N and uses the following approximation to compute FPE:

FPE =V (1+244)

The loss function V is defined by the following equation:
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V =det %ie(t,GN)(a(t,eN))T

where 0p represents the estimated parameters.
References Sections 7.4 and 16.4 in Ljung (1999).

See Also aic | goodnessOfFit
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Purpose Access data for frequency response data (FRD) object

Syntax [response,freq] = frdata(sys)
[response,freq,covresp] = frdata(sys)
[response,freq,Ts,covresp] = frdata(sys,'v')
[response,freq,Ts] = frdata(sys)

Description [response,freq] = frdata(sys) returns the response data and
frequency samples of the FRD model sys. For an FRD model with Ny
outputs and Nu inputs at Nf frequencies:

® response is an Ny-by-Nu-by-Nf multidimensional array where the
(i,j) entry specifies the response from input j to output i.

e freq is a column vector of length Nf that contains the frequency
samples of the FRD model.

See the frd reference page for more information on the data format for
FRD response data.

[response,freq,covresp] = frdata(sys) also returns the
covariance covresp of the response data resp for idfrd model sys. The
covariance covresp is a 5D-array where covH(i,j,k,:,:) contains
the 2-by-2 covariance matrix of the response resp(i,j, k). The (1,1)
element is the variance of the real part, the (2,2) element the variance
of the imaginary part and the (1,2) and (2,1) elements the covariance
between the real and imaginary parts.

For SISO FRD models, the syntax

[response,freq] = frdata(sys,'v')

forces frdata to return the response data as a column vector rather
than a 3-dimensional array (see example below). Similarly

[response,freq,Ts,covresp] = frdata(sys,'v') for an IDFRD
model sys returns covresp as a 3-dimensional rather than a
5-dimensional array.

[response,freq,Ts] = frdata(sys) also returns the sample time Ts.
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Arguments

Examples

See Also
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Other properties of sys can be accessed with get or by direct
structure-like referencing (e.g., sys.Frequency).

The input argument sys to frdata must be an FRD model.

Extract Data from Frequency Response Data Model

Create a frequency response data model and extract the frequency
response data.

Create a frequency response data by computing the response of a
transfer function on a grid of frequencies.

H tf([-1.2,-2.4,-1.51,[1,20,9.1]);
w logspace(-2,3,101);
sys = frd(H,w);

sys 1s a SISO frequency response data (frd) model containing the
frequency response at 101 frequencies.

Extract the frequency response data from sys.

[response,freq] = frdata(sys);

response is a 1-by-1-by-101 array. response(1,1,k) is the complex
frequency response at the frequency freq(k).

frd | get | set | idfrd | freqresp | spectrum
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Purpose

Syntax

Description

Input
Arguments

Frequency response over grid

[H,wout] = freqresp(sys)

H = freqresp(sys,w)

H = freqresp(sys,w,units)
[H,wout,covH] = freqresp(idsys,...)

[H,wout] = freqresp(sys) returns the frequency response of the
dynamic system model sys at frequencies wout. The freqresp
command automatically determines the frequencies based on the
dynamics of sys.

H = freqresp(sys,w) returns the frequency response on the real
frequency grid specified by the vector w.

H = freqresp(sys,w,units) explicitly specifies the frequency units of
w with the string units.

[H,wout,covH] = freqresp(idsys,...) alsoreturns the covariance
coVH of the frequency response of the identified model idsys.

sys

Any dynamic system model or model array.

w

Vector of real frequencies at which to evaluate the frequency response.
Specify frequencies in units of rad/TimeUnit, where TimeUnit is the
time units specified in the TimeUnit property of sys.

units

String specifying the units of the frequencies in the input frequency
vector W. Units can take the following values:

® 'rad/TimeUnit' — radians per the time unit specified in the
TimeUnit property of sys
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Output
Arguments
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e 'cycles/TimeUnit' — cycles per the time unit specified in the
TimeUnit property of sys

® 'rad/s'
® 'Hz'

® 'kHz'
® 'MHz'
® 'GHz'
* '‘rpm'

Default: 'rad/TimeUnit'

idsys
Any identified model.

H
Array containing the frequency response values.

If sys is an individual dynamic system model having Ny outputs and
Nu inputs, H is a 3D array with dimensions Ny-by-Nu-by-Nw, where Nw
is the number of frequency points. Thus, H(:, :,k) is the response at
the frequency w(k) or wout (k).

If sys is a model array of size [Ny Nu S1 ... Sn], His an array with
dimensions Ny-by-Nu-by-Nw-by-S1-by-...-by-Sn] array.

If sys is a frequency response data model (such as frd, genfrd, or
idfrd), fregresp(sys,w) evaluates to NaN for values of w falling outside
the frequency interval defined by sys.frequency. The freqresp
command can interpolate between frequencies in sys.frequency.
However, freqresp cannot extrapolate beyond the frequency interval
defined by sys.frequency.

wout
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Definitions

Examples

Vector of frequencies corresponding to the frequency response values
in H. If you omit w from the inputs to freqresp, the command
automatically determines the frequencies of wout based on the system
dynamics. If you specify w, then wout =w

covH

Covariance of the response H. The covariance is a 5D array where
covH(i,j,k,:,:) contains the 2-by-2 covariance matrix of the response
from the ith input to the jth output at frequency w(k). The (1,1)
element of this 2-by-2 matrix is the variance of the real part of the
response. The (2,2) element is the variance of the imaginary part.

The (1,2) and (2,1) elements are the covariance between the real and
imaginary parts of the response.

Frequency Response

In continuous time, the frequency response at a frequency o is the
transfer function value at s = jo. For state-space models, this value
is given by

H(jo)=D+C(jol - A)'B

In discrete time, the frequency response is the transfer function
evaluated at points on the unit circle that correspond to the real
frequencies. freqresp maps the real frequencies w(1),..., w(N) to points

on the unit circle using the transformation z = e’ of, T, is the sample
time. The function returns the values of the transfer function at the
resulting z values. For models with unspecified sample time, freqresp
uses T, = 1.

Frequency Response

Compute the frequency response of the 2-input, 2-output system
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1
0 =
sys = s+1
s—1 1
s+2
sysil = 0;
sys22 = 1;
sys12 = tf(1,[1 1]);

sys21 = tf([1 -1],[1 2]);
sys = [sys11,sys12;sys21,sys22];

[H,wout] = freqresp(sys);

His a 2-by-2-by-45 array. Each entry H(:,:,k) in His a 2-by-2 matrix
giving the complex frequency response of all input-output pairs of sys
at the corresponding frequency wout (k). The 45 frequencies in wout are
automatically selected based on the dynamics of sys.

Response on Specified Frequency Grid

Compute the frequency response of the 2-input, 2-output system

0 -—lI
sys = . S+
5 1
s+2

on a logarithmically-spaced grid of 200 frequency points between 10
and 100 radians per second.

sys11 = 0;

sys22 = 1;

sys12 = tf(1,[1 1]);
sys21 = tf([1 -11,[1 2]);

sys = [sys11,sys12;sys21,sys22];

w = logspace(1,2,200);
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Algorithms

References

Alternatives

H = freqresp(sys,w);

His a 2-by-2-by-200 array. Each entry H(:,:,k) in H is a 2-by-2 matrix
giving the complex frequency response of all input-output pairs of sys
at the corresponding frequency w(k).

Frequency Response and Associated Covariance

Compute the frequency response and associated covariance for an
1dentified model at its peak response frequency.

load iddatail z1

model = procest(z1, 'P2UZ');

w = 4.26;

[H,~,covH] = freqresp(model, w)

For transfer functions or zero-pole-gain models, freqresp evaluates the
numerator(s) and denominator(s) at the specified frequency points.

For continuous-time state-space models (4, B, C, D), the frequency
response 1s

D+C(jo-A)'B, o =W,..., 0N

For efficiency, A 1s reduced to upper Hessenberg form and the linear
equation (jo — A)X = B is solved at each frequency point, taking
advantage of the Hessenberg structure. The reduction to Hessenberg
form provides a good compromise between efficiency and reliability. See
[1] for more details on this technique.

[1] Laub, A.J., "Efficient Multivariable Frequency Response
Computations," IEEE Transactions on Automatic Control, AC-26
(1981), pp. 407-408.

Use evalfr to evaluate the frequency response at individual
frequencies or small numbers of frequencies. freqresp is optimized for
medium-to-large vectors of frequencies.
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See Also evalfr | bode | nyquist | nichols | sigma | 1tiview | interp |
spectrum
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Purpose Select frequency points or range in FRD model
Syntax subsys = fselect(sys,fmin,fmax)
subsys = fselect(sys,index)

Description subsys fselect(sys,fmin,fmax) takes an FRD model sys and
selects the portion of the frequency response between the frequencies
fmin and fmax. The selected range [fmin,fmax] should be expressed
in the FRD model units. For an IDFRD model, the SpectrumData,
CovarianceData and NoiseCovariance values, if non-empty, are also
selected in the chosen range.

subsys = fselect(sys,index) selects the frequency points specified
by the vector of indices index. The resulting frequency grid is

sys.Frequency (index)

See Also interp | fcat | fdel | frd | idfrd
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Purpose

Syntax

Description

Examples
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Access model property values

Value = get(sys, 'PropertyName')
Struct = get(sys)

Value = get(sys, 'PropertyName') returns the current value of

the property PropertyName of the model object sys. The string
'PropertyName' can be the full property name (for example,
'UserData') or any unambiguous case-insensitive abbreviation (for
example, 'user'). See reference pages for the individual model object
types for a list of properties available for that model.

Struct = get(sys) converts the TF, SS, or ZPK object sys into a
standard MATLAB structure with the property names as field names
and the property values as field values.

Without left-side argument,

get(sys)

displays all properties of sys and their values.

Consider the discrete-time SISO transfer function defined by

h = tf(1,[1 2],0.1, 'inputname', 'voltage', 'user', 'hello"')

You can display all properties of h with

get(h)
num: {[0 11}
den: {[1 2]}
ioDelay: O
Variable: 'z’
Ts: 0.1
InputDelay: O
OutputDelay: O

InputName: {'voltage'}
OutputName: {''}
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Tips

InputGroup: [1x1 struct]
OutputGroup: [1x1 struct]
Name: "'
Notes: {}
UserData: 'hello’

or query only about the numerator and sample time values by
get(h, 'num")

ans =
[1x2 double]

and
get(h,'ts')

ans =
0.1000

Because the numerator data (num property) is always stored as a cell
array, the first command evaluates to a cell array containing the row
vector [0 1].

An alternative to the syntax
Value = get(sys, 'PropertyName')
is the structure-like referencing

Value = sys.PropertyName
For example,
sys.Ts

sys.a
sys.user
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return the values of the sample time, A matrix, and UserData property
of the (state-space) model sys.

See Also frdata | set | ssdata | tfdata | idssdata | polydata | getpvec |
getcov
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Purpose
Syntax
Description

Input
Arguments

Output
Arguments

Parameter covariance information in either raw or factored form

cov = getcov(sys,format)

cov = getcov(sys,format) returns covariance data for the parameters
of the identified model sys.

sys
Identified model.

Sys may be an array of identified models.

format

Specifies whether cov should be in the raw or factored form.
format is a string that takes the following values:

® 'value' — specifies the output as raw parameter covariance.

e 'factors' — specifies the output as the factored form of the
parameter covariance as output. The factored form of the covariance
data 1s useful when the covariance matrix is ill-conditioned.

Default: 'value'

cov
Parameter covariance information for identified model.
If format is

® 'value' — coOV is an np-by-np matrix of doubles, where np is the
number of parameters of Sys.

If a parameter is fixed, then its corresponding row and column
entries contain zeros.

For an estimated model, cov is equal to
sys.Report.Parameters.ParameterCovariance.
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If sys is a model array, then cov is a cell array of corresponding size.
Each cell of cov contains the parameter covariance information for
the corresponding model.

‘factors' — covV is a structure that stores the covariance data in
a “factored” form using the following fields:

R — usually the Cholesky factor of inverse of covariance.

= T — transformation matrix.

Free — logical vector of length np indicating if a parameter is free.
Here np is equal to the number of parameters of sys.

To calculate the covariance:

cov = getcov(sys, 'factors');

Free = cov.Free;

T = cov.T;

R = cov.R;

np = nparams(Sys);

covariance_matrix = zeros(np);
covariance_matrix(Free, Free) = T*inv(R'*R)*T';

Use this option when the covariance matrix is ill-conditioned; for
example, when rank(R) < size(R). You can often compute the
response uncertainties, such as confidence bounds on the step or
frequency response, by using the factors directly, without explicitly
forming the covariance matrix.

There 1s no numerical advantage to fetching the covariance
information in the factored form for the following cases:

= Sys is estimated using certain instrument variable methods

= the parameter covariance for sys is explicitly set using the
deprecated CovarianceMatrix model property

If sys is a model array, then cov is a structure array of corresponding
size. Each entry of cov contains the factored parameter covariance
information for the corresponding model.
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Examples

See Also

Raw Covariance

Obtain raw covariance for an identified model.

load iddatal z1i;
sys = tfest(z1,2);
cov_raw = getcov(sys);

getcov(sys) uses the default value for the format argument, value,
which returns the raw covariance data.

Factored Covariance

Obtain covariance data for an identified model in factored form.

load iddata z1;
sys = tfest(z1,2);
cov_factored = getcov(sys, 'factors');

setcov | nparams | rsample | sim | simsd | getpar
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Purpose Get input/output delay information for idnlarx model structure
Syntax DELAYS = getDelayInfo(MODEL)
DELAYS = getDelayInfo(MODEL,TYPE)

Description DELAYS = getDelayInfo(MODEL) obtains the maximum delay in each
input and output variable of an idnlarx model.

DELAYS = getDelayInfo(MODEL,TYPE) lets you choose between
obtaining maximum delays across all input and output variables or
maximum delays for each output variable individually. When delays
are obtained for each output variable individually a matrix is returned,
where each row is a vector containing n +n, maximum delays for each
output variable, and:

® n,is the number of outputs of MODEL.

® n,is the number of inputs of MODEL.

Delay information is useful for determining the number of states
in the model. For nonlinear ARX models, the states are related to
the set of delayed input and output variables that define the model
structure (regressors). For example, if an input or output variable p
has a maximum delay of D samples, then it contributes D elements
to the state vector:

p(t-1), p(t-2), ...p(t-D)

The number of states of a nonlinear ARX model equals the sum of
the maximum delays of each input and output variable. For more
information about the definition of states for idnlarx models, see
“Definition of idnlarx States” on page 2-354

Input getDelayInfo accepts the following arguments:
Arguments e MODEL: idnlarx model.

® TYPE: (Optional) Specifies whether to obtain channel delays
'channelwise' or 'all' as follows:
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Output
Arguments

Examples

= 'all': Default value. DELAYS contains the maximum delays
across each output (vector of ntn, entries, where [ny, nu] =
size (MODEL)).

= ‘'channelwise': DELAYS contains delay values separated for each
output (ny-by-(ny+nu) matrix).

DELAYS: Contains delay information in a vector of length ntn,
arranged with output channels preceding the input channels, i.e.,
[yl, y2,.., ul, u2,..].

In the following example you create a 2-output, 3-input nonlinear ARX
model, then verify the number of delays using getDelayInfo.

1 Create an idnlarx model.

M = idnlarx([2 02211 00; 10150110],...
"linear');

2 Compute the maximum delays for each output variable individually.

Del = getDelayInfo(M, 'channelwise')
Del =

2 0 2 1 0

1 0 1 5 0

The matrix Del contains the maximum delays for the first and second
output of the model M. You can interpret the contents of matrix Del
as follows:

¢ In the dynamics for the output 1 (y,) of model M, the maximum delays
for each input/output channel are as follows: y,: 2, y,: 0, u;: 2, uy:
1, u,0.
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¢ Similarly, in the dynamics for the output 2 (y,) of the model, the
maximum delays in channels y,, y,, u,, u,, uyare 1,0, 1, 5, and 0
respectively.

You can find the maximum delays for all the input and output variables
in the order (y,, ¥, u,, u,, u,) by executing the command

Del=getDelayInfo(M, 'all')

which returns

Del =

Note The maximum delay across all output equations can be obtained
by executing MaxDel = max(Del,[],1). Since input u, has 5 delays
(the 4th entry in Del, there are 5 terms corresponding to u, in the state
vector ((u,(t-1), ...us(t-5). Applying this definition to all I/O channels,
the complete state vector for model M becomes:

X(®) = [y,(t-1), y,(t-2), u,@t-1), u,(t-2), uyt-1), uy(t-2), uyt-3), uyt-4),
u,(t-5)]

See Also data2state(idnlarx) | getreg | idnlarx
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Purpose

Syntax

Description

Specific experiments from multiple-experiment data set

d1
d1

getexp(data,ExperimentNumber)
getexp(data,ExperimentName)

data is an iddata object that contains several experiments. d1
1s another iddata object containing the indicated experiment(s).
The reference can either be by ExperimentNumber, as in

d1 = getexp(data,3) or d1 = getexp(data,[4 2]); or by
ExperimentName, as in d1 = getexp(data, 'Periodi1') or

d1 = getexp(data,{'Day1', 'Day3'}).

See merge (iddata) and iddata for how to create multiple-experiment
data objects.

You can also retrieve the experiments using a fourth subscript, as in d1
= data(:,:,:,ExperimentNumber). Type help iddata/subsref for
details on this.
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Purpose

Syntax

Arguments

Description

See Also
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Values of idnlgrey model initial states

getinit(model)
getinit(model,prop)

model
Name of the idnlgrey model object.

Property
Name of the InitialStates model property field, such as 'Name"',
'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

Default: 'Value'.
getinit(model) gets the initial-state values in the 'Value' field of the

InitialStates model property.

getinit(model,prop) gets the initial-state values of the prop field
of the InitialStates model property. prop can be 'Name', 'Unit"',
'Value', 'Minimum', 'Maximum', and 'Fixed"'.

The returned values are an Nx-by-1 cell array of values, where Nx is
the number of states.

getpar | idnlgrey | setinit | setpar
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Purpose

Syntax

Description

See Also

Return @PlotOptions handle or plot options property

p = getoptions(h)
getoptions(h,propertyname)

el
1}

p getoptions(h) returns the plot options handle associated with plot
handle h. p contains all the settable options for a given response plot.

p = getoptions(h,propertyname) returns the specified options
property, propertyname, for the plot with handle h. You can use this to
interrogate a plot handle. For example,

p = getoptions(h,'Grid"')

returns 'on' if a grid is visible, and 'off' when it is not.

For a list of the properties and values available for each plot type, see
“Properties and Values Reference”.

setoptions
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Purpose

Syntax

Arguments

Description

See Also
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Parameter values and properties of idnlgrey model parameters

getpar(model)
getpar(model,prop)

model
Name of the idnlgrey model object.

Property
Name of the Parameters model property field, such as 'Name',
‘Unit', 'Value', 'Minimum', 'Maximum', or 'Fixed'.

Default: 'Value'.
getpar(model) gets the model parameter values in the 'Value' field of

the Parameters model property.

getpar(model,prop) gets the model parameter values in the prop
field of the Parameters model property. prop can be 'Name', 'Unit"',
'Value', 'Minimum', and 'Maximum'.

The returned values are an Np-by-1 cell array of values, where Np is
the number of parameters.

getinit | idnlgrey | setinit | setpar | getpvec
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Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Model parameters and associated uncertainty data

pvec = getpvec(sys)
[pvec,pvec_sd] = getpvec(sys)
[pvec,pvec_sd] = getpvec(sys, 'free')

pvec = getpvec(sys) returns a vector, pvec, containing the values of
all the parameters of the identified model sys.

[pvec,pvec_sd] = getpvec(sys) also returns the 1 standard
deviation value of the uncertainty associated with the parameters
of sys. If the model covariance information for sys is not available,
pvec_sdis [].

[pvec,pvec_sd] = getpvec(sys, 'free') returns the values and
standard deviation data for only the free parameters of sys.

sys
Identified model.

pvec
Values of the parameters of sys.

If sys is an array of models, then pvec is a cell array with parameter
value vectors corresponding to each model in sys.

pvec_sd

1 standard deviation value of the parameters of sys.

If the model covariance information for sys is not available, pvec_sd
is [].

If sys is an array of models, then pvec_sd is a cell array with standard
deviation vectors corresponding to each model in sys.
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Examples

See Also
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Obtain the parameter values for an estimated transfer function.

load iddatal z1i;
sys = tfest(z1,3);
pvec = getpvec(sys);

Obtain the parameter values and associated 1 standard deviation
values for an estimated state-space model.

load iddata2 z2;
sys = ssest(z2,3);
[pvec, pvec_sd]=getpvec(sys)

Obtain the free parameter values and associated 1 standard deviation
values for an estimated state-space model.

load iddata2 z2;
sys = ssest(z2,3);
[pvec, pvec_sd]=getpvec(sys, 'free')

setpvec | getcov | idssdata | tfdata | zpkdata
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Purpose

Syntax

Description

Input
Arguments

Regressor expressions and numerical values in nonlinear ARX model

Rs = getreg(model)

Rs = getreg(model,subset)

Rm = getreg(model,subset,data)

Rm = getreg(model,subset,data,init)

Rs = getreg(model) returns expressions for computing regressors in

the nonlinear ARX model. Rs is a cell array of strings. model is an
idnlarx object.

Rs = getreg(model,subset) returns regressor expressions for a
specified subset of regressors. subset is a string.

Rm = getreg(model,subset,data) returns regressor values as a
matrix for a specified subset of regressors.

Rm = getreg(model,subset,data,init) returns regressor values
as matrices for a specified subset of regressors. The first N rows
of each regressor matrix depend on the initial states init, where
N is the maximum delay in the regressors (see getDelayInfo). For
multiple-output models, Rm is a cell array of cell arrays.

data

iddata object containing measured data.
init

Initial conditions of your data:

e 'z' (default) specifies zero initial state.

® Real column vector containing the initial state values. input
and output data values at a time instant before the first sample
in data. To create the initial state vector from the input-output
data, use the data2state method of the idnlarx class. For
multiple-experiment data, this is a matrix where each column
specifies the initial state of the model corresponding to that
experiment.
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¢ iddata object containing input and output samples at
time instants before to the first sample in data. When the
iddata object contains more samples than the maximum
delay in the model, only the most recent samples are used.
The minimum number of samples required is equal to
max (getDelayInfo(model)).

model
iddata object representing nonlinear ARX model.

subset
String that represents a subset of all regressors:

e (Default) 'all' — All regressors.

e 'custom'—Only custom regressors.

e 'input'—Only standard regressors computed from input data.
e 'linear'—Only regressors not used in the nonlinear block.

® 'nonlinear'—Only regressors used in the nonlinear block.

Note You can use 'nl' as an abbreviation of 'nonlinear'.

e 'output'—Only regressors computed from output data.

¢ 'standard'—Only standard regressors (excluding any custom
regressors).

Output Rm

Arguments Matrix of regressor values for all or a specified subset of
regressors. Each matrix in Rm contains as many rows as there are
data samples. For a model with ny outputs, Rm is an ny-by-1 cell
array of matrices. When data contains multiple experiments,
Rm is a cell array where each element corresponds to a matrix of
regressor values for an experiment.
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Examples

See Also

How To

Rs

Regressor expressions represented as a cell array of strings. For a
model with ny outputs, Rs is an ny-by-1 cell array of cell arrays
of strings. For example, the expression 'u1(t-2)' computes the
regressor by delaying the input signal u1l by two time samples.
Similarly, the expression 'y2(t-1)' computes the regressor by
delaying the output signal y2 by one time sample.

The order of regressors in Rs corresponds to regressor indices in
the idnlarx object property model.NonlinearRegressors.

Get regressor expressions and values, and evaluate the predicted model
output:

[)
“©

o°

o°

ad

Load sample data u and y:

load twotankdata;

Ts = 0.2; % Sampling interval is 0.2 min
Create data object:

z = iddata(y,u,Ts);

Use first 1000 samples for estimation:
ze = z(1:1000);

Estimate nonlinear ARX model

model = nlarx(ze,[3 2 1]);

Get regressor expressions:

Rs = getreg(model)

Get regressor values:

Rm = getreg(model, 'all’',ze)

Evaluate model output for one-step-prediction:
Y = evaluate(model.Nonlinearity,Rm)

The previous result is equivalent to:

Y _p = predict(model,ze,1,'z")

dreg | customreg | evaluate | polyreg

“Identifying Nonlinear ARX Models”
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Purpose

Syntax

Description

Examples

2-266

Data offset and trend information

T = getTrend(data)

T = getTrend(data,0)

T = getTrend(data,1)

T = getTrend(data) constructs a TrendInfo object to store offset,

mean, or linear trend information for detrending or retrending data.
You can assign specific offset and slope values to T.

T = getTrend(data,0) computes the means of input and output
signals and stores them as InputOffset and OutputOffset properties
of T, respectively.

T = getTrend(data,1) computes a best-fit straight line for both input
and output signals and stores them as properties of T.

Compute input-output signal means, store them, and detrend the data:

% Load SISO data containing vectors u2 and y2

load dryer2

% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)

% Plot data on a time plot - it has a nonzero mean
plot(data)

% Compute the mean of the data

T = getTrend(data,0)

% Remove the mean from the data

data_d = detrend(data,T)

% Plot detrended data on the same plot

hold on

plot(data_d)

Remove a specific offset from input and output data signals:

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec



getTrend

See Also

How To

data=iddata(y2,u2,0.08)

plot(data)

% Create a TrendInfo object for storing offsets and trends
= getTrend(data)

Assign offset values to the TrendInfo object
.InputOffset=5;

.QutputOffset=5;

Subtract specific offset from the data
data_d = detrend(data,T)

% Plot detrended data on the same plot

hold on

plot(data_d)

—

— - o

o°

detrend | retrend | TrendInfo

+ “Handling Offsets and Trends in Data”
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Purpose Goodness of fit between test and reference data
Syntax fit = goodnessOfFit(x,xref,cost_func)
Description fit = goodnessOfFit(x,xref,cost_func) returns the goodness of

fit between the data matrix, X, and the reference, xref using a cost
function specified by cost_func.

Input x
Arguments Test data.

X 1s an Ns-by-N matrix, where Ns is the number of samples and N is the
number of channels.

X can also be a cell array of multiple test data sets.

X must not contain any NaN or Inf values.

xref
Reference data.
xref must be of the same size as X.

xref can also be a cell array of multiple reference sets. In this
case, each individual reference set should be of the same size as the
corresponding test data set.

xref must not contain any NaN or Inf values.

cost_func
Cost function to determine goodness of fit.

cost_func takes the following strings:

® 'MSE' — Mean square error.
2
. X — xre,
e b=
Ns-1

2-268



goodnessOfFit

Output
Arguments

fit is a scalar value.
'"NRMSE' — Normalized root mean square error.

|x(:,2) — xref (:,0)|

|x(:,7) — mean(xref (:,1))|

fit@) =1-

fit is a row vector of length Nand i = 1,...,N, where N is the
number of channels.

NRMSE costs vary between -Inf (bad fit) to 1 (perfect fit). If the
cost function is equal to zero, then X is no better than a straight line
at matching xref.

'"NMSE' — Normalized mean square error.

|x(:,2) — xref (:,0)|

|x(:, 1) — mean(xref(:,i))|2

fit@)=1-

fit is a row vector of length Nand i = 1,...,N, where N is the
number of channels.

NMSE costs vary between -Inf (bad fit) to 1 (perfect fit). If the cost
function is equal to zero, then X is no better than a straight line at
matching xref.

Goodness of fit between test and reference data.
For a single test data set and reference pair, fitisa:
e scalar if cost_func is MSE.

® row vector of length N, where N is the number of channels, if

cost_func is NRMSE or NMSE.

If x and/or xref are cell arrays, then fit is an array containing the
goodness of fit values for each test data and reference pair.
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Examples Calculate the goodness of fit between estimated output and measured
output using NRMSE measure.

load iddatail z1

sys = tfest(z1, 2);

y = sim(sys, z1.u);

yref = z1.y;

Fit = goodnessOfFit(y, yref, 'nrmse')

% Note: compare function shows the same number (in percentage); try compe

See Also compare | pe | resid | fpe | aic
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Purpose

Syntax

Description

Input
Arguments

Linear grey box model estimation

sys = greyest(data,init_sys)
Sys greyest(data,init_sys,opt)

sys = greyest(data,init_sys) estimates a linear grey box model,
SysS, using time or frequency domain data, data. The dimensions of the
inputs and outputs of data and init_sys, an idgrey model, must
match. Sys is an identified idgrey model that has the same structure
as init_sys.

sys = greyest(data,init_sys,opt) estimates a linear grey box
model using the option set, opt, to configure the estimation options.
data

Estimation data.

The dimensions of the inputs and outputs of data and init sSys must
match.

For time domain estimation, data is an iddata object containing the
input and output signal values.

For frequency domain estimation, data can be one of the following:
® recorded frequency response data (frd or idfrd)

® iddata object with its Domain property set to ' Frequency'

init_sys

Identified linear grey box model that configures the initial
parameterization of Sys.

init_sys, an idgrey model, must have the same input and output
dimensions as data.

opt

Estimation options.
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opt is an option set that specifies the following:

® estimation objective

¢ initialization choice

¢ disturbance model handling

® numerical search method to be used in estimation

Use greyestOptions to create the option set.

Output sys

Arguments Estimated linear grey box model.

Sys is an idgrey model which encapsulates the estimated linear grey
box model.

Examples Estimate Grey-Box Model

Estimate the parameters of a DC motor using the linear grey-box
framework.

Load the measured data.

load(fullfile(matlabroot, 'toolbox', 'ident',
"iddemos', ‘'data', 'dcmotordata'));
data = iddata(y, u, 0.1, 'Name', 'DC-motor');
set(data, 'InputName', 'Voltage', 'InputUnit', 'V');
set(data, 'OutputName', {'Angular position', 'Angular velocity'});
set(data, 'OutputUnit', {'rad', 'rad/s'});
set(data, 'Tstart', 0, 'TimeUnit', 's');

data is an iddata object containing the measured data for the outputs,

the angular position and the angular velocity, and the input, the driving
voltage.

Create a grey-box model representing the dynamics of the DC motor.
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For this example, choose the angular position (rad) and the angular
velocity (rad/s) of the motor as its outputs and the driving voltage (V) as
the input. Set up a linear state-space structure of the following form:

0 1 0
x(t) = 0 1 x(t) + G u(t)
T T

10
() = { 0 Jx(t)

T is the time-constant of the motor in seconds and G is the static gain
from the input to the angular velocity in rad/(V*s) .

G = 0.25;
tau = 1;

init_sys = idgrey('motor',tau,'cd',G,0);

The governing equations in state-space form are represented in the
MATLAB file motor.m. To view the contents of this file, enter edit
motor.m at the MATLAB command prompt.

In this example, we treat G as a known quantity that is provided to
motor.m as an optional argument. T is treated as a free estimation
parameter.

init_sys is an idgrey model associated with motor.m.
Estimate t.
sys = greyest(data,init_sys);

sys is an idgrey model containing the estimated value of .

To obtain the estimated parameter values associated with sys, use
getpvec(sys).
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Analyze the result.

opt = compareOptions('InitialCondition', 'zero');
compare(data,sys,Inf,opt)

BN R (==

u Figure 1: Compare plot: simulated response
&‘5 e S {ﬂ-? lE‘

OQutput: | Angular posi.. *

Time Response Comparison . .

10 T T T T T T

System Fit %
sys 98.35

A plitude

o 5 10 15 20 25 30 35
Time (seconds)

sys provides a 98.35% fit for the angular position and an 84.42% fit for
the angular velocity.

See Also idgrey | greyestOptions | iddata | idfrd | ssest | idnlgrey
| pem

Related e “Estimate Model Using Zero/Pole/Gain Parameters”

Examples
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Purpose

Syntax

Description

Input
Arguments

Option set for greyest

opt = greyestOptions

opt = greyestOptions(Name,Value)
opt = greyestOptions creates the default options set for greyest.
opt = greyestOptions(Name,Value) creates an option set with the

options specified by one or more Name ,Value pair arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuel,...,NameN,ValueN.

InitialState
Specify how initial states are handled during estimation.

InitialState takes one of the following strings:

¢ 'model' — The initial state is parameterized by the ODE file used
by the idgrey model. The ODE file must return 6 or more output
arguments.

e 'zero' — The initial state is set to zero. Any values returned by
the ODE file are ignored.

e 'estimate' — The initial state is treated as an independent
estimation parameter.

® 'backcast' — The initial state is estimated using the best least
squares fit.

e 'auto' — The software chooses the method to handle initial states
based on the estimation data.
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vector of doubles — Specify a column vector of length Nx, where Nx is
the number of states. For multi-experiment data, specify a matrix
with Ne columns, where Ne is the number of experiments. The
specified values are treated as fixed values during the estimation
process.

Default: 'auto'

DisturbanceModel

Specify how the disturbance component (K) is handled during
estimation.

DisturbanceModel takes one of the following strings:

'model' — K values are parameterized by the ODE file used by
the idgrey model. The ODE file must return 5 or more output
arguments.

'fixed' — The value of the k property of the idgrey model is
considered to be fixed to its original value.

'none' — K is fixed to zero. Any values returned by the ODE file
are ignored.

'estimate' — K is treated as an independent estimation parameter.

'auto' — The software chooses the method to handle how the
disturbance component is handled during estimation. The software
uses the 'model' method if the ODE file returns 5 or more output
arguments with a finite value for K. Else, the software uses the
'fixed' method.

Note Noise model cannot be estimated using frequency domain data.

Default: 'auto'

Focus
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Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus can take the following values:

e 'simulation' — Estimates the model using the frequency weighting
of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

This method provides a stable model.

® 'prediction' — Same as 'simulation', except that it does not
enforce the stability of the resulting model.

® 'stability' — Same as 'prediction' but with model stability
enforced.

e Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[wil,wih;w21,w2h;w31,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

e SISO filter — Enter any SISO linear filter in any of the following
ways:

= A single-input-single-output (SISO) linear system.

= The {A,B,C,D} format, which specifies the state-space matrices
of the filter.

= The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function
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This calculates the weighting function as a product of the filter and
the input spectrum to estimate the transfer function. To obtain a
good model fit for a specific frequency range, you must choose the
filter with a passband in this range. The estimation result is the
same if you first prefilter the data using idfilt.

® Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same size
as length of the frequency vector of the data set, Data.Frequency.
Each input and output response in the data is multiplied by the
corresponding weight at that frequency.

Default: 'prediction'

EstCovar

Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

Display
Specifies whether estimation progress should be displayed.
Display requires one of the following strings:

e 'on' — Information on model structure and estimation results are
displayed in a progress viewer window

e 'off' — No progress or results information is displayed
Default: 'off'

InputOffset

Removes offset from time domain input data during estimation.



greyestOptions

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu 1s the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

OvutputOffset
Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify QutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments. Each entry specified by OutputOffset is subtracted
from the corresponding output data.

Default: []

OutputWeight

Specifies criterion used during minimization.

OutputWeight can have the following values:

® 'noise' — Minimize det(E’* E) , where E represents the prediction
error. This is the optimal choice in a statistical sense and leads to
the maximum likelihood estimates in case nothing is known about

the variance of the noise. It uses the inverse of the estimated noise
variance as the weighting function.
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® positive semi-definite symmetric matrix (W) — Minimize the trace
of the weighted prediction error matrix trace (E'*E*W), where E is
the matrix of prediction errors, with one column for each output,
and W is the positive semi-definite symmetric matrix of size equal to
the number of outputs. Use W to specify the relative importance of
outputs in multiple-input multiple-output models, or the reliability of
corresponding data.

This option is relevant only for multi-input, multi-output models.
e [] — The software chooses between the 'noise' or using the identity
matrix for W.

Default: []

SearchMethod

Search method used for iterative parameter estimation.
SearchMethod is a string that can take the following values:
® gn — The subspace Gauss-Newton direction.

® gna — An adaptive version of subspace Gauss-Newton approach,
suggested by Wills and Ninness [1].

e 1m — Uses the Levenberg-Marquardt method.

® 1sgnonlin — Uses the trust region reflective algorithm. Requires
Optimization Toolbox software.

® grad — The steepest descent gradient search method.

® auto — A choice among the above is made in the algorithm.
The descent direction is calculated using gn, gna, 1m and grad
successively, in that order, at each iteration until a sufficient
reduction in error is achieved.

Default: 'auto'

SearchOption

2-280



greyestOptions

SearchOption is an options set for the search algorithm with the fields:

SearchMéﬁmdhOption

gn,gna,ly
grad
and
auto

n,e Tolerance — Minimum percentage difference (divided

by 100) between the current value of the loss function
and its expected improvement after the next iteration.
When the percentage of expected improvement is less
than Tolerance, the iterations are stopped. The estimate
of the expected loss-function improvement at the next
iteration is made based on the Gauss-Newton vector
computed for the current parameter value.

Default: 0.01

MaxIter — Maximum number of iterations during
loss-function minimization. The iterations stop when
MaxIter is reached or another stopping criterion is
satisfied, such as Tolerance.

Setting MaxIter = 0 returns the result of the startup
procedure.

Use sys.Report.Termination.Iterations to get the
actual number of iterations during an estimation, where
sys 1s an idtf model.

Default: 20

e Advanced — Search settings:

= GnPinvConst — Singular values of
the Jacobian that are smaller than
GnPinvConst*max(size(J)*norm(J) *eps are
discarded when computing the search direction and
SearchMethod is 'gn'.
GnPinvConst must be a positive real value.

Default: 10000
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Seurchl*&lmdhOption

= InitGnaTol — Initial value of gamma when
SearchMethod is 'gna’.

Default: .0001

= LMStartValue — Starting value of search-direction
length d in the Levenberg-Marquardt method.
Applicable when SearchMethod is '1m'.

Default: .001

= LMStep — Size of the Levenberg-Marquardt step.
The next value of the search-direction length d in
the Levenberg-Marquardt method 1s LMStep times
the previous one. Applicable when SearchMethod is
“Im'.

Default: 2

= MaxBisections — Maximum number of bisections
used by the line search along the search direction.

Default: 25

= MaxFunEvals — Iterations are stopped if the number
of calls to the model file exceeds this value.

MaxFunEvals must be a positive integer value.
Default: Inf

= MinParChange — Smallest parameter update allowed
per iteration

MinParChange must be a positive, real value.
Default: 0

= RellImprovement — Iterations are stopped if the
relative improvement of the criterion function is less
than RelImprovement.
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Seurchl*&lmdhOption

RelImprovement must be a positive integer value.
Default: 0

= StepReduction — Suggested parameter update is
reduced by the factor StepReduction after each try
until either MaxBisections tries are completed or a
lower value of the criterion function is obtained.

StepReduction must be a positive, real value that is
greater than 1.

Default: 2

1sgnonl

irm TolFun — Termination tolerance on the loss function

that the software minimizes to determine the estimated
parameter values.

The value of TolFun is the same as that of
sys.SearchOption.Advanced.TolFun

Default: le-5

TolX — Termination tolerance on the estimated
parameter values.

The value of TolX is the same as that of
sys.SearchOption.Advanced.TolX.

Default: le-6

MaxIter — Maximum number of iterations during
loss-function minimization. The iterations stop when
MaxIter is reached or another stopping criterion is
satisfied, such as TolFun etc..

The value of MaxIter is the same as that of
sys.SearchOption.Advanced.MaxIter

Default: 20

e Advanced — Options set for 1sqnonlin.
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Searchl*&lmdhOption

For more information, see “Optimization Options”.

Use optimset('lsgnonlin') to create an options set
for 1sqnonlin and then modify it to specify its various
options.

Advanced
Advanced is a structure with the following fields:

® ErrorThreshold — Specifies when to adjust the weight of large
errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the criteria. The standard deviation
1s estimated robustly as the median of the absolute deviations from
the median and divided by 0.7. (See the section about choosing

a robust norm in the chapter “Computing the Estimate” of [2].)
ErrorThreshold = 0 disables robustification and leads to a purely
quadratic criterion. When estimating with frequency-domain data,
ErrorThreshold is set to zero.

Default: 0

MaxSize — Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive integer.

Default: 250000

StabilityThreshold — Specifies thresholds for stability tests.
StabilityThreshold is a structure with the following fields:

= s — Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0
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= z — Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

® AutoInitThreshold — Specifies when to automatically estimate
the initial conditions.

When InitialCondition = 'Auto', the initial condition is
estimated when the ratio of the prediction-error norm with a zero
initial condition to the norm with an estimated initial condition
exceeds AutoInitialState.

Default: 1.05

Output opt

Arguments Option set containing the specified options for greyest.

Examples Create Default Options Set for Linear Grey Box Estimation
Create a default options set for greyest.
opt = greyestOptions;

Specify Options for Linear Grey Box Estimation

Create an options set for greyest using the 'backcast' algorithm to
initialize the state and set the Display to 'on'.

opt = greyestOptions('InitialState’', 'backcast', 'Display','on');

Alternatively, use dot notation to set the values of opt.
opt = greyestOptions;

opt.InitialState = 'backcast’;
opt.Display = 'on';
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References

See Also
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Purpose

Syntax

Description

See Also

True for linear model with time delays

B = hasdelay(sys)
B = hasdelay(sys, 'elem')
B = hasdelay(sys) returns 1 (true) if the model sys has input delays,

output delays, or I/O delays, and 0 (false) otherwise. If sys is a model
array, then B is true if least one model in sys has delays.

B = hasdelay(sys, 'elem') returns a logical array of the same size as
the model array sys. The logical array indicates which models in sys
have delays.

absorbDelay | totaldelay
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Purpose

Syntax

Description
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Multiple-output ARX polynomials, impulse response, or step response
model

Note idarx will be removed in a future release. Use idpoly instead.

=
|

= idarx(A,B,Ts)
idarx(A,B,Ts, 'Propertyl',Valuel,...,, 'PropertyN',ValueN)

3
1}

idarx creates an object containing parameters that describe the general
multiple-input, multiple-output model structure of ARX type.

Y&+ A1yt -1+ Aoyt —2)+...+ Ayt —na) =
Bou(t) + Bju(t —1) + ...+ B,y u(t —nb) + e(t)

Here A, and B, are matrices of dimensions ny-by-ny and ny-by-nu,
respectively. (ny is the number of outputs, that is, the dimension of the
vector y(f), and nu is the number of inputs.)

The arguments A and B are 3-D arrays that contain the A matrices and
the B matrices of the model in the following way.

A is an ny-by-ny-by-(na+1) array such that:

A(:,:,kt1) = Ak
A(:,:,1) = eye(ny)

Similarly B is an ny-by-nu-by-(nb+1) array with:
B(:,:,k+1) = Bk

Note that A always starts with the identity matrix, and that delays in
the model are defined by setting the corresponding leading entries in B
to zero. For a multivariate time series, take B = [].
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idarx
Properties

The optional property NoiseVariance sets the covariance matrix of
the driving noise source e(f) in the model above. The default value is
the identity matrix.

The argument Ts is the sampling interval. Note that continuous-time
models (Ts = 0) are not supported.

The use of idarx is twofold. You can use it to create models that are
simulated (using sim) or analyzed (using bode, pzmap, etc.). You can
also use it to define initial value models that are further adjusted to
data (using arx). The free parameters in the structure are consistent
with the structure of A and B; that is, leading zeros in the rows of B are
regarded as fixed delays, and trailing zeros in A and B are regarded as a
definition of lower-order polynomials. These zeros are fixed, while all
other parameters are free.

For a model with one output, ARX models can be described both as
idarx and idpoly models. The internal representation is different,
however.

e A B: The A and B polynomials as 3-D arrays, described above.

e dA, dB: The standard deviations of A and B. Same format as A and B.
Cannot be set.

® na, nb, nk: The orders and delays of the model. na is an ny-by-ny
matrix whose i-j entry is the order of the polynomial corresponding to
the i-j entry of A. Similarly nb is an ny-by-nu matrix with the orders
of B. nk is also an ny-by-nu matrix, whose i-j entry is the delay from
input j to output i, that is, the number of leading zeros in the i-j
entry of B.

® InitialState: This describes how the initial state (initial values in
filtering, etc.) should be handled. For time-domain applications,
this is typically handled by starting the filtering when all data are
available. For frequency-domain data, you must estimate initial
states. The possible values of InitialState are 'zero', 'estimate’,
and 'auto' (which makes a data-dependent choice between zero
and estimate).
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idarx
Definition
of States

Examples

How To
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You can set and retrieve all properties either with the set and get
commands or by subscripts. Autofill applies to all properties and values,
and they are case insensitive.

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops idarx.

The states of an idarx model are defined as those corresponding to the
model obtained by converting them to the state-space format using the
idss command. For example, if you have an idarx model defined by
m1 = idarx(A,B, 1), then the initial states of this model correspond to
those of m2 = idss(m1). The concept of states is useful for functions
such as sim, predict, compare and findstates

Simulate a second-order ARX model with one input and two outputs,
and then estimate a model using the simulated data.

A = zeros(2,2,3);

B = zeros(2,1,3)

A(:,:,1) =eye(2);

A(:,:,2) = [-1.50.1;-0.2 1.5];
A(:,:,3) = [0.7 -0.3;0.1 0.7];
B(:,:,2) = [1;-1];

B(:,:,3) = [0.5;1.2];

mO0 = idarx(A,B,1);

u = iddata([],idinput(300));

e = iddata([],randn(300,2));

y = sim(mO,[u e]);

m = arx([y ul,[[2 2;2 2],[2;2],[1;1]]);
arx | arxdata | | idpoly

+ “Using Linear Model for Nonlinear ARX Estimation”
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Purpose

Syntax

Description

Arguments

Time- or frequency-domain data

data = iddata(y,[]1,Ts)

data = iddata(y,u,Ts)

data = iddata(y,u,Ts, 'Frequency',W)

data = iddata(y,u,Ts,'P1',V1,...,'PN',VN)
data = iddata(idfrd_object)

data = iddata(y,[],Ts) creates an iddata object for time-series data,
containing a time-domain output signal y and an empty input signal
[1, respectively. Ts specifies the sampling interval of the experimental
data.

data = iddata(y,u,Ts) creates an iddata object containing a
time-domain output signal y and input signal u, respectively. Ts
specifies the sampling interval of the experimental data.

data = iddata(y,u,Ts, 'Frequency',W) creates an iddata object
containing a frequency-domain output signal y and input signal u,
respectively.Ts specifies the sampling interval of the experimental data.
W specifies the iddata property 'frequency' as a vector of frequencies.

data = iddata(y,u,Ts,'P1',V1,...,'PN',VN) creates an iddata
object containing a time-domain or frequency-domain output signal y
and input signal u, respectively. Ts specifies the sampling interval of
the experimental data. 'P1',V1,...,'PN' VN are property-value pairs,
as described in “Properties” on page 2-295.

data = iddata(idfrd_object) transforms an idfrd object to a
frequency-domain iddata object.

y
Name of MATLAB variable that represents the output

signal from a system. Sets the OutputData iddata property.
For a single-output system, this is a column vector. For a
multiple-output system with N, output channels and N time
samples, this is an N;-by-N, matrix.
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Note Output data must be in the same domain as input data.

Name of MATLAB variable that represents the input signal to a
system. Sets the InputData iddata property. For a single-input
system, this is a column vector. For a multiple-output system
with N, output channels and N, time samples, this is an N;,-by-N,
matrix.

Note Input data must be in the same domain as output data.

Ts
Time interval between successive data samples in seconds.
Default value is 1. For continuous-time data in the frequency
domain, set Ts to 0.

'"P1',V1,...,"PN',VUN
Pairs of iddata property names and property values.

idfrd_object
Name of idfrd data object.
Constructor Requirements for Constructing an iddata Object

To construct an iddata object, you must have already imported data
into the MATLAB workspace, as described in “Time-Domain Data
Representation”.

2-292



iddata

Constructing an iddata Object for Time-Domain Data

Use the following syntax to create a time-domain iddata object data:
data = iddata(y,u,Ts)

You can also specify additional properties, as follows:

data = iddata(y,u,Ts, 'Property1',Valuel,..., 'PropertyN',ValueN)
For more information about accessing object properties, see “Properties”
on page 2-295.

Here, Ts is the sampling time, or the time interval, between successive
data samples:

¢ For uniformly sampled data, Ts is a scalar value equal to the
sampling interval of your experiment.

¢ For nonuniformly sampled data, Ts is [], and the value of the
SamplingInstants property is a column vector containing individual
time values. For example:

data = iddata(y,u,[],'SamplingInstants',TimeVector)

where TimeVector represents a vector of time values.

Note You can modify the property SamplingInstants by setting it
to a new vector with the length equal to the number of data samples.

The default time unit is seconds, but you can specify any unit string
using the TimeUnit property. For more information about iddata
time properties, see “Modifying Time and Frequency Vectors”.
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To represent time-series data, use the following syntax:

ts_data = iddata(y,[]1,Ts)

where y is the output data, [] indicates empty input data, and Ts
is the sampling interval.

The following example shows how to create an iddata object using
single-input/single-output (SISO) data from dryer2.mat. The input and
output each contain 1000 samples with the sampling interval of 0.08
second.

load dryer2 % Load input u2 and output y2.
data = iddata(y2,u2,0.08) % Create iddata object.

MATLAB returns the following output:

Time domain data set with 1000 samples.
Sampling interval: 0.08

Outputs Unit (if specified)
y1

Inputs Unit (if specified)
ut

The default channel name 'y1' is assigned to the first and only output
channel. When y2 contains several channels, the channels are assigned
default names 'y1','y2','y2',...,'yn'. Similarly, the default
channel name 'u1' is assigned to the first and only input channel. For
more information about naming channels, see “Naming, Adding, and
Removing Data Channels”.
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Properties

Constructing an iddata Object for Frequency-Domain Data

Frequency-domain data is the Fourier transform of the input and output
signals at specific frequency values. To represent frequency-domain
data, use the following syntax to create the iddata object:

data = iddata(y,u,Ts, 'Frequency',w)

'Frequency' is an iddata property that specifies the frequency values
w, where w is the frequency column vector that defines the frequencies
at which the Fourier transform values of y and u are computed. Ts is
the time interval between successive data samples in seconds for the
original time-domain data. w, y, and u have the same number of rows.

Note You must specify the frequency vector for frequency-domain data.

For more information about iddata time and frequency properties, see
“Modifying Time and Frequency Vectors”.

To specify a continuous-time system, set Ts to 0.

You can specify additional properties when you create the iddata
object, as follows:

data = iddata(y,u,Ts, 'Propertyl1',Valuel,..., 'PropertyN',ValueN)

For more information about accessing object properties, see “Properties”
on page 2-295.

After creating the object, you can use get or dot notation to access the
object property values.
Use set or dot notation to set a property of an existing object.

The following table describes iddata object properties and their
values. These properties are specified as property-value arguments
'P1',V1,...,'PN',VN in the iddata constructor, or you can set them
using the set command or dot notation. In the list below, N denotes
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the number of data samples in the input and output signals, ny is the
number of output channels, nu is the number of input channels, and
Ne is the number of experiments.

Tip Property names are not case sensitive. You do not need to type the
entire property name. However, the portion you enter must by enough
to uniquely identify the property.

Property Name Description Value
Domain Specifies whether the data ® 'Frequency' —
is in the time domain or Frequency-domain data.
frequency domain. o 'Time' (Default) —
Time-domain data.
ExperimentName Name of each data set For Ne experiments, a
contained in the iddata 1-by-Ne cell array of strings.
object. Each cell contains the
name of the corresponding
experiment. Default names
are {'Exp1', 'Exp2',...}.
Frequency (Frequency-domain data For a single experiment, this
only) Frequency values is an N-by-1 vector. For Ne
for defining the Fourier experiments, a 1-by-Ne cell
Transforms of the signals. array and each cell contains
the frequencies of the
corresponding experiment.
InputData Name of MATLAB variable For nu input channels and
that stores the input signal | N data samples, this is an
to a system. N-by-nu matrix.
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Property Name

Description

Value

InputName Specifies the names of Cell array of length
individual input channels. nu-by-1 contains the
name string of each input
channel. Default names are
{'ut';'u2';...}.
InputUnit Specifies the units of each Cell array of length nu-by-1.
input channel. Each cell contains a string
that specifies the units of
each input channel.
InterSample Specifies the behavior of For a single experiment:

the input signals between
samples for transformations
between discrete-time and
continuous-time.

¢ zoh— (Default)
Zero-order hold
maintains a
piecewise-contant input
signal between samples.

e foh— First-order
hold maintains a
piecewise-linear input
signal between samples.

* pl— Band-limited
behavior specifies that
the continuous-time
input signal has zero
power above the Nyquist
frequency.

For Ne experiments,
InterSample is an nu-by-Ne
cell array. Each cell
contains one of these values
corresponding to each
experiment.
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Property Name

Description

Value

Name Name of the data set. Text string.

Notes Comments about the data Text string.
set.

OutputData Name of MATLAB variable | For ny output channels and
that stores the output signal | N samples, this is an N-by-ny
from a system. matrix.

OutputName For a multiple-output Cell array of length
system, specifies the ny-by-1 contains the name
names of individual output string of each output
channels. channel. Default names are

{'y1';'y2';...}

OutputUnit Specifies the units of each For ny output channels, a

output channel. cell array of length ny-by-1.
Each cell contains a string
that specifies the units of
the corresponding output
channel.

Period Period of the input signal. (Default) For a nonperiodic

signal, set to inf. For a
multiple-input signal, this
is an nu-by-1 vector and
the kth entry contains the
period of the kth input.
For Ne experiments, this
is a 1-by-Ne cell array and
each cell contains a scalar
or vector of periods for the
corresponding experiment.
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Property Name

Description

Value

SamplingInstants

(Time-domain data only)
The time values in the time
vector calculated from the
properties Tstart and Ts.

For a single experiment,
this is an N-by-1 vector.
For Ne experiments, this
is a 1-by-Ne cell array
and each cell contains the
sampling instants of the
corresponding experiment.

TimeUnit

(Time-domain data only)
Time unit.

A string that specifies the
time unit for the time
vector. Specify TimeUnit
as one of the following:

‘nanoseconds','microseconds','milli

(default),
‘minutes’','hours’,
‘days', 'weeks', 'months'’
or 'years'.

Ts

Time interval between
successive data samples

in seconds. Must be
specified for both time-

and frequency-domain data.
For frequency-domain, it

is used to compute Fourier
transforms of the signals
as discrete-time Fourier
transforms (DTFT) with the
indicated sampling interval.

Note Your data must be
uniformly sampled.

Default value is 1. For
continuous-time data in
the frequency domain,

set to 0; the inputs and
outputs are interpreted as
continuous-time Fourier
transforms of the signals.
Note that Ts is essential also
for frequency-domain data,
for proper interpretation of
how the Fourier transforms
were computed: They are
interpreted as discrete-time
Fourier transforms

(DTFT) with the indicated
sampling interval.. For
multiple-experiment data,
Ts is a 1-by-Ne cell array
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Property Name

Description

Value

and each cell contains the
sampling interval of the
corresponding experiment.

Tstart

(Time-domain data only)
Specifies the start time of
the time vector.

For a single experiment,
this is a scalar. For Ne
experiments, Tstart is a
1-by-Ne cell array and each
cell contains the starting
time of the corresponding
experiment.

FrequencyUnit

(Frequency-domain data
only) Frequency unit.

Specifies the units of the
frequency vector (see
Frequency). Specify

as one of the following:
‘rad/TimeUnit',
‘cycles/TimeUnit'
'‘rad/s', 'Hz', 'kHz',
‘MHz', 'GHz', or 'rpm'.
The units 'rad/TimeUnit'
and 'cycles/TimeUnit'
are relative to the time
units specified in the
TimeUnitproperty. Setting
FrequencyUnit does not
change the frequency
vector. To convert the
units and automatically
scale frequency points, use
chgFrequnit.

UserData

Additional comments.

Text string.
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To view the properties, use the get command. For example:

load dryer2 % Load input u2 and output y2
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data = iddata(y2,u2,0.08); % Create iddata object
get(data) % Get property values of data

You can specify properties when you create an iddata object using the
constructor syntax:

data = iddata(y,u,Ts, 'Propertyl',Valuel,..., 'PropertyN',ValueN)

To change property values for an existing iddata object, use the set
command or dot notation. For example, to change the sampling interval
to 0.05, type the following at the prompt:

set(data, 'Ts',0.05)
or equivalently:
data.ts = 0.05

Property names are not case sensitive. You do not need to type the
entire property name if the first few letters uniquely identify the

property.

Tip You can use data.y as an alternative to data.OutputData to access
the output values, or use data.u as an alternative to data.InputData
to access the input values.

An iddata object containing frequency-domain data includes
frequency-specific properties, such as Frequency for the frequency
vector and Units for frequency units (instead of Tstart and
SamplingIntervals). For example:

% Load input u2 and output y2
load dryer2;
% Create iddata object
data = iddata(y2,u2,0.08);
% Take the Fourier transform of the data
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% transforming it to frequency domain
data = fft(data)
% Get property values of data

get(data)
See Also advice | detrend | fcat | getexp | idfilt | idfrd | plot | resample
| size
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Purpose

Syntax

Description

Input
Arguments

Examples

See Also

Open System Identification Tool GUI

ident
ident(session,path)
ident opens the System Identification Tool GUI.

ident(session,path) opens the saved session session in the System
Identification Tool GUI. path specifies the location of this file. Omit
path when the session file is on MATLABPATH.

You can also open the System Identification Tool interactively. On the
Apps tab of the MATLAB desktop, in the Apps section, click System
Identification.

session

Session file to be opened using the System Identification Tool GUI.

You create a session file by saving a running session of the GUI.
session contains the set of data objects, models and layout settings in
use at the time of saving. If the GUI is already open, ident (session)
merges the contents of the new session file with those already present
in the GUL

path
Location of session file.

You do not need to specify path if session is on the MATLAB path.

Open a saved session iddatai:
ident('iddatal.sid')
Open a saved session mydata in a specified folder:

ident('mydata.sid', '\matlab\data\cdplayer\')

midprefs
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How To + “Working with the System Identification Tool GUI”
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Purpose
Syntax

Description

Set System Identification Toolbox preferences
identpref

identpref opens a Graphical User Interface (GUI) which allows you to
change the System Identification Toolbox preferences. Preferences set
in this GUI affect future plots only (existing plots are not altered).

Your preferences are stored to disk (in a system-dependent location)
and will be automatically reloaded in future MATLAB sessions using
the System Identification Toolbox software.
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Purpose

Syntax

Description

2-306

Filter data using user-defined passbands, general filters, or Butterworth
filters

Zf = idfilt(z,filter)
Zf = idfilt(z,filter,causality)
Zf = idfilt(Z,filter,'FilterOrder',NF)

Z is the data, defined as an iddata object. Zf contains the filtered data
as an iddata object. The filter can be defined in three ways:

® As an explicit system that defines the filter,
filter = idm or filter = {num,den} or filter = {A,B,C,D}

idm can be any SISO idmodel or LTI model object. Alternatively the
filter can be defined as a cell array {A,B,C,D} of SISO state-space
matrices or as a cell array {num,den} of numerator/denominator
filter coefficients.

® As a vector or matrix that defines one or several passbands,
filter=[[wp1l,wp1h];[ wp2l,wp2h]; ....;[wpnl,wpnh]]

The matrix is n-by-2, where each row defines a passband in rad/s. A
filter is constructed that gives the union of these passbands. For
time-domain data, it is computed as cascaded Butterworth filters or
order NF. The default value of NF is 5.

For example, to define a stopband between ws1 and ws2, use
filter = [0 ws1; ws2,Nyqf]

where Nyqf is the Nyquist frequency.

¢ For frequency-domain data, only the frequency response of the filter
can be specified:

filter = Wf
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Algorithms

References

See Also

Here Wf is a vector of possibly complex values that define the filter’s
frequency response, so that the inputs and outputs at frequency
Z.Frequency (kf) are multiplied by Wf (kf). Wf is a column vector
of length = number of frequencies in Z. If the data object has several
experiments, W is a cell array of length = # of experiments in Z.

For time-domain data, the filtering is carried out in the time domain
as causal filtering as default. This corresponds to a last argument
causality = 'causal'. With causality = 'noncausal', a
noncausal, zero-phase filter is used for the filtering (corresponding to
filtfilt in the Signal Processing Toolbox product).

For frequency-domain data, the signals are multiplied by the frequency
response of the filter. With the filters defined as passband, this gives
ideal, zero-phase filtering (“brickwall filters”). Frequencies that have
been assigned zero weight by the filter (outside the passband, or via the
frequency response) are removed from the iddata object Zf.

It 1s common practice in identification to select a frequency band where
the fit between model and data is concentrated. Often this corresponds
to bandpass filtering with a passband over the interesting breakpoints

in a Bode diagram. For identification where a disturbance model is also
estimated, it is better to achieve the desired estimation result by using

the property 'Focus' than just to prefilter the data. The proper values
for 'Focus' are the same as the argument filter in idfilt.

The Butterworth filter is the same as butter in the Signal Processing
Toolbox product. Also, the zero-phase filter is equivalent to filtfilt
in that toolbox.

Ljung (1999), Chapter 14.

iddata | resample
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Purpose

Syntax

Description
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Frequency-response data or model

h = idfrd(Response,Freq,Ts)

h = idfrd(Response,Freq,Ts,...
'CovarianceData',Covariance, 'SpectrumData’',Spec,...
'NoiseCovariance',Speccov)

h = idfrd(Response,Freq,Ts,...

'P1',V1,'PN',VN)

h = idfrd(mod)

h = idfrd(mod,Freqgs)

h = idfrd(Response,Freq,Ts) constructs an idfrd object that stores
the frequency response Response of a linear system at frequency values
Freq. Ts is the sampling time interval. For a continuous-time system,
set Ts=0.

h = idfrd(Response,Freq,Ts,...
'CovarianceData',Covariance, 'SpectrumbData’',Spec,...
'NoiseCovariance',Speccov) also stores the uncertainty of the
response Covariance, the spectrum of the additive disturbance (noise)
Spec, and the covariance of the noise Speccov.

h = idfrd(Response,Freq,Ts,...

"P1',V1,'PN',VN) constructs an idfrd object that stores a
frequency-response model with properties specified by the idfrd model
property-value pairs.

h = idfrd(mod) converts a System Identification Toolbox or Control
System Toolbox™ linear model to frequency-response data at default
frequencies, including the output noise spectra and their covariance.

h = idfrd(mod,Freqs) converts a System Identification Toolbox or
Control System Toolbox linear model to frequency-response data at
frequencies Fregs.

For a model

y(t) = G(Qu(t) + H(q)e(t)
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stores the transfer function estimate G(eiw ) , as well as the spectrum of
the additive noise (@, at the output

O, (0) = AT‘H(e i“’T)f

where 1 is the estimated variance of e(f), and T is the sampling interval.

Creating idfrd from Given Responses

Response is a 3-D array of dimension ny-by-nu-by-Nf, with ny being
the number of outputs, nu the number of inputs, and Nf the number of
frequencies (that is, the length of Freqs). Response (ky, ku,kf) is thus
the complex-valued frequency response from input ku to output ky at
frequency w=Freqs (kf). When defining the response of a SISO system,
Response can be given as a vector.

Fregs is a column vector of length Nf containing the frequencies of the
response.

Ts is the sampling interval. Ts = 0 means a continuous-time model.

Covariance is a 5-D array containing the covariance of the frequency
response. It has dimension ny-by-nu-by-Nf-by-2-by-2. The structure is
such that Covariance (ky,ku,kf,:,:) is the 2-by-2 covariance matrix
of the response Response (ky,ku, kf). The 1-1 element is the variance
of the real part, the 2-2 element is the variance of the imaginary part,
and the 1-2 and 2-1 elements are the covariance between the real and
imaginary parts. squeeze (Covariance (ky,ku,kf,:,:)) thus gives the
covariance matrix of the corresponding response.

The format for spectrum information is as follows:

spec is a 3-D array of dimension ny-by-ny-by-Nf, such that
spec(ky1,ky2,kf) is the cross spectrum between the noise at output
ky1 and the noise at output ky2, at frequency Freqs (kf). When ky1 =
ky2 the (power) spectrum of the noise at output ky1 is thus obtained.
For a single-output model, spec can be given as a vector.
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speccov 1s a 3-D array of dimension ny-by-ny-by-Nf, such that
speccov(ky1,ky1,kf) is the variance of the corresponding power
spectrum.

If only SpectrumData is to be packaged in the idfrd object, set
Response = [].

Creating idfrd from a Given Model
idfrd can also be computed from a given linear identified model, mod.

If the frequencies Freqgs are not specified, a default choice is made based
on the dynamics of the model mod.

The estimated covariances are computed using the Gauss approximation
formula from the uncertainty information in mod. For grey-box models
(idgrey), numerical differentiation is applied. The step sizes for the
numerical derivatives are determined by nuderst.

Intersample behavior: For discrete-time frequency response data
(Ts>0), you can also specify the intersample behavior of the input signal
that was in effect when the samples were collected originally from an
experiment. To specify the intersample behavior, use:

mf = idfrd(Response,Freq,Ts, 'InterSample','zoh');

For multi-input systems, specify the intersample behavior using an
Nu-by-1 cell array, where Nu is the number of inputs. The InterSample
property is irrelevant for continuous-time data.

Frequency responses for submodels can be obtained by the standard
subreferencing, h = idfrd(m(2,3)). h = idfrd(m(:,[])) gives an h
that just contains SpectrumData.

The idfrd models can be graphed with bode, spectrum, and nyquist,
which all accept mixtures of parametric models, such as idtf and idfrd
models as arguments. Note that spa, spafdr, and etfe return their
estimation results as idfrd objects.
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Constructor

Properties

The idfrd represents complex frequency-response data. Before you
can create an idfrd object, you must import your data as described in
“Frequency-Response Data Representation”.

Note The idfrd object can only encapsulate one frequency-response
data set. It does not support the iddata equivalent of multiexperiment
data.

Use the following syntax to create the data object fr_data:
fr_data = idfrd(response,f,Ts)

Suppose that ny is the number of output channels, nu is the number of
input channels, and nf is a vector of frequency values. response is an
ny-by-nu-by-nf 3-D array. f is the frequency vector that contains the
frequencies of the response.Ts is the sampling time, which is used when
measuring or computing the frequency response. If you are working
with a continuous-time system, set Ts to 0.

response (ky, ku,kf), where ky, ku, and kf reference the kth output,
input, and frequency value, respectively, is interpreted as the
complex-valued frequency response from input ku to output ky at
frequency f (kf).

You can specify object properties when you create the idfrd object
using the constructor syntax:

fr_data = idfrd(response,f,Ts,
'"Property1',Valuel, ..., 'PropertyN',ValueN)

After creating the object, you can use get or dot notation to access the
object property values.

Use set or dot notation to set a property of an existing object.
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Property Name

Description

ResponseData

3-D array of the complex-valued
frequency response as described
above. For SISO systems use
Response(1,1,:) to obtain a
vector of the response data.

Frequency

Column vector containing
the frequencies at which the
responses are defined.

CovarianceData

5-D array of the covariance
matrices of the response data as
described above.

SpectrumbData

3-D array containing power
spectra and cross spectra of the
output disturbances (noise) of the
system.

NoiseCovariance

3-D array containing the
variances of the power spectra, as
explained above.

FrequencyUnit

Unit of the frequency

vector. Specify as one of the
following: 'rad/TimeUnit',
‘cycles/TimeUnit',

'rad/s', 'Hz', 'kHz',

'MHz', 'GHz', or 'rpm'. The
units 'rad/TimeUnit' and
'cycles/TimeUnit' are relative
to the time units specified

in TimeUnit. Changing

this property changes the
overall system behavior.

Use chgFrequnit to convert
between frequency units without
modifying system behavior.
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Property Name

Description

Ts

Scalar denoting the sampling
interval of the model whose
frequency response is
stored. 'Ts' = 0 means a
continuous-time model.

Name

An optional name for the object.

InputName

String or cell array containing the
names of the input channels. It
has as many entries as there are
input channels.

OutputName

Correspondingly for the output
channels.

InputUnit

Units in which the input channels
are measured. It has the same
format as 'InputName'.

OQutputUnit

Correspondingly for the output
channels.

InputDelay

Row vector of length equal to
the number of input channels.
Contains the delays from the
input channels. These should
thus be appended as phase lags
when the response is calculated.
This 1s done automatically by
freqgresp, bode, and nyquist.
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Property Name

Description

InterSample

Intersample behavior of inputs.
Specifies the behavior of

the input signals between
samples for transformations
between discrete-time and
continuous-time. This property
is meaningful for discrete-time
idfrd models only.Specify
InterSample as one of the
following:

® 'zoh' — The input signal used
for construction/estimation of
the frequency response data
was subject to a zero-order-hold
filter.

e 'foh' — The input signal was
subject to a first-order-hold
filter.

® 'pl' — The input signal has
no power above the Nyquist
frequency (pi/sys.Ts rad/s).
This is typically the case
when the input signal is
measured experimentally
using an anti-aliasing filter
and a sampler. Ideally, treat
the data as continuous-time.
That is, if the signals used for
the estimation of the frequency
response were subject to
anti-aliasing filters, set sys.Ts
to zero.
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Property Name

Description

For multi-input data, specify
InterSample as an Nu-by-1 cell
array, where Nu is the number of
inputs.

Notes An arbitrary field to store extra
information and notes about the
object.

UserData An arbitrary field for any possible
use.

Report Information about the estimation

process that is behind the

frequency data. It contains the

following fields:

® Status: Specifies whether the
model was created directly,
transformed or estimated.

e Method: The identification
routine that created the model.

® WindowSize: If the model was
estimated by spa, spafdr, or
etfe, the size of window (input
argument M, the resolution
parameter) that was used.
This is scalar or a vector.

¢ DataUsed: Information on the
estimation data such as its
name, type, sample time and
intersample behavior.

To view the properties of the idfrd object, you can use the get
command. The following example shows how to create an idfrd object
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that contains 100 frequency-response values with a sampling time
interval of 0.08 s and get its properties:

% Create the idfrd data object
fr_data = idfrd(response,f,0.08)

% Get property values of data
get(fr_data)

response and f are variables in the MATLAB Workspace browser,
representing the frequency-response data and frequency values,
respectively.

To change property values for an existing idfrd object, use the set
command or dot notation. For example, to change the name of the
idfrd object, type the following command sequence at the prompt:

% Set the name of the f_data object
set(fr_data, 'name', 'DC_Converter')

% Get fr_data properties and values
get(fr_data)

Property names are not case sensitive. You do not need to type the
entire property name if the first few letters uniquely identify the
property.

If you import fr_data into the System Identification Tool GUI, this
data has the name DC_Converter in the GUI, and not the variable
name fr_data.

Subreferencing The different channels of the idfrd are retrieved by subreferencing.
h(outputs,inputs)

h(2,3) thus contains the response data from input channel 3 to output
channel 2, and, if applicable, the output spectrum data for output
channel 2. The channels can also be referred to by their names, as in
h('power',{'voltage', 'speed'}).
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Horizontal
Concatenation

Vertical
Concatenation

Converting
to iddata

Examples

See Also

Adding input channels,
h = [h1,h2,...,hN]

creates an idfrd model h, with ResponseData containing all the input
channels in h1,...,hN. The output channels of hk must be the same, as
well as the frequency vectors. SpectrumData is ignored.

Adding output channels,
h = [h1;h2;... ;hN]

creates an idfrd model h with ResponseData containing all the output
channels in h1, h2,...,hN. The input channels of hk must all be the
same, as well as the frequency vectors. SpectrumData is also appended
for the new outputs. The cross spectrum between output channels of
h1, h2,...,hNis then set to zero.

You can convert an idfrd object to a frequency-domain iddata object by
Data = iddata(Idfrdmodel)

See iddata.

Compare the results from spectral analysis and an ARMAX model.

load iddatal z1;

m = armax(z1,[2 2 2 1]);

g = spa(z1)

g = spafdr(z1,[],{1e-3,10})
bode(g,m)

bode | etfe | freqresp | nyquist | spa | spafdr | tfest
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Purpose

Syntax

Description

Object
Description
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Linear ODE (grey-box model) with identifiable parameters

Sys idgrey(odefun,parameters,fcn_type)

Sys idgrey(odefun,parameters,fcn_type,optional_args)

sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts)

sys =

idgrey(odefun,parameters,fcn_type,optional_args,Ts,Name,
Value)

sys = idgrey(odefun,parameters,fcn_type) creates a linear
grey-box model with identifiable parameters, sys. odefun specifies the
user-defined function that relates the model parameters, parameters,
to its state-space representation.

sys = idgrey(odefun,parameters,fcn_type,optional_args)
creates a linear grey-box model with identifiable parameters using the
optional arguments required by odefun.

sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts)
creates a linear grey-box model with identifiable parameters with the
specified sample time, Ts.

sys =
idgrey(odefun,parameters,fcn_type,optional_args,Ts,Name,Value)
creates a linear grey-box model with identifiable parameters with
additional options specified by one or more Name,Value pair
arguments.

An idgrey model represents a system as a continuous-time or
discrete-time state-space model with identifiable (estimable)
coefficients.

A state-space model of a system with input vector, u, output vector, y,
and disturbance, e, takes the following form in continuous time:

x(t) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t)
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Examples

In discrete time, the state-space model takes the form:

xlk +1] = Ax[k]+ Bulk]+ Kelk]
ylk] = Cx[k]+ Dulk] + elk]

For idgrey models, the state-space matrices A, B, C, and D

are expressed as a function of user-defined parameters using
a MATLAB function. You access estimated parameters using
sys.Structures.Parameters, where sys is an idgrey model.

Use an idgrey model when you know the system of equations governing
the system dynamics explicitly, in the form of ordinary differential or
difference equations. You can also use idgrey models to prescribe
complex relationships and constraints among the parameters that are
not achievable by using structured state-space models (idss).

You can create an idgrey model using the idgrey command. You
must write a MATLAB function that returns the A, B, C, and D
matrices for given values of the estimable parameters and sampling
time. The MATLAB function can also return the K matrix and accept
optional input arguments. The matrices returned may represent a
continuous-time or discrete-time model, as indicated by the sampling
time.

Use the estimating functions pem or greyest to obtain estimated values
for the unknown parameters of an idgrey model.

You can convert an idgrey model into other dynamic systems, such as
idpoly, idss, tf, ss etc. You cannot convert a dynamic system into an
idgrey model.

Create Grey-Box Model with Identifiable Parameters

Create an idgrey model to represent a DC motor. Specify the motor
time-constant as an estimable parameter, and that the ODE function
can return continuous- or discrete-time state-space matrices.

Create the idgrey model.

odefun = 'motor';
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parameters = 1;

fcn_type = 'cd’;

optional_args = 0.25;

Ts = 0;

sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts);

sys is an idgrey model that is configured to use the shipped file
motor.m to return the A, B, C, D, and K matrices. motor.m also returns
the initial conditions, X0. The motor constant, <, is defined in motor.m
as an estimable parameter, and parameters = 1 specifies its initial
value as 1.

You can use pem or greyest to refine the estimate for .

Configure Identifiable Parameters of Grey-Box Model

Specify minimum constraints for the estimable parameters of an idgrey
model.

Create an idgrey model.

odefun = 'ModalFormODE';

sigmal1=0.1;
sigma2=0.1;
wi=1;

w2=1;

B [1O0O0O0]';
C [1111];

parameters = {'sigmal',sigmai;...
'wi',wl;...
‘sigma2',sigma2;...
'w2',w2; ...
'B',B;...
'C',C};

fcn_type = 'c';

sys = idgrey(odefun,parameters,fcn_type);
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sys is an idgrey model that is configured to use the function
ModalFormODE to return the A, B, C, and D matrices. The code for the
function ModalFormODE is

function [A,B,C,D] = ModalFormODE(sigmat,w1,sigma2,w2,Bpar,Cpar,varare
%MODALFORMODE Function that parameterizes a 4th order state-space mods
%smodal form.

o°

o°

Parameters:
sigmai: The absolute value of the real part of the first
complex-conjugate pair of poles. Positive scalar.
wi: The absolute value of the imaginary part of the first
complex-conjugate pair of poles. Positive scalar.
sigma2: Similar to sigmal. Positive scalar.
w2: Similar to wi1. Positive scalar.
BPar: A 4-by-1 real vector. No constraints on coefficients.
CPar: A 1-by-4 real vector. No constraints on coefficients.

d® ° ° ° ° ° ° o° o°

o°

This file parameterizes the state-space model in continuous-time on
A1 = [-sigmail, wil; -wi1, -sigmail];
A2 = [-sigma2, w2; -w2, -sigma2];

A = blkdiag(A1,A2);
B = Bpar;

C = Cpar;

D = 0;

end

The function defines sigmai, w1, sigma2, w2, Bpar, and Cpar as
estimable parameters.

Specify minimum constraints for some of the estimable parameters.

sys.Structure.Parameters(1).Minimum = 0
sys.Structure.Parameters(2).Minimum = 0;
sys.Structure.Parameters(3).Minimum = 0
sys.Structure.Parameters(4).Minimum = 0
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The first four parameters in sys.Structure.Parameters are sigmat,
w1, sigma2, and w2. This code specifies 0 as the minimum value for
these parameters.

You can use pem or greyest to estimate the estimable parameters of
sys. When you do so, the software enforces the constraints specified in
sys.Structure in estimating the parameters.

Specify Additional Atiributes of Grey-Box Model

Create a grey-box model with identifiable parameters. Name the input
and output channels of the model, and specify seconds for the model
time units.

You can use Name,Value pair arguments to specify additional model
properties on model creation.

odefun = 'motor';

parameters = 1;

fcn_type = 'cd';

optional_args = 0.25;

Ts = 0;

sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts, 'InputName', 'Vol
"OutputName', { 'Angular Position','Angular Velocity'});

To change or specify more attributes of an existing model, you can use
dot notation. For example:

sys.TimeUnit = 'seconds';
Array of Grey-Box Models

Create an array of grey-box models.

Use the stack command to create an array of linear grey-box models.

odefun1 = @motor;

parametersi = [1 2];

fcn_type = 'cd’';

optional_argsi = 1;

sys1 = idgrey(odefuni,parametersi,fcn_type,optional_args1);
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odefun2 = 'motor';

parameters2 = {[1 2]};

optional_args2 = 0.5;

sys2 = idgrey(odefun2,parameters2,fcn_type,optional_args2);

sysarr = stack(1,sys1,sys2);
stack creates a 2-by-1 array of idgrey models, sysarr.

Input odefun

Arguments MATLAB function that relates the model parameters to its state-space
representation.

odefun specifies, as a string, the name of a MATLAB function (.m,
.p, a function handle or .mex* file). This function establishes the
relationship between the model parameters, parameters, and its
state-space representation. The function may optionally relate the
model parameters to the disturbance matrix and initial states.

If the function is not on the MATLAB path, then specify the full file
name, including the path.

The syntax for odefun must be as follows:
[A,B,C,D] = odefun(pari,par2,...,parN,Ts,optional_argi,optional_arg2,

Here, the function outputs describe the model in the following linear
state-space innovations form:

an(t) = Ax(t) + Bu(t) + Ke(?);x(0) = x,
y(&) = Cx(t) + Du(t) + e(t)

In discrete time xn(f)=x(t+7Ts) and in continuous time, xn(f) = x(¢).

pari,par2,...,parN are model parameters. Each entry may be a
scalar, vector or matrix.

Ts is the sample time.
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optional_argl,optional arg2,... are the optional inputs that
odefun may require. The values of the optional input arguments are
unchanged through the estimation process. However, the values of
pari,par2,...,parN are updated during estimation to fit the data.
Use optional input arguments to vary the constants and coefficients
used by your model without editing odefun.

The disturbance matrix, K, and the initial state values, x0,

are not parametrized and are determined separately, using the
DisturbanceModel and InitialState estimation options, respectively.
For more information regarding the estimation options, see
greyestOptions.

A good choice for achieving the best simulation results is to set the
DisturbanceModel option to 'none', which fixes K to zero.

(Optional) Parameterizing Disturbance: odefun can also return the
disturbance component, K, using the syntax:

[A,B,C,D,K] = odefun(pari,par2,...,parN,Ts,optional_argl,optional_arg2,..

If odefun returns a value for K that contains NaN values, then the
estimating function assumes that K is not parameterized. In this case,
the value of the DisturbanceModel estimation option determines how
K is handled.

(Optional) Parameterizing Initial State Values: To make the model
initial states, X0, dependent on the model parameters, use the following
syntax for odefun:

[A,B,C,D,K,X0] = odefun(pari,par2,...,parN,Ts,optional_argi,optional_arg:

If odefun returns a value for X0 that contains NaN values, then the
estimating function assumes that X0 is not parameterized. In this
case, X0 may be fixed to zero or estimated separately, using the
InitialStates estimation option.

parameters

Initial values of the parameters required by odefun.
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Specify parameters as a cell array containing the parameter initial
values. If your model requires only one parameter, which may itself be
a vector or a matrix, you may specify parameters as a matrix.

You may also specify parameter names using an N-by-2 cell array,
where N is the number of parameters. The first column specifies the
names, and the second column specifies the values of the parameters.

For example:

parameters = {'mass',pari;'stiffness',par2;'damping',par3}

fen_type

Indicates whether the model is parameterized in continuous-time,
discrete-time, or both.

fcn_type takes one of the following strings:

e 'c' — odefun returns matrices corresponding to a continuous-time
system, regardless of the value of Ts.

e 'd' — odefun returns matrices corresponding to a discrete-time
system, whose values may or may not depend on the value of Ts.

® 'cd' — odefun returns matrices corresponding to a continuous-time
system, if Ts=0.

Else, if Ts>0, odefun returns matrices corresponding to a
discrete-time system. Select this option to sample your model using
the values returned by odefun, rather than using the software’s
internal sample time conversion routines.

optional_args

Optional input arguments required by odefun.

Specify optional_args as a cell array.

If odefun does not require optional input arguments, specify

optional_args as {}.

Ts
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Model sampling time.

If Ts is unspecified, it is assumed to be:

e -1 —1Iffcn_typeis 'd' or 'cd'.
Ts = -1 indicates a discrete-time model with unknown sampling
time.

e 0—If fcn_typeis 'c'.

Ts = 0 indicates a continuous-time model.

Name,Value

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Valuetl,...,NameN,ValueN.

Use Name,Value arguments to specify additional properties

of idgrey models during model creation. For example,
idgrey(odefun,parameters,fcn_type, 'InputName', 'Voltage')
creates an idgrey model with the InputName property set to Voltage.

Properties idgrey object properties include:

a,b,c,d
Values of state-space matrices.

® a — State matrix A, an Nx-by-Nx matrix, as returned by the ODE
function associated with the idgrey model. Nx is the number of
states.

® b — Input-to-state matrix B, an Nx-by-Nu matrix, as returned by the
ODE function associated with the idgrey model. Nu is the number of
inputs and Nx is the number of states.

2-326



idgrey

e ¢ — State-to-output matrix C, an Ny-by-Nx matrix, as returned
by the ODE function associated with the idgrey model. Nx is the
number of states and Ny is the number of outputs.

¢ d — Feedthrough matrix D, an Ny-by-Nu matrix, as returned by the
ODE function associated with the idgrey model. Ny is the number
of outputs and Nu is the number of inputs.

As a,b,c,d are returned by the ODE function associated with the
idgrey model, you can only read these matrices; you cannot set their
values.

k
Value of state disturbance matrix, K

k is Nx-by-Ny matrix, where Nx is the number of states and Ny is the
number of outputs.

e [f odefun parameterizes the K matrix, then k has the value returned
by odefun. odefun parameterizes the K matrix if it returns at least 5
outputs and the value of the fifth output does not contain NaN values.

e [f odefun does not parameterize the K matrix, then k is a zero
matrix of size Nx-by-Ny. Nx is the number of states and Ny is the
number of outputs. The value is treated as a fixed value of the K
matrix during estimation, unless it is designated to be estimable
using the DisturbanceModel estimation option.

e Regardless of whether the K matrix is parameterized by odefun or
not, you can set the value of the k property explicitly as an Nx-by-Ny
matrix. Nx is the number of states and Ny is the number of outputs.
The specified value is treated as a fixed value of the K matrix
during estimation, unless it is designated to be estimable using the
DisturbanceModel estimation option.

To create an estimation option set for idgrey models, use
greyestOptions.

StateName
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State names. Set StateName to a string for first-order models, or to a
cell array of strings for models with two or more states. Use an empty
string ' ' for unnamed states.

Default: Empty string ' ' for all states

StateUnit

State units. Use StateUnit to keep track of the units each state is
expressed in. Set StateUnit to a string for first-order models, or to a
cell array of strings for models with two or more states. StateUnit
has no effect on system behavior.

Default: Empty string ' ' for all states

Structure
Information about the estimable parameters of the idgrey model.

Structure stores information regarding the MATLAB function that
parameterizes the idgrey model.

® Strucutre.Function — Name or function handle of the MATLAB
function used to create the idgrey model.

® Structure.FcnType — Indicates whether the model is parameterized
in continuous-time, discrete-time, or both.

® Structure.Parameters — Information about the estimated
parameters. Structure.Parameters contains the following fields:

= Value — Parameter values. For example,
sys.Structure.Parameters(2).Value contains the initial or
estimated values of the second parameter.

NaN represents unknown parameter values.

Minimum — Minimum value that the parameter

can assume during estimation. For example,
sys.Structure.Parameters(1).Minimum = O constrains
the first parameter to be greater than or equal to zero.
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= Maximum — Maximum value that the parameter can assume
during estimation.

= Free — Boolean specifying whether the parameter is a free
estimation variable. If you want to fix the value of a parameter
during estimation, set the Free = false for the corresponding
entry.

= Scale — Scale of the parameter’s value. Scale is not used in
estimation.

= Info — Structure array for storing parameter units and labels.
The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe
parameter units and labels.

® Structure.ExtraArgs — Optional input arguments required by the
ODE function.

® Structure.StateName — Names of the model states.

® Structure.StateUnit — Units of the model states.

NoiseVariance
The variance (covariance matrix) of the model innovations e.

An i1dentified model includes a white, Gaussian noise component e(t).
NoiseVariance is the variance of this noise component. Typically, the
model estimation function (such as greyest or pem) determines this
variance.

For SISO models, NoiseVariance is a scalar. For MIMO models,
NoiseVariance is a Ny-by-Ny matrix, where Ny is the number of
outputs in the system.

Report

Information about the estimation process.

Report contains the following fields:
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® Status — Whether model was obtained by construction, estimated,
or modified after estimation.

® Method — Name of estimation method used.
e InitialState — Initial state handling during model estimation.

® DisturbanceModel — Disturbance component (the K matrix)
handling of the model during estimation.

® Fit — Quantitative quality assessment of estimation, including
percent fit to data and final prediction error.

® Parameters — Estimated values of model parameters and their
covariance

® OptionsUsed — Options used during estimation (see
greyestOptions).

® RandState — Random number stream state at the start of estimation.

® DataUsed — Attributes of the data used for estimation, such as name
and sampling time.

® Termination — Termination conditions for the iterative search
scheme used for prediction error minimization, such as final cost
value and stopping criterion.

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay for
each input channel. For continuous-time systems, specify input delays
in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sampling period
Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where
each entry is a numerical value representing the input delay for the
corresponding input channel. You can also set InputDelay to a scalar
value to apply the same delay to all channels.
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Default: 0 for all input channels

OvutputDelay
Output delays.
For identified systems, like idgrey, OutputDelay is fixed to zero.

Ts
Sampling time.

For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period expressed in the
unit specified by the TimeUnit property of the model. To denote a
discrete-time model with unspecified sampling time, set Ts = -1.

Changing this property does not discretize or resample the model.

For idgrey models, there is no unique default value for Ts. Ts depends
on the value of fcn_type.

TimeUnit

String representing the unit of the time variable, any time delays in
the model (for continuous-time models), and the sampling time Ts (for
discrete-time models). TimeUnit can take the following values:

® 'nanoseconds’
® 'microseconds’
® 'milliseconds’
® 'seconds’

® 'minutes’

® 'hours'
® 'days'

®* 'weeks'
® 'months'
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® 'years'

Changing this property changes the overall system behavior. Use
chgTimeUnit to convert between time units without modifying system
behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model.
For a multi-input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for
multi-input models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';
The software automatically expands the input names to
{'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName
property. For example, sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:
¢ Identifying channels on model display and plots
® Extracting subsystems of MIMO systems

¢ Specifying connection points when interconnecting models
Default: Empty string ' ' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units.
Set InputUnit to a string for single-input model, or to a cell array of
strings for a multi-input model. InputUnit has no effect on system
behavior.

Default: Empty string ' ' for all input channels
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InputGroup

Input channel groups. The InputGroup property lets you assign the
input channels of MIMO systems into groups and refer to each group by
name. Specify input groups as a structure whose field names are the
group names and whose field values are the input channels belong to
each group. For example:

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input
channels 1, 2 and 3, 5, respectively. You can then extract the subsystem
from the controls inputs to all outputs using:

sys(:,'controls"')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output
model. For a multi-output model, set OutputName to a cell array of
strings.

Alternatively, use automatic vector expansion to assign output names
for multi-output models. For example, if sys is a two-output model,
enter:

sys.OutputName = 'measurements';

The software automatically expands the output names to
{'measurements(1)'; 'measurements(2)"'}.

You can use the shorthand notation y to refer to the OutputName
property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:
¢ Identifying channels on model display and plots
® Extracting subsystems of MIMO systems
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® Specifying connection points when interconnecting models
Default: Empty string ' ' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal
units. Set OutputUnit to a string for single-input model, or to a cell
array of strings for a multi-input model. OutputUnit has no effect on
system behavior.

Default: Empty string ' ' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the
output channels of MIMO systems into groups and refer to each group
by name. Specify output groups as a structure whose field names are
the group names and whose field values are the output channels belong
to each group. For example:

sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that

include output channels 1, and 3, 5, respectively. You can then extract
the subsystem from all inputs to the measurement outputs using:

sys('measurement’',:)
Default: Struct with no fields

System name. Set Name to a string to label the system.
Default: '

Notes
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See Also

Any text that you wish to associate with the system. Set Notes to a
string or a cell array of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to
any MATLAB data type.

Default: []

greyest | greyestOptions | pem | idnlgrey | idss | ssest |
getpvec | setpvec
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Purpose

Syntax

Description
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Generate input signals

u = idinput(N)
u idinput (N, type,band,levels)
[u,freqs] = idinput(N, 'sine',band,levels,sinedata)

idinput generates input signals of different kinds, which are typically
used for identification purposes. u is returned as a matrix or column
vector.

For further use in the toolbox, we recommend that you create an iddata
object from u, indicating sampling time, input names, periodicity, and
So on:

u = iddata([],u);

N determines the number of generated input data. If N is a scalar, uis a
column vector with this number of rows.

N = [N nu] gives an input with nu input channels each of length N.

N = [P nu M] gives a periodic input with nu channels, each of length
M*P and periodic with period P.

Defaultisnu = 1 and M = 1.

type defines the type of input signal to be generated. This argument
takes one of the following values:

® type = 'rgs': Gives a random, Gaussian signal.
® type = 'rbs': Gives a random, binary signal. This is the default.
® type = 'prbs': Gives a pseudorandom, binary signal.

* type 'sine': Gives a signal that is a sum of sinusoids.

The frequency contents of the signal is determined by the argument
band. For the choices type = 'rs', 'rbs', and 'sine’, this argument
is a row vector with two entries

band = [wlow, whigh]
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that determine the lower and upper bound of the passband. The
frequencies wlow and whigh are expressed in fractions of the Nyquist
frequency. A white noise character input is thus obtained for band =
[0 1], which is also the default value.

For the choice type = 'prbs’,

band = [0, B]

where B is such that the signal is constant over intervals of length 1/B
(the clock period). In this case the default is band = [0 1].

The argument levels defines the input level. It is a row vector

levels = [minu, maxu]

such that the signal u will always be between the values minu and maxu
for the choices type = 'rbs’', 'prbs', and 'sine'. For type = 'rgs’,
the signal level is such that minu is the mean value of the signal, minus
one standard deviation, while maxu is the mean value plus one standard
deviation. Gaussian white noise with zero mean and variance one is
thus obtained for levels = [-1, 1], which is also the default value.

Some PRBS Aspects

If more than one period is demanded (that is, M > 1), the length of the
data sequence and the period of the PRBS signal are adjusted so that an
integer number of maximum length PRBS periods is always obtained. If
M = 1, the period of the PRBS signal is chosen to that it is longer than
P = N. In the multiple-input case, the signals are maximally shifted.
This means P/nu is an upper bound for the model orders that can be
estimated with such a signal.

Some Sine Aspects

In the 'sine' case, the sinusoids are chosen from the frequency grid

freq = 2*pi*[1:Grid Skip:fix(P/2)]/P
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Algorithms

References

Examples
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intersected with pi*[band (1) band(2)]. For Grid_Skip, see below.
For multiple-input signals, the different inputs use different frequencies
from this grid. An integer number of full periods is always delivered.
The selected frequencies are obtained as the second output argument,
fregs, where row ku of fregs contains the frequencies of input number
ku. The resulting signal is affected by a fifth input argument, sinedata

sinedata = [No_of_Sinusoids, No_of_Trials, Grid_Skip]

meaning that No_of_Sinusoids is equally spread over the indicated
band. No_of_Trials (different, random, relative phases) are tried until
the lowest amplitude signal is found.

Default: sinedata = [10,10,1];

Grid_Skip can be useful for controlling odd and even frequency
multiples, for example, to detect nonlinearities of various kinds.

Very simple algorithms are used. The frequency contents are achieved
for 'rgs' by an eighth-order Butterworth, noncausal filter, using
idfilt. The same filter is used for the 'rbs' case, before making
the signal binary. This means that the frequency contents are not
guaranteed to be precise in this case.

For the 'sine' case, the frequencies are selected to be equally spread
over the chosen grid, and each sinusoid is given a random phase. A
number of trials are made, and the phases that give the smallest signal
amplitude are selected. The amplitude is then scaled so as to satisfy
the specifications of levels.

See Soderstrom and Stoica (1989), Chapter C5.3. For a general
discussion of input signals, see Ljung (1999), Section 13.3.

Create an input consisting of five sinusoids spread over the whole
frequency interval. Compare the spectrum of this signal with that of its
square. The frequency splitting (the square having spectral support at
other frequencies) reveals the nonlinearity involved:
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u idinput([100 1 201, 'sine',[]1,[]1,[5 10 1]);
u = iddata([],u,1, 'per',100);

u2 = u.u."2;

u2 = iddata([],u2,1, 'per',100);
spectrum(etfe(u), 'r*',etfe(u2),'+")
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Purpose Superclass for linear models

Note idmodel has been removed. See idgrey, idpoly, idproc, idss
or idtf instead.

2-340



idnlarx

Purpose

Syntax

Description

Construction

Nonlinear ARX model

m = idnlarx([na nb nk])

m = idnlarx([na nb nk],Nonlinearity)

m = idnlarx([na nb nk],Nonlinearity,'PropertyName',
PropertyValue)

m = idnlarx(LinModel)

m = idnlarx(LinModel ,Nonlinearity)

m = idnlarx(LinModel ,Nonlinearity, 'PropertyName',

PropertyValue)

Represents nonlinear ARX model. The nonlinear ARX structure is an
extension of the linear ARX structure and contains linear and nonlinear
functions. For more information, see “Nonlinear ARX Model Extends
the Linear ARX Structure”.

Typically, you use the nlarx command to both construct the idnlarx
object and estimate the model parameters. You can configure the model
properties directly in the nlarx syntax.

You can also use the idnlarx constructor to create the nonlinear ARX
model structure and then estimate the parameters of this model using
nlarx or pem.

For idnlarx object properties, see:

® “idnlarx Model Properties” on page 2-343

® “idnlarx Algorithm Properties” on page 2-346

® “idnlarx Advanced Algorithm Properties” on page 2-350

¢ “idnlarx EstimationInfo Properties” on page 2-351

m = idnlarx([na nb nk]) creates an idnlarx object using a default

wavelet network as its nonlinearity estimator. na, nb, and nk are
positive integers that specify model orders and delays.
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Input
Arguments
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m = idnlarx([na nb nk],Nonlinearity) specifies a nonlinearity
estimator Nonlinearity, as a nonlinearity estimator object or string
representing the nonlinearity estimator type.

m = idnlarx([na nb
nk],Nonlinearity,'PropertyName',PropertyValue) creates the
object using options specified as idnlarx property name and value
pairs. Specify PropertyName inside single quotes.

m = idnlarx(LinModel) creates an idnlarx object using a linear
model (in place of [na nb nk]), and a wavelet network as its nonlinearity
estimator. LinModel is a discrete time input-output polynomial model
of ARX structure (idpoly) for single-output systems and idarx object
for multi-output systems. LinModel sets the model orders, input delay,
input-output channel names and units, sample time, and time unit of
m, and the polynomials initialize the linear function of the nonlinearity
estimator.

m = idnlarx(LinModel ,Nonlinearity) specifies a nonlinearity
estimator Nonlinearity.

m =
idnlarx(LinModel ,Nonlinearity, 'PropertyName',PropertyValue)

creates the object using options specified as idnlarx property
name and value pairs.

na nb nk

Positive integers that specify the model orders and delays.

For ny output channels and nu input channels, na is an ny-by-ny matrix
whose i-jth entry gives the number of delayed jth outputs used to
compute the ith output. nb and nk are ny-by-nu matrices, where each
row defines the orders for the corresponding output.

Nonlinearity

Nonlinearity estimator, specified as a nonlinearity estimator object or
string representing the nonlinearity estimator type.
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idnlarx
Model
Properties

'wavenet' or wavenet object Wavelet network
(default)

'sigmoidnet' or sigmoidnet object Sigmoid network
'treepartition’' or treepartition object Binary-tree
'linear' or [ ] or linear object Linear function
neuralnet object Neural network
customnet object Custom network

Specifying a string creates a nonlinearity estimator object with default
settings. Use object representation to configure the properties of a
nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators
individually for each output channel by setting Nonlinearity to an
ny-by-1 cell array or object array of nonlinearity estimators. To specify
the same nonlinearity for all outputs, specify Nonlinearity as a single
nonlinearity estimator.

LinModel

Discrete time input-output polynomial model of ARX structure, typically
estimated using the arx command:

e idpoly object for single-output systems

e idarx object for multi-output systems

After creating the object, you can use get or dot notation to access the
object property values. For example:

% Get the model time unit

et(m, 'TimeUnit')

% Get value of Nonlinearity property
m.Nonlinearity

«Q

You can specify property name-value pairs in the model estimator or
constructor to configure the model structure and estimation algorithm.
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Use set or dot notation to set a property of an existing object.

The following table summarizes idnlarx model properties. The general
idnlmodel properties also apply to this nonlinear model object (see
the corresponding reference page).

Property Name Description
Algorithm A structure that specifies the estimation algorithm options, as
described in “idnlarx Algorithm Properties” on page 2-346.
CustomRegressors Custom expression in terms of standard regressors.
Assignable values:
e (Cell array of strings. For example:
{'y1(t-3)"3"','y2(t-1)*u1(t-3)"', " 'sin(u3(t-2))'}.
® Object array of customreg objects. Create these objects
using commands such as customreg and polyreg. For more
information, see the corresponding reference pages.
EstimationInfo A read-only structure that stores estimation settings and
results, as described in “idnlarx EstimationInfo Properties”
on page 2-351.
Focus Specifies 'Prediction' or 'Simulation’.
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Assignable values:

® 'Prediction' (default) — The estimation algorithm

minimizes |y - |, where j is the 1-step ahead predicted
output. This algorithm does not necessarily minimize the
simulation error.

e 'Simulation' — The estimation algorithm minimizes
the simulation error and optimizes the results of

compare(data,model,Inf). That is, when computing ¥,
y in the regressors in F are replaced by values simulated
from the input only. 'Simulation' requires that the model
include only differentiable nonlinearities.
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Property Name

Description

Note If your model includes the treepartition or neuralnet
nonlinearity, the algorithm always uses 'prediction’,
regardless of the Focus value. If your model includes the
wavenet nonlinearity, the first estimation of this model uses
‘prediction’.

NonlinearRegressors

Specifies which standard or custom regressors enter the
nonlinear block. For multiple-output models, use cell array of
n, elements (ny = number of model outputs). For each output,
assignable values are:

e 'all' — All regressors enter the nonlinear block.

e 'search' — Specifies that the estimation algorithm
searches for the best regressor combination. This is useful
when you want to reduce a large number of regressors
entering the nonlinear function block or the nonlinearity
estimator.

e 'input' — Input regressors only.

e 'output' — Output regressors only.

® 'standard' — Standard regressors only.

e 'custom' — Custom regressors only.

e '[]1' — No regressors enter the nonlinear block.

A vector of indices: Specifies the indices of the regressors
that should be used in the nonlinear estimator. To
determine the order of regressors, use getreg.
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Property Name

Description

Nonlinearity

Nonlinearity estimator object. Assignable values include
wavenet (default), sigmoidnet, treepartition, customnet,
neuralnet, and linear. If the model contains only one
regressor, you can also use saturation, deadzone, pwlinear,
or polyid.

For ny outputs, Nonlinearity is an ny-by-1 array. For
example, [sigmoidnet;wavenet] for a two-output model.
When you specify a scalar object, this nonlinearity applies to
all outputs.

na
nb
nk

Nonlinear ARX model orders and input delays, where na is the
number of output terms, nb is the number of input terms, and
nk is the delay from input to output in terms of the number
of samples.

For ny outputs and nu inputs, na is an ny-by-ny matrix whose
i-jth entry gives the number of delayed jth outputs used to
compute the ith output. nb and nk are ny-by-nu matrices.

idnlarx
Algorithm
Properties

The following table summarizes the fields of the Algorithm idnlarx
model properties. Algorithm is a structure that specifies the
estimation-algorithm options.

Property Name

Description

2-346

Advanced A structure that specifies additional estimation algorithm
options, as described in “idnlarx Advanced Algorithm
Properties” on page 2-350.

Criterion The search method of 1sqnonlin supports the Trace criterion

only.

Use for multiple-output models only. Criterion can have the
following values:

® 'Det': Minimize det (E'*E), where E represents the
prediction error. This is the optimal choice in a statistical
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Property Name

Description

sense and leads to the maximum likelihood estimates in
case nothing is known about the variance of the noise. It
uses the inverse of the estimated noise variance as the
weighting function. This is the default criterion used for all
models, except idnlgrey which uses 'Trace' by default.

® 'Trace': Minimize the trace of the weighted prediction
error matrix trace (E'*E*W), where E is the matrix of
prediction errors, with one column for each output, and W
is a positive semi-definite symmetric matrix of size equal
to the number of outputs. By default, W is an identity
matrix of size equal to the number of model outputs (so
the minimization criterion becomes trace(E'*E), or the
traditional least-squares criterion). You can specify the
relative weighting of prediction errors for each output using
the Weighting field of the Algorithm property. If the
model contains neuralnet or treepartition as one of its
nonlinearity estimators, weighting is not applied because
estimations are independent for each output.

Both the Det and Trace criteria are derived from a general
requirement of minimizing a weighted sum of least squares of
prediction errors. Det can be interpreted as estimating the
covariance matrix of the noise source and using the inverse of
that matrix as the weighting. You should specify the weighting
when using the Trace criterion.

If you want to achieve better accuracy for a particular channel
in MIMO models, use Trace with weighting that favors

that channel. Otherwise, use Det. If you use Det, check
cond(model.NoiseVariance) after estimation. If the matrix
is ill-conditioned, try using the Trace criterion. You can also
use compare on validation data to check whether the relative
error for different channels corresponds to your needs or
expectations. Use the Trace criterion if you need to modify the
relative errors, and check model.NoiseVariance to determine
what weighting modifications to specify.
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Property Name

Description

IterWavenet

(For wavenet nonlinear estimator only)

Toggles performing iterative or noniterative estimation.
Default: 'auto'.

Assignable values:

e 'auto' — First estimation is noniterative and subsequent
estimation are iterative.
® 'On' — Perform iterative estimation only.

e 'Off' — Perform noniterative estimation only.

LimitError

Robustification criterion that limits the influence of large
residuals, specified as a positive real value. Residual values
that are larger than 'LimitError' times the estimated
residual standard deviation have a linear cost instead of the
usual quadratic cost.

Default: 0 (no robustification).

MaxIter

Maximum number of iterations for the estimation algorithm,
specified as a positive integer.
Default: 20.

MaxSize

The number of elements (size) of the largest matrix to be
formed by the algorithm. Computational loops are used
for larger matrices. Use this value for memory/speed
trade-off.MaxSize can be any positive integer.

Default: 250000.

Note The original data matrix of z and y must be smaller
than MaxSize.
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Property Name

Description

SearchMethod

Method used by the iterative search algorithm.
Assignable values:

® 'Auto' — Automatically chooses from the following
methods.

® 'gn' — Subspace Gauss-Newton method.

® 'gna' — Adaptive Gauss-Newton method.

e 'grad' — A gradient method.

e 'Im' — Levenberg-Marquardt method.

e '1sgnonlin' — Nonlinear least-squares method (requires
the Optimization Toolbox product). This method only
handles the 'Trace' criterion.

Tolerance

Specifies to terminate the iterative search when the expected
improvement of the parameter values is less than Tolerance,
specified as a positive real value in %.

Default: 0.01.

Display

Toggles displaying or hiding estimation progress information
in theMATLAB Command Window.

Default: 'Off"'.

Assignable values:

e 'Off' — Hide estimation information.

® '0On' — Display estimation information.

Weighting

(For multiple-output models only)

Specifies the relative importance of outputs in MIMO models
(or reliability of corresponding data) as a positive semi-definite
matrix W. Use when Criterion = 'Trace' for weighted trace
minimization. By default, Weighting is an identity matrix of
size equal to the number of outputs.
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idnlarx

Advanced
Algorithm
Properties

The following table summarizes the fields of the Algorithm.Advanced
model properties. The fields in the Algorithm.Advanced structure
specify additional estimation-algorithm options.

Property Name

Description

GnPinvConst

When the search direction is computed, the algorithm
discards the singular values of the Jacobian that are smaller
than GnPinvConst*max(size(J))*norm(J)*eps. Singular
values that are closer to 0 are included when GnPinvConst is
decreased.

Default: 1e4.

Assign a positive, real value.

LMStartValue

(For Levenberg-Marquardt search algorithm) The starting
level of regularization when using the Levenberg-Marquardt
search method (Algorithm.SearchMethod="'1m").

Default: 0.001.

Assign a positive real value.

LMStep

(For Levenberg-Marquardt search algorithm) Try this next
level of regularization to get a lower value of the criterion
function. The level of regularization is LMStep times the
previous level. At the start of a new iteration, the level of
regularization is computed as 1/LMStep times the value from
the previous iteration.

Default: 10.

Assign a real value >1.

MaxBisections

Maximum number of bisections performed by the line search
algorithm along the search direction (number of rotations of
search vector for '1m'). Used by 'gn', '1m', 'gna' and 'grad'
search methods (Algorithm.SearchMethod property)

Default: 10.

Assign a positive integer value.
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Property Name

Description

MaxFunEvals

The iterations are stopped if the number of calls to the model
file exceeds this value.

Default: Inf.

Assign a positive integer value.

MinParChange

The smallest parameter update allowed per iteration.
Default: 1e-16.
Assign a positive, real value.

RelImprovement

The iterations are stopped if the relative improvement of the
criterion function is less than RelImprovement.

Default: 0.

Assign a positive real value.

Note Does not apply to
Algorithm.SearchMethod="'1lsgnonlin'

StepReduction

(For line search algorithm) The suggested parameter update

is reduced by the factor 'StepReduction' after each try until
either 'MaxBisections' tries are completed or a lower value
of the criterion function is obtained.

Default: 2.

Assign a positive, real value >1.

Note Does not apply to
Algorithm.SearchMethod="'1lsqnonlin'

idnlarx

The following table summarizes the fields of the EstimationInfo model

EstimationIinfo properties. The read-only fields of the EstimationInfo structure store

Properties

estimation settings and results.
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Property Name

Description

Status Shows whether the model parameters were estimated.

Method Shows the estimation method.

LossFcn Value of the loss function, equal to det (E'*E/N), where E is
the residual error matrix (one column for each output) and N is
the total number of samples.

FPE Value of Akaike’s Final Prediction Error (see fpe).

DataName Name of the data from which the model is estimated.

DatalLength Length of the estimation data.

DataTs Sampling interval of the estimation data.

DataDomain 'Time' means time domain data. 'Frequency' is not
supported.

DataInterSample Intersample behavior of the input estimation data used for
interpolation:
® 'zoh' means zero-order-hold, or piecewise constant.

e 'foh' means first-order-hold, or piecewise linear.

EstimationTime Duration of the estimation.

InitRandState The value of randn('state') at the last randomization of the
initial parameter vector.

Iterations Number of iterations performed by the estimation algorithm.

UpdateNorm Norm of the Gauss-Newton in the last iteration. Empty when
'lsqnonlin' is the search method.

LastImprovement Criterion improvement in the last iteration, shown in %.
Empty when 'lsgnonlin' is the search method.

Warning Any warnings encountered during parameter estimation.

WhyStop Reason for terminating parameter estimation iterations.
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Definitions

Nonlinear ARX Model Structure

This block diagram represents the structure of a nonlinear ARX model
in a simulation scenario:

Nonlinearity Estimator

u Nonlinear
— > ,
Regressors Function y
| uduEn ), T Troar >
- "| Function

The nonlinear ARX model computes the output y in two stages:

1 Computes regressors from the current and past input values and
past output data.

In the simplest case, regressors are delayed inputs and outputs, such
as u(t-1) and y(t-3)—called standard regressors. You can also specify
custom regressors, which are nonlinear functions of delayed inputs
and outputs. For example, tan(u(¢-1)) or w(é-1)*y(¢-3).

By default, all regressors are inputs to both the linear and the
nonlinear function blocks of the nonlinearity estimator. You can
choose a subset of regressors as inputs to the nonlinear function block.

2 The nonlinearity estimator block maps the regressors to the model
output using a combination of nonlinear and linear functions.
You can select from available nonlinearity estimators, such as
tree-partition networks, wavelet networks, and multi-layer neural
networks. You can also exclude either the linear or the nonlinear
function block from the nonlinearity estimator.

The nonlinearity estimator block can include linear and nonlinear
blocks in parallel. For example:
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Fx)=L'(x-r)+d +g(Qx—r))

x is a vector of the regressors. LT (x)+d is the output of the linear

function block and is affine when d#0. d is a scalar offset. g(Q(x—r))

represents the output of the nonlinear function block. r is the mean of
the regressors x. @ is a projection matrix that makes the calculations

well conditioned. The exact form of F(x) depends on your choice of the
nonlinearity estimator.

Estimating a nonlinear ARX model computes the model parameter
values, such as L, r, d, @, and other parameters specifying g. Resulting
models are idnlarx objects that store all model data, including model
regressors and parameters of the nonlinearity estimator. See the
idnlarx reference page for more information.

Definition of idnlarx States

The states of an idnlarx object are delayed input and output variables
that define the structure of the model. This toolbox requires states for
simulation and prediction using sim(idnlarx), predict, and compare.
States are also necessary for linearization of nonlinear ARX models
using linearize(idnlarx).

This toolbox provides a number of options to facilitate how you
specify the initial states. For example, you can use findstates and
data2state to automatically search for state values in simulation and
prediction applications. For linearization, use findop. You can also
specify the states manually.

The states of an idnlarx model are defined by the maximum delay in
each input and output variable used by the regressors. If a variable p
has a maximum delay of D samples, then it contributes D elements to
the state vector at time ¢: p(¢-1), p(¢-2), ..., p(¢-D).

For example, if you have a single-input, single-output idnlarx model:

m = idnlarx([2 3 0], 'wavenet',
‘CustomBRegressors’',
{'y1(t-10)*ut(t-1)"});
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This model has these regressors:

getreg(m)

Regressors:
y1(t-1)
y1(t-2)
ut(t)
ut(t-1)
ul(t-2)
y1(t-10)*u1(t-1)

The regressors show that the maximum delay in the output variable
y1is 10 samples and the maximum delay in the input ul is 2 samples.

Thus, this model has a total of 12 states:

X(t) = [y1(t-1),y2(t-2), ,y1(t-10),ul(t-1),ul(t-2)]

Note The state vector includes the output variables first, followed
by input variables.

As another example, consider the 2-output and 3-input model:

m = idnlarx([2 0221 100; 1015011 0],
[wavenet; linear])

getreg lists these regressors:

getreg(m)

Regressors:
For output 1:
y1(t-1)
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y1(t-2)
ul(t-1)
ul(t-2)
u2(t)
u2(t-1)
u3d(t)

For output 2:
y1(t-1)
ul(t-1)
u2(t-1)
u2(t-2)
u2(t-3)
u2(t-4)
u2(t-5)

The maximum delay in output variable y1 is 2 samples, which occurs
in regressor set for output 1. The maximum delays in the three input
variables are 2, 5, and 0, respectively. Thus, the state vector is:

X(t) = [y1(t-1), y1(t-2), ul(t-1), ut(t-2), u2(t-1),
u2(t-2), u2(t-3), u2(t-4), u2(t-5)]

Variables y2 and u3 do not contribute to the state vector because the
maximum delay in these variables is zero.

A simpler way to determine states by inspecting regressors is to use
getDelayInfo, which returns the maximum delays in all I/O variables
across all model outputs. For the multiple-input multiple-output model
m, getDelayInfo returns:

maxDel = getDelayInfo(m)
maxDel =
2 0 2 5 0

maxDel contains the maximum delays for all input and output variables
in the order (y1, y2, ut, u2, u3). The total number of model states is
sum(maxDel) = 9.

The set of states for an idnlarx model are not required to be minimal.
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Examples

See Also

Tutorials

Create nonlinear ARX model structure with (default) wavelet network
nonlinearity:

m = idnlarx([2 2 1]) % na=nb=2 and nk=1

Create nonlinear ARX model structure with sigmoid network
nonlinearity:

m=idnlarx([2 3 1],sigmoidnet('Num',15))
% number of units is 15

Create nonlinear ARX model structure with no nonlinear function in
nonlinearity estimator:

m=idnlarx([2 2 1],[])

Construct a nonlinear ARX model using a linear ARX model:

% Construct a linear ARX model.

A [1 -1.2 0.5];
B =1[0.8 1];
LinearModel = idpoly(A, B, 'Ts', 0.1);

% Construct nonlinear ARX model using the linear ARX model.
m1 = idnlarx(LinearModel)

addreg | customnet | customreg | findop(idnlarx) | getreg |
idnlmodel | linear | linearize(idnlarx) | nlarx | pem | polyreg
| sigmoidnet | wavenet

“Example — Using nlarx to Estimate Nonlinear ARX Models”
“Estimate Nonlinear ARX Models Using Linear ARX Models”
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How To + “Identifying Nonlinear ARX Models”
+ “Using Linear Model for Nonlinear ARX Estimation”
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Purpose Nonlinear ODE (grey-box model) with unknown parameters
Syntax m = idnlgrey('filename',Order,Parameters)
m = idnlgrey('filename',Order,Parameters,InitialStates)
m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)
m = idnlgrey('filename',Order,Parameters,InitialStates,
Ts,P1,V1,...,PN,VN)
Description idnlgrey is an object that represents the nonlinear grey-box model.

For information about the nonlinear grey-box models, see “Estimating
Nonlinear Grey-Box Models”.

The information in these reference pages summarizes the idnlgrey
model constructor and properties. It discusses the following topics:

¢ “idnlgrey Constructor” on page 2-359

* “idnlgrey Properties” on page 2-360

® “idnlgrey Algorithm Properties” on page 2-364

¢ “idnlgrey Advanced Algorithm Properties” on page 2-367
¢ “idnlgrey Simulation Options” on page 2-369

¢ “idnlgrey Gradient Options” on page 2-372

¢ “idnlgrey EstimationInfo Properties” on page 2-373

idnlgrey After you create the function or MEX-file with your model structure,
Constructor you must define an idnlgrey object.

Use the following syntax to define the idnlgrey model object:

m = idnlgrey('filename',Order,Parameters)

m = idnlgrey('filename',Order,Parameters,InitialStates)

m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)

m =
idnlgrey('filename',Order,Parameters,InitialStates,Ts,P1,V1,...,PN,VN
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idnigrey
Properties

2-360

The idnlgrey arguments are defined as follows:

e 'filename' — Name of the function or MEX-file storing the model
structure (ODE file).

® Order — Vector with three entries [Ny Nu Nx], specifying the
number of model outputs Ny, the number of inputs Nu, and the
number of states Nx.

® Parameters — Parameters, specified as struct arrays, cell arrays,
or double arrays.

e InitialStates — Specified in a same way as parameters. Must be
fourth input to the idnlgrey constructor.

e The command

m = idnlgrey('filename',Order,Parameters,...
InitialStates,Ts,P1,V1,...,PN,VN)

specifies idnlgrey property-value pairs. See information on
properties of idnlgrey objects below.

Estimate the unknown parameters and initial states of this object using
pem. The input-output dimensions of the data must be compatible with
the input and output orders you specified for the idnlgrey model. You
can pass additional property-value pairs to pem to specify the properties
of the model or estimation algorithm, such as MaxIter and Tolerance.

After creating the object, you can use get or dot notation to access the
object property values.

You can include property-value pairs in the model estimator or
constructor to specify the model structure and estimation algorithm
properties.

Use set or dot notation to set a property of an existing object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% Get the model time unit
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get(m, 'TimeUnit')
m.TimeUnit

The following table summarizes idnlgrey model properties. The
general idnlmodel properties also apply to this nonlinear model object
(see the corresponding reference pages).

Property Name

Description

Algorithm

A structure that specifies the estimation algorithm options, as
described in “idnlgrey Algorithm Properties” on page 2-364.

CovarianceMatrix

Covariance matrix of the estimated Parameters.
Assignable values:

® 'None' to omit computing uncertainties and save time
during parameter estimation.

® 'Estimate' to estimation covariance. Symmetric and
positive Np-by-Np matrix (or []) where Np 1s the number of
free model parameters.

EstimationInfo

A read-only structure that stores estimation settings and
results, as described in “idnlgrey EstimationInfo Properties”
on page 2-373.

FileArgument

Contains auxiliary variables passed to the ODE file (function
or MEX-file) specified in FileName. These variables may be
used as extra inputs for specifying the state and/or output
equations. FileArgument should be specified as a cell array.
Default: {}.

FileName

File name string (without extension) or a function handle
for computing the states and the outputs. If 'FileName' is
a string, then it must point to a MATLAB file, P-code file or
MEX-file. For more information about the file variables, see
“Specifying the Nonlinear Grey-Box Model Structure”.
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Property Name

Description

InitialStates

An Nx-by-1 structure array with fields as follows. Here, Nx is
the number of states of the model.

* Name: Name of the state (a string). Default value is 'x#i',
where #1i i1s an integer in [1, Nx].

e Unit: Unit of the state (a string). Default valueis ''.

e Value: Initial value of the initial state(s). Assignable values
are:

= A finite real scalar

= A finite real 1-by-Ne vector, where Ne is the number of
experiments in the data set to be used for estimation

e Minimum: Minimum value of the initial state(s). Must be
a real scalar/1-by-Ne vector of the same size as Value and
such that Minimum <= Value for all components. Default
value: -Inf(size(Value)).

e Maximum: Maximum value of the initial state(s). Must be
a real scalar/1-by-Ne vector of the same size as Value and
such that Value <= Maximum for all components. Default
value: Inf(size(Value)).

® Fixed: Specifies which component(s) of the initial state(s)
are fixed to their known values. Must be a Boolean
scalar/1-by-Ne vector of the same size as Value. Default
value: true(size(Value)) (that is, do not estimate the
initial states).

For an idnlgrey model M, the ith initial state is accessed

through M.InitialStates(i) and its subfields as

M.InitialStates(i).FIELDNAME.
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Property Name

Description

Order

Structure with following fields:

¢ ny — Number of outputs of the model structure.
¢ nu — Number of inputs of the model structure.

® nx — Number of states of the model structure.

For time series, nu is 0. For static model structures, nx is 0.

Parameters

Np-by-1 structure array with information about the model
parameters containing the following fields:

e Name: Name of the parameter (a string). Default value is
'p#i', where #i i1s an integer in [1, Np].

e Unit: Unit of the parameter (a string). Default value is

® Value: Initial value of the parameter(s). Assignable values
are:

= A finite real scalar
= A finite real column vector
= A 2-dimensional real matrix

e Minimum: Minimum value of the parameter(s). Must be a
real scalar/column vector/matrix of the same size as Value
and such that Minimum <= Value for all components. Default
value: -Inf(size(Value)).

e Maximum: Maximum value of the parameter(s). Must be a
real scalar/column vector/matrix of the same size as Value
and such that Value <= Maximum for all components. Default
value: Inf(size(Value)).

® Fixed: Specifies which component(s) of the parameter(s)
are fixed to their known values. Must be a Boolean
scalar/column vector/matrix of the same size as Value.
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Property Name

Description

Default value: false(size(Value)), (estimate all
parameter components).
For an idnlgrey model M, the ith parameter is
accessed through M.Parameters(i) and its subfields as
M.Parameters (i) .FIELDNAME.

idnigrey
Algorithm
Properties

The following table summarizes the fields of the Algorithm idnlgrey
model properties. Algorithm is a structure that specifies the
estimation-algorithm options.

Property Name

Description

Advanced A structure that specifies additional estimation algorithm
options, as described in “idnlgrey Advanced Algorithm
Properties” on page 2-367.

Criterion Specifies criterion used during minimization. Criterion can

2-364

have the following values:

® 'Det': Minimize det(E'*E) where E represents the
prediction error. This is the optimal choice in a statistical
sense and leads to the maximum likelihood estimates in
case nothing is known about the variance of the noise. It
uses the inverse of the estimated noise variance as the
weighting function. This is the default criterion used for all
models, except idnlgrey which uses 'Trace' by default.

® 'Trace': Minimize the trace of the weighted prediction
error matrix trace (E'*E*W), where E is the matrix of
prediction errors, with one column for each output, and W
is a positive semi-definite symmetric matrix of size equal
to the number of outputs. By default, W is an identity
matrix of size equal to the number of model outputs (so
the minimization criterion becomes trace(E'*E), or the
traditional least-sum-of-squared-errors criterion. You can
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Property Name

Description

specify the relative weighting of prediction errors for each
output using the Weighting field of the Algorithm property.

LimitError

Robustification criterion that limits the influence of large
residuals, specified as a positive real value. Residual values
that are larger than 'LimitError' times the estimated
residual standard deviation have a linear cost instead of the
usual quadratic cost.

Default: 0 (no robustification).

MaxIter

Maximum number of iterations for the estimation algorithm,
specified as a positive integer.
Default: 20.

SearchMethod

Method used by the iterative search algorithm.
Assignable values:

® 'Auto' — Automatically chooses from the following
methods.

® 'gn' — Gauss-Newton method.

® 'gna' — Adaptive Gauss-Newton method.

® 'grad' — A gradient method.

* 'Im' — Levenberg-Marquardt method.

e 'l1sgnonlin' — Nonlinear least-squares method (requires
the Optimization Toolbox product). This method handles
only the 'Trace' criterion.

Tolerance

Specifies to terminate the iterative search when the expected
improvement of the parameter values is less than Tolerance,
specified as a positive real value in %.

Default: 0.01.

GradientOptions

A structure that specifies the options related to calculation of
gradient of the cost, “idnlgrey Gradient Options” on page 2-372.

2-365



idnigrey

Property Name Description

SimulationOptions A structure that specifies the simulation method and related
options, as described in “idnlgrey Simulation Options” on page
2-369.

Display Toggles displaying or hiding estimation progress information

in the MATLAB Command Window.
Default: '0ff".
Assignable values:

e 'O0ff' — Hide estimation information.
® '0On' — Display estimation information.
Weighting Positive semi-definite matrix W used for weighted trace

minimization. When Criterion = 'Trace', trace(E'*E*W)
is minimized. Weighting can be used to specify relative
importance of outputs in multiple-input multiple-output
models (or reliability of corresponding data) when W is a
diagonal matrix of nonnegative values. Weighting is not
useful in single-output models. By default, Weighting is an
identity matrix of size equal to the number of outputs.
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idnigrey

Advanced
Algorithm
Properties

Note The Criterion property setting is meaningful in multiple-output
cases only. In single-output models, the two criteria are equivalent.
Both the Det and Trace criteria are derived from a general requirement
of minimizing a weighted sum of least squares of prediction errors. The
Det criterion can be interpreted as estimating the covariance matrix of
the noise source and using the inverse of that matrix as the weighting.
You should specify the weighting when using the Trace criterion.

If you want to achieve better accuracy for a particular channel in
multiple-input multiple-output models, you should use Trace with
weighting that favors that channel. Otherwise it is natural to use Det.
When using Det you can check cond(model.NoiseVariance) after
estimation. If the matrix is ill-conditioned, it may be more robust to
use the Trace criterion. You can also use compare on validation data
to check whether the relative error for different channels corresponds
to your needs or expectations. Use the Trace criterion if you need

to modify the relative errors, and check model.NoiseVariance to
determine what weighting modifications to specify.

The search method of 1sqnonlin supports the Trace criterion only.

The following table summarizes the fields of the Algorithm.Advanced
model properties. The fields in the Algorithm.Advanced structure
specify additional estimation-algorithm options.
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Property Name

Description

GnPinvConst

When the search direction is computed, the algorithm
discards the singular values of the Jacobian that are smaller
than GnPinvConst*max(size(J))*norm(J)*eps. Singular
values that are closer to 0 are included when GnPinvConst is
decreased.

Default: 1e4.

Assign a positive, real value.

LMStartValue

(For Levenberg-Marquardt search algorithm) The starting
level of regularization when using the Levenberg-Marquardt
search method (Algorithm.SearchMethod="'1m").

Default: 0.001.

Assign a positive real value.

LMStep

(For Levenberg-Marquardt search algorithm) Try this next
level of regularization to get a lower value of the criterion
function. The level of regularization is LMStep times the
previous level. At the start of a new iteration, the level of
regularization is computed as 1/LMStep times the value from
the previous iteration.

Default: 10.

Assign a real value >1.

MaxBisections

Maximum number of bisections performed by the line search
algorithm along the search direction (number of rotations of
search vector for 'Im'). Used by 'gn', '1m', '‘gna' and 'grad'’
search methods (Algorithm.SearchMethod property)

Default: 25.

Assign a positive integer value.

MaxFunEvals

The iterations are stopped if the number of calls to the model
file exceeds this value.

Default: Inf.

Assign a positive integer value.
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Property Name

Description

MinParChange

The smallest parameter update allowed per iteration.
Default: 1e-16.
Assign a positive, real value.

RelImprovement

The iterations are stopped if the relative improvement of the
criterion function is less than RelImprovement.

Default: 0.

Assign a positive real value.

Note Does not apply to
Algorithm.SearchMethod="'1lsqnonlin'

StepReduction

(For line search algorithm) The suggested parameter update

1s reduced by the factor 'StepReduction' after each try until
either 'MaxBisections' tries are completed or a lower value
of the criterion function is obtained.

Default: 2.

Assign a positive, real value >1.

Note Does not apply to
Algorithm.SearchMethod="'1lsgnonlin'

idnigrey
Simulation
Options

The following table summarizes the fields of
Algorithm.SimulationOptions model properties.
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Property Name

Description

AbsTol

Absolute error tolerance. This scalar applies to all components
of the state vector. AbsTol applies only to the variable step
solvers.

Default: 1e-6.

Assignable value: A positive real value.

FixedStep

(For fixed-step time-continuous solvers) Step size used by the
solver.

Default: 'Auto’.

Assignable values:

e 'Auto' — Automatically chooses the initial step.

® A real value such that O<FixedStep<=1.

InitialStep

(For variable-step time-continuous solvers) Specifies the initial
step at which the ODE solver starts.

Default: 'Auto’.

Assignable values:

® 'Auto' — Automatically chooses the initial step.

e A positive real value such that
MinStep<=InitialStep<=MaxStep.

MaxOrder

(For odelb5s) Specifies the order of the Numerical
Differentiation Formulas (NDF).

Default: 5.

Assignable values: 1, 2, 3, 4 or 5.

MaxStep

(For variable-step time-continuous solvers) Specifies the
largest time step of the ODE solver.

Default: 'Auto' — 1/15 of the simulation interval.
Assignable values:

® 'Auto' — Automatically chooses the time step.

® A positive real value > MinStep.

2-370



idnigrey

Property Name

Description

MinStep

(For variable-step time-continuous solvers) Specifies the
smallest time step of the ODE solver.

Default: 'Auto’.

Assignable values:

® 'Auto' — Automatically chooses the time step.

® A positive real value < MaxStep.

RelTol

(For variable-step time-continuous solvers) Relative error
tolerance that applies to all components of the state vector.
The estimated error in each integration step satisfies |e (1) |
<= max(RelTol*abs(x(i)), AbsTol(i)).

Default: 1e-3 (0.1% accuracy).

Assignable value: A positive real value.

Solver

ODE (Ordinary Differential/Difference Equation) solver for
solving state space equations.

A. Variable-step solvers for time-continuous idnlgrey models:
® '0de45' — Runge-Kutta (4,5) solver for nonstiff problems.
® '0de23' — Runge-Kutta (2,3) solver for nonstiff problems.

e '0de113' — Adams-Bashforth-Moulton solver for nonstiff
problems.

e 'ode15s' — Numerical Differential Formula solver for stiff
problems.

e '0de23s' — Modified Rosenbrock solver for stiff problems.

e '0de23t' — Trapezoidal solver for moderately stiff
problems.

e '0de23tb' — Implicit Runge-Kutta solver for stiff problems.
B. Fixed-step solvers for time-continuous idnlgrey models:

e 'ode5' — Dormand-Prince solver.
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Property Name Description
e 'ode4' — Fourth-order Runge-Kutta solver.
e 'ode3' — Bogacki-Shampine solver.
e 'ode2' — Heun or improved Euler solver.
® 'odel' — Euler solver.

C. Fixed-step solvers for time-discrete idnlgrey models:
'FixedStepDiscrete’

D. General: 'Auto' — Automatically chooses one of the
previous solvers (default).

idnlgrey The following table summarizes the fields of the
Gradient Algorithm.GradientOptions model properties. Algorithm is
opﬁon s a structure that specifies the estimation-algorithm options.
Property Name Description
DiffMaxChange Largest allowed parameter perturbation when computing

numerical derivatives.
Default: Inf.
Assignable value: A positive real value >'DiffMinChange'.

DiffMinChange Smallest allowed parameter perturbation when computing
numerical derivatives.

Default: 0.01*sqrt(eps).

Assignable value: A positive real value <'DiffMaxChange'.
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Property Name

Description

DiffScheme

Method for computing numerical derivatives with respect to
the components of the parameters and/or the initial state(s) to
form the Jacobian.

Default: 'Auto’

Assignable values:

e 'Auto’' - Automatically chooses from the following methods.
e 'Central approximation'

® 'Forward approximation'

e 'Backward approximation'

GradientType

Method used when computing derivatives (Jacobian) of the
parameters or the initial states to be estimated.

Default: 'Auto’.

Assignable values:

® 'Auto' — Automatically chooses from the following
methods.

® 'Basic' — Individually computes all numerical derivatives
required to form each column of the Jacobian.

e 'Refined' — Simultaneously computes all numerical
derivatives required to form each column of the Jacobian.

idnigrey

The following table summarizes the fields of the EstimationInfo model

EstimationIinfo properties. The read-only fields of the EstimationInfo structure store

Properties

estimation settings and results.
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Property Name

Description

Status Shows whether the model parameters were estimated.

Method Names of the solver and the optimizer used during estimation.

LossFcn Value of the loss function, equal to det (E' *E/N), where E is
the residual error matrix (one column for each output) and
N is the total number of samples. Provides a quantitative
description of the model quality.

FPE Value of Akaike’s Final Prediction Error (see fpe).

DataName Name of the data from which the model is estimated.

DataLength Length of the estimation data.

DataTs Sampling interval of the estimation data.

DataDomain 'Time' means time domain data. 'Frequency' is not
supported.

DatalInterSample Intersample behavior of the input estimation data used for
interpolation:
® 'zoh' means zero-order-hold, or piecewise constant.

e 'foh' means first-order-hold, or piecewise linear.

EstimationTime Duration of the estimation.

InitialGuess Structure with the fields InitialStates and Parameters,
specifying the values of these quantities before the last
estimation.

Iterations Number of iterations performed by the estimation algorithm.

LastImprovement Criterion improvement in the last iteration, shown in %.

Empty when SearchMethod="'1sgnonlin' is the search
method.




idnigrey

Property Name

Description

UpdateNorm Norm of the search vector (Gauss-Newton vector) at the last
iteration. Empty when 'lsqnonlin' is the search method.
Warning Any warnings encountered during parameter estimation.
WhyStop Reason for terminating parameter estimation iterations.
Definition The states of an idnlgrey model are defined explicitly by the user in
of the function or MEX-file (as specified in the FileName property of the
idnlgrey model) storing the model structure . The concept of states is useful for
functions such as sim, predict, compare, and findstates.
States
Note The initial values of the states are configured by the
InitialStates property of the idnlgrey model.
See Also pem | get | set | getinit | setinit | getpar | idnlmodel | setpar
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Purpose Hammerstein-Wiener model
Syntax m = idnlhw([nb nf nk])
m = idnlhw([nb nf nk],InputNL,OutputNL)
m = idnlhw([nb nf nk],InputNL,OutputNL,'PropertyName',
PropertyValue)
m = idnlhw(LinModel)
m = idnlhw(LinModel ,InputNL ,OutputNL)
m = idnlhw(LinModel ,InputNL ,OutputNL, 'PropertyName',
PropertyValue)
Description Represents Hammerstein-Wiener models. The Hammerstein-Wiener

structure represents a linear model with input-output nonlinearities.

Typically, you use the nlhw command to both construct the idnlhw
object and estimate the model parameters. You can configure the
model properties directly in the nlhw syntax. For information
about the Hammerstein-Wiener model structure, see “Structure of
Hammerstein-Wiener Models”.

You can also use the idnlhw constructor to create the
Hammerstein-Wiener model structure and then estimate the
parameters of this model using pem.

For idnlhw object properties, see:

¢ “idnlhw Model Properties” on page 2-379

® “idnlhw Algorithm Properties” on page 2-380

¢ “idnlhw Advanced Algorithm Properties” on page 2-384
¢ “idnlhw EstimationInfo Properties” on page 2-386

Construction m = idnlhw([nb nf nk]) creates an idnlhw object using default
piecewise linear functions for the input and output nonlinearity
estimators. nb, nf, and nk are positive integers that specify model
orders and delays. nb is the number of zeros plus 1, nf is the number of
poles, and nk is the input delay.

2-376



idnlhw

Input
Arguments

m = idnlhw([nb nf nk],InputNL,OutputNL) specifies input
nonlinearity InputNL and output nonlinearity OutputNL, as a
nonlinearity estimator object or string representing the nonlinearity
estimator type.

m = idnlhw([nb nf
nkl,InputNL,OutputNL,'PropertyName',PropertyValue) creates the
object using options specified as idnlhw property name and value pairs.
Specify PropertyName inside single quotes.

m = idnlhw(LinModel) uses a linear model (in place of [nb nf nk]) and
default piecewise linear functions for the input and output nonlinearity
estimators. LinModel is a discrete time input-output polynomial model
of Output-Error (OE) structure (idpoly) or state-space model with no
disturbance component (idss with K = 0) for single-output systems, and
idss model with K = 0 for multi-output systems. LinModel sets the
model orders, input delay, B and F polynomial values, input-output
names and units, sampling time, and time units of m.

m = idnlhw(LinModel,InputNL ,OutputNL) specifies input

nonlinearity InputNL and output nonlinearity OutputNL.

m =

idnlhw(LinModel ,InputNL ,OutputNL,'PropertyName' ,PropertyValue)
creates the object using options specified as idnlhw property

name and value pairs.

nb, nf, nk

Model orders and input delay, where nb is the number of zeros plus 1,
nf is the number of poles, and nk is the input delay.

For nu inputs and ny outputs, nb, nf, and, nk are ny-by-nu matrices
whose i-jth entry specifies the orders and delay of the transfer function
from the jth input to the ith output.

InputNL, OutputNL

2-377



idnlhw

Input and output nonlinearity estimators, respectively, specified as a
nonlinearity estimator object or string representing the nonlinearity
estimator type.

'pwlinear' or pwlinear object (default) Piecewise linear
function
'sigmoidnet' or sigmoidnet object Sigmoid network
'wavenet' or wavenet object Wavelet network
'saturation' or saturation object Saturation
'deadzone' or deadzone object Dead zone
'polyid' or polyid object One-dimensional
polynomial
‘unitgain' or unitgain object Unit gain
customnet object Custom network

Specifying a string creates a nonlinearity estimator object with default
settings. Use object representation to configure the properties of a
nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators
individually for each output channel by setting InputNL or OutputNL
to an ny-by-1 cell array or object array of nonlinearity estimators. To
specify the same nonlinearity for all outputs, specify a single input
and output nonlinearity estimator.

LinModel

Discrete time linear model, typically estimated using the oe or n4sid
command:

¢ Input-output polynomial model of Output-Error (OE) structure
(idpoly) or state-space model with no disturbance component (idss
with K = 0), for single-output systems

¢ State-space model with no disturbance component (idss model with
K = 0), for multi-output systems
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idnlhw
Model
Properties

After creating the object, you can use get or dot notation to access the
object property values. For example:

% Get the model B parameters

get(m,'b")

% Get value of InputNonlinearity property
m.InputNonlinearity

You can specify property name-value pairs in the model estimator or
constructor to specify the model structure and estimation algorithm.

Use set or dot notation to set a property of an existing object.

The following table summarizes idnlhw model properties. The general
idnlmodel properties also apply to this nonlinear model object (see
the corresponding reference page).

Property Name

Description

Algorithm

A structure that specifies the estimation algorithm options, as
described in “idnlhw Algorithm Properties” on page 2-380.

B polynomial as a cell array of Ny-by-Nu elements, where Ny

is the number of outputs and Nu is the number of inputs. An
element b{i,j} is a row vector representing the numerator
polynomial for the jth input to ith output transfer function. It
contains as many leading zeros as there are input delays.

F polynomial as a cell array of Ny-by-Nu elements, where Ny is
the number of outputs and Nu is the number of inputs. An
element f{i,j} is a row vector representing the denominator
polynomial for the j:th input to ith output transfer function.

LinearModel

(Read only) The linear model in the linear block. For single
output, represented as an idpoly object. For multiple output,
represented as an idss object.
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Property Name

Description

EstimationInfo (Read-only) Structure that stores estimation settings and
results, as described in “idnlhw EstimationInfo Properties”
on page 2-386.

InputNonlinearity Nonlinearity estimator object. Assignable values include
pwlinear (default), deadzone, wavenet, saturation,
customnet, sigmoidnet, polyid, and unitgain. For more
information, see the corresponding reference pages.

For ny outputs, Nonlinearity is an ny-by-1 array, such as
[sigmoidnet;wavenet]. However, if you specify a scalar
object, this nonlinearity object applies to all outputs.

OutputNonlinearity Same as InputNonlinearity.

nb Model orders and input delays, where nb is the number of

nf zeros plus 1, nf is the number of poles, and nk is the delay

nk from input to output in terms of the number of samples.

For nu inputs and ny outputs, nb, nf and, nk are ny-by-nu

matrices whose i-jth entry specifies the orders and delay of the

transfer function from the jth input to the ith output.
idnlhw The following table summarizes the fields of the Algorithm idnlhw
Alggrithm model properties. Algorithm is a structure that specifies the
Properties estimation-algorithm options.
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Property Name

Description

Advanced A structure that specifies additional estimation algorithm
options, as described in “idnlhw Advanced Algorithm
Properties” on page 2-384.

Criterion The search method of 1sqnonlin supports the Trace criterion

only.

Use for multiple-output models only. Criterion can have the
following values:

e 'Det': Minimize det (E'*E), where E represents the
prediction error. This is the optimal choice in a statistical
sense and leads to the maximum likelihood estimates in
case nothing is known about the variance of the noise. It
uses the inverse of the estimated noise variance as the
weighting function. This is the default criterion used for all
models, except idnlgrey which uses 'Trace' by default.

® 'Trace': Minimize the trace of the weighted prediction
error matrix trace(E'*E*W), where E 1s the matrix of
prediction errors, with one column for each output, and W
1s a positive semi-definite symmetric matrix of size equal
to the number of outputs. By default, W is an identity
matrix of size equal to the number of model outputs (so
the minimization criterion becomes trace (E'*E), or the
traditional least-squares criterion). You can specify the
relative weighting of prediction errors for each output using
the Weighting field of the Algorithm property. If the
model contains neuralnet or treepartition as one of its
nonlinearity estimators, weighting is not applied because
estimations are independent for each output.

Both the Det and Trace criteria are derived from a general
requirement of minimizing a weighted sum of least squares of
prediction errors. Det can be interpreted as estimating the
covariance matrix of the noise source and using the inverse of
that matrix as the weighting. You should specify the weighting
when using the Trace criterion.
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Property Name

Description

If you want to achieve better accuracy for a particular channel
in MIMO models, use Trace with weighting that favors

that channel. Otherwise, use Det. If you use Det, check
cond(model.NoiseVariance) after estimation. If the matrix
is ill-conditioned, try using the Trace criterion. You can also
use compare on validation data to check whether the relative
error for different channels corresponds to your needs or
expectations. Use the Trace criterion if you need to modify the
relative errors, and check model.NoiseVariance to determine
what weighting modifications to specify.

IterWavenet

(For wavenet nonlinear estimator only)

Implicitly set to perform iterative estimation. Changing this
setting does not impact the algorithm.

Default: 'On"'.

LimitError

Robustification criterion that limits the influence of large
residuals, specified as a positive real value. Residual values
that are larger than 'LimitError' times the estimated
residual standard deviation have a linear cost instead of the
usual quadratic cost.

Default: 0 (no robustification).

MaxIter

Maximum number of iterations for the estimation algorithm,
specified as a positive integer.
Default: 20.
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Property Name

Description

MaxSize

The number of elements (size) of the largest matrix to be
formed by the algorithm. Computational loops are used for
larger matrices. Use this value for memory/speed trade-off.
MaxSize can be any positive integer. Default: 250000.

Note The original data matrix of u and y must be smaller
than MaxSize.

SearchMethod

Method used by the iterative search algorithm.
Assignable values:

® 'Auto' — Automatically chooses from the following
methods.

® 'gn' — Gauss-Newton method.

® 'gna' — Adaptive Gauss-Newton method.

® 'grad' — A gradient method.

e 'Im' — Levenberg-Marquardt method.

® '1sgnonlin' — Nonlinear least-squares method (requires
the Optimization Toolbox product). This method handles
only the 'Trace' criterion.

Tolerance

Specifies to terminate the iterative search when the expected
improvement of the parameter values is less than Tolerance,
specified as a positive real value in %.

Default: 0.01.

2-383



idnlhw

Property Name

Description

Display

Toggles displaying or hiding estimation progress information
in the MATLAB Command Window.

Default: '0ff".

Assignable values:

e 'O0ff' — Hide estimation information.

® 'On' — Display estimation information.

Weighting

Positive semi-definite matrix W used for weighted trace
minimization. When Criterion = 'Trace', trace(E'*E*W)
is minimized. Weighting can be used to specify relative
importance of outputs in multiple-input multiple-output
models (or reliability of corresponding data) when W is a
diagonal matrix of nonnegative values. Weighting is not
useful in single-output models. By default, Weighting is an
identity matrix of size equal to the number of outputs.

idnlhw

Advanced
Algorithm
Properties

The following table summarizes the fields of the Algorithm.Advanced
model properties. The fields in the Algorithm.Advanced structure
specify additional estimation-algorithm options.

Property Name

Description

GnPinvConst

When the search direction is computed, the algorithm
discards the singular values of the Jacobian that are smaller
than GnPinvConst*max(size(J))*norm(J)*eps. Singular
values that are closer to 0 are included when GnPinvConst is
decreased.

Default: 1e4.

Assign a positive, real value.

2-384

LMStartValue

(For Levenberg-Marquardt search algorithm) The starting
level of regularization when using the Levenberg-Marquardt
search method (Algorithm.SearchMethod="'1m").
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Property Name

Description

Default: 0.001.
Assign a positive real value.

LMStep

(For Levenberg-Marquardt search algorithm) Try this next
level of regularization to get a lower value of the criterion
function. The level of regularization is LMStep times the
previous level. At the start of a new iteration, the level of
regularization is computed as 1/LMStep times the value from
the previous iteration.

Default: 10.

Assign a real value >1.

MaxBisections

Maximum number of bisections performed by the line search
algorithm along the search direction (number of rotations of
search vector for '1m'). Used by 'gn', '1m', 'gna' and 'grad'
search methods (Algorithm.SearchMethod property).
Default: 10.

Assign a positive integer value.

MaxFunEvals

The iterations are stopped if the number of calls to the model
file exceeds this value.

Default: Inf.

Assign a positive integer value.

MinParChange

The smallest parameter update allowed per iteration.
Default: 1e-16.
Assign a positive, real value.
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Property Name

Description

RelImprovement

The iterations are stopped if the relative improvement of the
criterion function is less than RelImprovement.

Default: 0.

Assign a positive real value.

Note This does not apply when
Algorithm.SearchMethod='1sqnonlin'.

StepReduction

(For line search algorithm) The suggested parameter update

is reduced by the factor 'StepReduction' after each try until
either 'MaxBisections' tries are completed or a lower value
of the criterion function is obtained.

Default: 2.

Assign a positive, real value >1.

Note This does not apply when
Algorithm.SearchMethod="'1sqnonlin’.

idnlhw

EstimationIinfo properties. The read-only fields of the EstimationInfo structure store
Properties

The following table summarizes the fields of the EstimationInfo model

estimation settings and results.

Property Name

Description

Status Shows whether the model parameters were estimated.
Method Shows the estimation method.
LossFcn Value of the loss function, equal to det (E' *E/N), where E is

the residual error matrix (one column for each output) and N is
the total number of samples.
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Property Name

Description

FPE Value of Akaike’s Final Prediction Error (see fpe).
DataName Name of the data from which the model is estimated.
DataLength Length of the estimation data.
DataTs Sampling interval of the estimation data.
DataDomain 'Time' means time domain data. 'Frequency' is not
supported.
DataInterSample Intersample behavior of the input estimation data used for
interpolation:
® 'zoh' means zero-order-hold, or piecewise constant.
e 'foh' means first-order-hold, or piecewise linear.
WhyStop Reason for terminating parameter estimation iterations.
UpdateNorm Norm of the search vector (gn-vector) in the last iteration.
Empty when 'lsqnonlin' is the search method.
LastImprovement Criterion improvement in the last iteration, shown in %.
Empty when 'lsgnonlin' is the search method.
Iterations Number of iterations performed by the estimation algorithm.
Warning Any warnings encountered during parameter estimation.
InitRandState The value of random number type and seed at the last
randomization of the initial parameter vector.
EstimationTime Duration of the estimation.
Definitions Hammerstein-Wiener Model Structure

This block diagram represents the structure of a Hammerstein-Wiener
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u(t) nput | w(t) | Linear | x) | Output ) yt)
——>» Nonlinearity » Block » Nonlinearity (—»
f B/F h

where:

* w(t) = f(u(f)) is a nonlinear function transforming input data wu(t). w(z)
has the same dimension as u(%).

* x(t) = (B/F)w(t) 1s a linear transfer function. x(¢) has the same
dimension as y(t).

where B and F are similar to polynomials in the linear Output-Error
model, as described in “What Are Polynomial Models?”.

For ny outputs and nu inputs, the linear block is a transfer function
matrix containing entries:

Bj,i(q)
Fj,i (@)

where j=1,2,...,nyandi=1,2,...,nu.

® y(t) = h(x(?)) is a nonlinear function that maps the output of the linear
block to the system output.

w(t) and x(t) are internal variables that define the input and output
of the linear block, respectively.

Because f acts on the input port of the linear block, this function is
called the input nonlinearity. Similarly, because h acts on the output
port of the linear block, this function is called the output nonlinearity.
If system contains several inputs and outputs, you must define the
functions f and A for each input and output signal.

You do not have to include both the input and the output nonlinearity in
the model structure. When a model contains only the input nonlinearity
f, it is called a Hammerstein model. Similarly, when the model contains
only the output nonlinearity A), it is called a Wiener model.
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The nonlinearities f and h are scalar functions, one nonlinear function
for each input and output channel.

The Hammerstein-Wiener model computes the output y in three stages:

1 Computes w(t) = f(u(t)) from the input data.
w(t) is an input to the linear transfer function B/F.

The input nonlinearity is a static (memoryless) function, where the
value of the output a given time ¢ depends only on the input value at
time ¢.

You can configure the input nonlinearity as a sigmoid network,
wavelet network, saturation, dead zone, piecewise linear function,
one-dimensional polynomial, or a custom network. You can also
remove the input nonlinearity.

2 Computes the output of the linear block using w(t) and initial
conditions: x(f) = (B/Fw(t).

You can configure the linear block by specifying the numerator B
and denominator F orders.

3 Compute the model output by transforming the output of the linear
block x(¢) using the nonlinear function h: y(¢) = h(x(2)).

Similar to the input nonlinearity, the output nonlinearity is a static
function. Configure the output nonlinearity in the same way as the
input nonlinearity. You can also remove the output nonlinearity,
such that y(t) = x(¢).

Resulting models are idnlhw objects that store all model data, including
model parameters and nonlinearity estimator. See the idnlhw reference
page for more information.

idnlhw States

This toolbox requires states for simulation and prediction using
sim(idnlhw), predict, and compare. States are also necessary for
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linearization of nonlinear ARX models using linearize (idnlhw). This
toolbox provides a number of options to facilitate how you specify the
initial states. For example, you can use findstates and data2state
to automatically search for state values in simulation and prediction
applications. For linearization, use findop. You can also specify the
states manually.

The states of the Hammerstein-Wiener model correspond to the states
of the linear block in the Hammerstein-Wiener model structure:

lineat maodel
[48C,D]

¥

|

% o f

The linear block contains all the dynamic elements of the model. If
this linear model is not a state-space structure, the states are defined
as those of model Mss, where Mss = idss(Model.LinearModel) and
Model is the idnlhw object.

Create default Hammerstein-Wiener model structure:

m = idnlhw([2 2 1]) % na=nb=2 and nk=1
% m has piecewise linear input and output nonlinearity

Create nonlinear ARX model structure with sigmoid network
nonlinearity:

m=idnlarx([2 3 1],sigmoidnet('Num',15))
% number of units is 15

Create Hammerstein-Wiener model with specific input-output
nonlinearities:

m=idnlhw([2 2 1], 'sigmoidnet', 'deadzone')
% Equivalent to m=idnlhw([2 2 1], 'sig', 'dead')
% Nonlinearities have default configuration
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See Also

Create Hammerstein-Wiener model and configure the nonlinearity
objects:

m=idnlhw([2 2 1],sigmoidnet('num',5),deadzone([-1,2]))

Create a Hammerstein model (no output nonlinearity):

m=idnlhw([2 2 1], 'saturation',[])
% [] specifies unitgain output nonlinearity

Configure the Hammerstein-Wiener model and estimate models
parameters:

mO0 = idnlhw([nb,nf,nk],[sigmoidnet;pwlinear],[]);
m = pem(data,m0); % equivalent to m=nlhw(data,mO)

Construct default Hammerstein-Wiener model using an input-output
polynomial model of Output-Error structure:

% Construct an input-output polynomial model of OE structure.

B =1[0.8 1];
F=11-1.2 0.5];
LinearModel = idpoly(1, B, 1,1, F, 'Ts', 0.1);

% Construct Hammerstein-Wiener model using OE model
% as its linear component.
m1 = idnlhw(LinearModel, 'saturation', [])

customnet | idnlmodel | linear | linearize(idnlhw) | nlhw | pem |
polyid | saturation | sigmoidnet | wavenet | saturation
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Tutorials + “Example — Using nlhw to Estimate Hammerstein-Wiener Models”

+ “Estimate Hammerstein-Wiener Models Using Linear OE Models”

How To + “Identifying Hammerstein-Wiener Models”

+ “Using Linear Model for Hammerstein-Wiener Estimation”
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Purpose

Description

idnimodel
Properties

Superclass for nonlinear models

You do not use the idnlmodel class directly. Instead, idnlmodel
defines the common properties and methods inherited by its subclasses,
idnlarx, idnlgrey, and idnlhw.

The following table lists the properties shared by the idnlarx,
idnlgrey, and idnlhw, defined in terms of Ny outputs and Nu inputs.

Property Name

Description

InputName

Specifies the names of individual input channels.
Default: {'u1';'u2';...;"'uNu'}.

Assignable values:

¢ For single-output models, a string. For example, 'torque'.

¢ For multiple-output models, an nu-by-1 cell array. For
example:
{'thrust'; 'aileron deflection'}

InputUnit

Specifies the units of each input channel.
Default: ''.

Assignable values:

¢ For single-output models, a string. For example, 'm/s"'.

¢ For multiple-output models, an nu-by-1 cell array.

Name

Name of the model, specified as a string.

NoiseVariance

Noise variance (covariance matrix) of the model innovations e.
Assignable value is an ny-by-ny matrix.
Typically set automatically by the estimation algorithm.
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Property Name Description
OutputName Specifies the names of individual output channels.
Default: {'y1';'y2';...;'yNy'}.

Assignable values:

® For single-output models, a string. For example, 'torque'.

¢ For multiple-output models, an ny-by-1 cell array. For

example:
{'thrust'; 'aileron deflection'}
OutputUnit Specifies the units of each output channel.
Default: ''.

Assignable values:

¢ For single-output models, a string. For example, 'm/s".

¢ For multiple-output models, an ny-by-1 cell array.

TimeUnit Unit of the sampling interval and time vector, specified as one
of the following:

® 'nanoseconds'

® 'microseconds'

‘'milliseconds'
® 'seconds'

® 'minutes’

® 'hours'
®* 'days'

* 'weeks'
® 'months'
® 'years'

Default: 'seconds'.
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Property Name Description

TimeVariable Independent variable for the inputs, outputs, and—when
available—internal states, specified as a string.
Default: 't' (time).

Ts Sampling interval with the unit specified by TimeUnit.
Default: 1.

Assignable values:

¢ For discrete-time models, positive scalar value of the
sampling interval.

¢ For continuous-time models, 0(idnlgrey models only).

See Also

idnlarx
idnlgrey
idnlhw
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Purpose

Syntax

Description

Tips

Input
Arguments
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Create parameter for initial states and input level estimation

p = idpar(paramvalue)
idpar(paramname,paramvalue)

el
1}

p = idpar(paramvalue) creates an estimable parameter with initial
value paramvalue. The parameter, p, is either scalar or array-valued,
with the same dimensions as paramvalue. You can configure attributes
of the parameter, such as which elements are fixed and which are
estimated, and lower and upper bounds.

p = idpar(paramname,paramvalue) sets the Name property of p to the
string paramname.

Use idpar to create estimable parameters for:

e Initial state estimation for state-space model estimation (ssest),
prediction (predict), and forecasting (forecast)

¢ Explicit initial state estimation with findstates
® Input level estimation for process model estimation with pem

Specifying estimable state values or input levels gives you explicit
control over the behavior of individual state values during estimation.

paramvalue
Initial parameter value.

paramvalue is a numeric scalar or array that determines both the
dimensions and initial values of the estimable parameter p. For
example, p = idpar(eye(3)) creates a 3-by-3 parameter whose initial
value is the identity matrix.

paramvalue should be:

® A column vector of length IV, the number of states to estimate, if you
are using p for initial state estimation.
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Output
Arguments

® An N_-by-N, array, if you are using p for initial state estimation with
multi-experiment data. N, is the number of experiments.

¢ A column vector of length N, the number of inputs to estimate, if you
are using p for input level estimation.

® An N, -by-N, array, if you are using p for input level estimation with
multi-experiment data.

If the initial value of a parameter is unknown, use NaN.

paramname
String specifying the Name property of p.

The Name property is not used in state estimation or input level
estimation. You can optionally assign a name for convenience. For
example, you can assign x0 as the name of a parameter created for
initial state estimation.

Default: 'par'

P

Estimable parameter, specified as a param.Continuous object.

p can be either scalar- or array-valued. p takes its dimensions and
initial value from paramvalue.

p contains the following fields:
® Value — Scalar or array value of the parameter.

The dimension and initial value of p.Value are taken from
paramvalue when p is created.

® Minimum — Lower bound for the parameter value. When you use p in
state estimation or input value estimation, the estimated value of the
parameter does not drop below p.Minimum.

The dimensions of p.Minimum must match the dimensions of p.Value.

For array-valued parameters, you can:
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= Specify lower bounds on individual array elements. For example,
p.Minimum([1 4]) = -5.

= Use scalar expansion to set the lower bound for all array elements.
For example, p.Minimum = -5

Default: -Inf

Maximum — Upper bound for the parameter value. When you use p
In state estimation or input value estimation, the estimated value of
the parameter does not exceed p.Maximum.

The dimensions of p.Maximum must match the dimensions of p.Value.
For array-valued parameters, you can:

= Specify upper bounds on individual array elements. For example,
p.Maximum([1 4]) = 5.

= Use scalar expansion to set the upper bound for all array elements.
For example, p.Maximum = 5

Default: Inf

Free — Boolean specifying whether the parameter is a free
estimation variable.

The dimensions of p.Free must match the dimensions of p.Value.
By default, all values are free (p.Free = true).

If you want to estimate p.Value (k) , set p.Free(k) = true. To fix
p.Value(k), set p.Free(k) = false. Doing so allows you to control
which states or input values are estimated and which are not.

For array-valued parameters, you can:

= Fix individual array elements. For example, p.Free([1
4]) = false; p.Free = [1 0; 0 1].

= Use scalar expansion to fix all array elements. For example,
p.Free = false.

Default: true (1)

® Scale — Scaling factor for normalizing the parameter value.
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p.Scale is not used in initial state estimation or input value
estimation.

Default: 1

® Info — Structure array for storing parameter units and labels. The
structure has Label and Unit fields.

Use these fields for your convenience, to store
strings that describe parameter units and labels.
For example, p.Info(1,1).Unit = 'rad/m';
p.Info(1,1).Label = 'engine speed’.

The dimensions of p. Info must match the dimensions of p.Value.
Default: '' for both Label and Unit fields
® Name — Parameter name.

This property is read-only. It is set to the paramname input argument
when you create the parameter.

Default: '

Create and Configure Parameter for State Estimation

Create and configure a parameter for estimating the initial state values
of a 4-state system. Fix the first state value to 1. Limit the second and
third states to values between 0 and 1.

paramvalue = [1; nan(3,1)];
p = idpar('x0',paramvalue);
p.Free(1) = 0;

p.Minimum([2 3])
p.Maximum([2 3])

0;
13

The column vector paramvalue specifies an initial value of 1 for the first
state. paramvalue further specifies unknown values for the remaining
3 states.

Setting p.Free (1) to false fixes p.Value(1) to 1. Estimation using p
does not alter that value.
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Setting p.Minimum and p.Maximum for the second and third entries in p
limits the range that those values can take when p is used in estimation.

You can now use p in initial state estimation, such as

with the findstates command. For example, use opt =
findstatesOptions('InitialState',p) to create a findstates
options set that uses p. Then, call findstates with that options set.

predict | findstates(idParametric) | findstatesOptions |
forecast | ssest | pem
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Purpose

Syntax

Description

Polynomial model with identifiable parameters

Sys idpoly(A,B,C,D,F,NoiseVariance,Ts)
sys = idpoly(A,B,C,D,F,NoiseVariance,Ts,Name,Value)

sys = idpoly(A)
sys = idpoly (A,
A

[l
sys = idpoly(A,[]

,C,D,[],NoiseVariance,Ts)
C,D,[],NoiseVariance,Ts,Name,Value)

) H H H

sys = idpoly(sysO0)
sys = idpoly(sysO, 'split')

sys = idpoly(A,B,C,D,F,NoiseVariance,Ts) creates a polynomial
model with identifiable coefficients. A, B, C, D, and F specify the initial
values of the coefficients. NoiseVariance specifies the initial value of
the variance of the white noise source. Ts is the model sampling time.

sys = idpoly(A,B,C,D,F,NoiseVariance,Ts,Name,Value) creates
a polynomial model using additional options specified by one or more
Name,Value pair arguments.

sys = idpoly(A) creates a time series model with only an
autoregressive term. In this case, sys represents the AR model given
by A(g™) y(t) = e(t). The noise e(t) has variance 1. A specifies the initial
values of the estimable coefficients.

sys = idpoly(A,[]1,C,D,[]1,NoiseVariance,Ts) creates a time series
model with an autoregressive and a moving average term. The inputs
A, C, and D, specify the initial values of the estimable coefficients.
NoiseVariance specifies the initial value of the noise e(¢). Ts is the
model sampling time. (Omit NoiseVariance and Ts to use their
default values.)

If D = [], then sys represents the ARMA model given by:
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sys = idpoly(A,[]1,C,D,[],NoiseVariance,Ts,Name,Value) creates
a time series model using additional options specified by one or more
Name,Value pair arguments.

sys = idpoly(sys0) converts any dynamic system model, sysO, to
idpoly model form.

sys = idpoly(sysO0, 'split') converts sysO to idpoly model form,
and treats the last IV, input channels of sys0 as noise channels in the
returned model. sysO must be a numeric (non-identified) tf, zpk, or ss
model object. Also, sys0 must have at least as many inputs as outputs.

An idpoly model represents a system as a continuous-time or
discrete-time polynomial model with identifiable (estimable) coefficients.

A polynomial model of a system with input vector u, output vector y,
and disturbance e takes the following form in discrete time:

B(q) C(@)
A £ =—2ul)+=—2telt
(@)y(@) Q) u(t) + D@) e(t)

In continuous time, a polynomial model takes the following form:

B(s) Uls)+ C(s)
F(s) D(s)

A()Y (s) = E(s)

U(s) are the Laplace transformed inputs to sys. Y(s) are the Laplace
transformed outputs. E(s) is the Laplace transform of the disturbance.

For idpoly models, the coefficients of the polynomials A, B, C, D, and F
can be estimable parameters. The idpoly model stores the values of
these matrix elements in the a, b, ¢, d, and f properties of the model.
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Time series models are special cases of polynomial models for systems
without measured inputs. For AR models, b and f are empty, and ¢ and
d are 1 for all outputs. For ARMA models, b and f are empty, while d
is 1.

There are three ways to obtain an idpoly model:

e Estimate the idpoly model based on output or input-output
measurements of a system, using such commands as polyest, arx,
armax, oe, bj, iv4, or ivar. These estimation commands estimate
the values of the free polynomial coefficients. The estimated values
are stored in the a, b, ¢, d, and f properties of the resulting idpoly
model. The Report property of the resulting model stores information
about the estimation, such as handling of initial conditions and
options used in estimation.

When you obtain an idpoly model by estimation, you can extract
estimated coefficients and their uncertainties from the model using
commands such as polydata, getpar, or getcov.

e (Create an idpoly model using the idpoly command.

You can create an idpoly model to configure an initial
parameterization for estimation of a polynomial model to fit
measured response data. When you do so, you can specify constraints
on the polynomial coefficients. For example, you can fix the values
of some coefficients, or specify minimum or maximum values for

the free coefficients. You can then use the configured model as an
Input argument to polyest to estimate parameter values with those
constraints.

® Convert an existing dynamic system model to an idpoly model using
the idpoly command.

Multi-Output ARMAX Model

Create an idpoly model representing the one-input, two-output
ARMAX model described by the following equations:
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¥1 (£)+ 0.5y, (£ —1)+ 0.9y, (£ 1)+ 0.1y, (- 2) =
u(t)+5u(t—1)+2u(t—2)+e; (£)+0.01e; (¢ -1)
¥2 (£)+0.05y5 (¢ -1)+0.3y5 (¢ -2) =
10u(t—2)+eg (t)+0.1eg (£ —1)+0.02e5 (£ - 2).

y, and y, are the two outputs, and u is the input. e; and e, are the white
noise disturbances on the outputs y, and y, respectively.

To create the idpoly model, define the A, B, and C polynomials that
describe the relationships between the outputs, inputs, and noise
values. (Because there are no denominator terms in the system
equations, B and F are 1.)

Define the cell array containing the coefficients of the A polynomials.

A = cell(2,2);

A{1,1} = [1 0.5];
A{1,2} [0 0.9 0.1];
A{2,1} = [0];

A{2,2} = [1 0.05 0.3];

You can read the values of each entry in the A cell array from the left
side of the equations describing the system. For example, A{1,1}
describes the polynomial that gives the dependence of y, on itself. This
polynomial is A}, = 1 + 0.5¢7!, because each factor of g~* corresponds
to a unit time decrement. Therefore, A{1,1} = [1 0.5], giving the
coefficients of A, in increasing exponents of g~'.

Similarly, A{1,2} describes the polynomial that gives the dependence of
y, on y,. From the equations, A;, =0+ 0.9¢"! + 0.1¢"2. Thus, A{1,2}
= [0 0.9 0.1].

The remaining entries in A are similarly constructed.
Define the cell array containing the coefficients of the B polynomials.

B = cell(2,1);
B{1,1} = [1 5 2];
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B{2,1} = [0 0 10];

B describes the polynomials that give the dependence of the outputs
y, and y, on the input u. From the equations, B, =1 + 597! + 2¢2
Therefore, B{1,1} = [1 5 2].

Similarly, from the equations, B,; =0 + 0g~! + 10¢g~2. Therefore, B{2,1}
= [0 0 10].

Define the cell array containing the coefficients of the C polynomials.

C = cell(2,1);
C{1,1} = [1 0.01];
c{2,1} = [1 0.1 0.02];

C describes the polynomials that give the dependence of the outputs y,
and y, on the noise terms e, and e,. The entries of C can be read from
the equations similarly to those of A and B.

Create an idpoly model with the specified coefficients.

Sys idpoly(A,B,C)

Sys
Discrete-time ARMAX model:
Model for output number 1: A(z)y_1(t) = - A_i(z)y_i(t) + B(z)u(t) +
A(z) =1 + 0.5 z*-1

A 2(z) =0.92z"-1+0.1 z"-2
B(z) =1+52z"-1+22z"-2
C(z) =1+ 0.01 z~-1

Model for output number 2: A(z)y_2(t) = B(z)u(t) + C(z)e_2(t)
A(z) =1+ 0.05 z*-1 + 0.3 z*-2

B(z) = 10 z~-2
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C(z) =1+ 0.1 z*-1+ 0.02 z"-2
Sample time: unspecified

Parameterization:
Polynomial orders: na=[1 2;0 2] nb=[3;1] nc=[1;2] nk=[0;2]
Number of free coefficients: 12
Use "polydata", "getpvec", "getcov" for parameters and their uncertair

Status:
Created by direct construction or transformation. Not estimated.

The display shows all the polynomials and allows you to verify them.
The display also states that there are 12 free coefficients. Leading
terms of diagonal entries in A are always fixed to 1. Leading terms of all
other entries in A are always fixed to 0.

You can use sys to specify an initial parametrization for estimation
with such commands as polyest or armax.

Tips ® Although idpoly supports continuous-time models, idtf and
idproc allow more choices for estimation of continuous-time models.
Therefore, for some continuous-time applications, these model types
are preferable.

Input AB,.CDF
Argume'“s Initial values of polynomial coefficients.

For SISO models, specify the initial values of the polynomial coefficients
as row vectors. Specify the coefficients in order of:

® Ascending powers of 2! or ¢! (for discrete-time polynomial models).
® Descending powers of s or p (for continuous-time polynomial models).

The leading coefficients of A, C, D, and F must be 1. Use NaN for any
coefficient whose initial value is not known.
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For MIMO models with Ny outputs and N, inputs, A, B, C, D, and F are
cell arrays of row vectors. Each entry in the cell array contains the
coefficients of a particular polynomial that relates input, output, and
noise values.

PonnmlrﬁHnension Relation Described

A Ny-by-Ny array of row vectors | A{i, ]} contains coefficients
of relation between output y;
and output Y

B,F Ny-by-Nu array of row vectors | B{i,j} and F{i, j}contain
coefficients of relations
between output y; and input

e

c,D Ny-by-l array of row vectors | C{i} and D{i}contain
coefficients of relations
between output y, and noise

€;

The leading coefficients of the diagonal entries of A (A{i,i},i=1:Ny)
must be 1. The leading coefficients of the off-diagonal entries of A must
be zero, for causality. The leading coefficients of all entries of C, D, and F
, must be 1.

Use [] for any polynomial that is not present in the desired model
structure. For example, to create an ARX model, use [] for C, D, and F.
For an ARMA time series, use [] for B and F.

Default: B = [1; C = 1 for all outputs; D = 1 for all outputs;
F =11

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time
models, Ts is a positive scalar representing the sampling period
expressed in the unit specified by the TimeUnit property of the model.
To denote a discrete-time model with unspecified sampling time, set
Ts = -1.

2-407



idpoly

2-408

Default: —1 (discrete-time model with unspecified sampling time)

NoiseVariance
The variance (covariance matrix) of the model innovations e.

An i1dentified model includes a white, Gaussian noise component e(t).
NoiseVariance is the variance of this noise component. Typically, a
model estimation function (such as polyest) determines this variance.
Use this input to specify an initial value for the noise variance when
you create an idpoly model.

For SISO models, NoiseVariance is a scalar. For MIMO models,
NoiseVariance is a N -by-N, matrix, where N, is the number of outputs
in the system.

Default: N -by-N, identity matrix

sysO
Dynamic system.

Any dynamic system, such as idss, idtf, or tf to be converted into an
idpoly object.

For the syntax sys = idpoly(sysO, 'split'), sysO must be a
numeric (non-identified) tf, zpk, or ss model object. Also, sysO must
have at least as many inputs as outputs. Finally, the subsystem
sysO(:,Ny+1:Nu) must be biproper.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuei,...,NameN,ValueN.

Use Name,Value arguments to specify additional properties
of idpoly models during model creation. For example,
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Properties

idpoly(A,B,C,D,F,1,0, 'InputName', 'Voltage') creates an idpoly
model with the InputName property set to Voltage.

idpoly object properties include:

ab,c,d,f
Values of polynomial coefficients.

If you create an idpoly model sys using the idpoly command, sys.a,
sys.b, sys.c, sys.d, and sys.f contain the initial coefficient values
that you specify with the A, B, C, D, and F input arguments, respectively.

If you obtain an idpoly model by identification, then sys.a, sys.b,
sys.c, sys.d, and sys.f contain the estimated values of the coefficients.

For an idpoly model sys, each property sys.a, sys.b, sys.c, sys.d,
and sys.f is an alias to the corresponding Value entry in the Structure
property of sys. For example, sys.a is an alias to the value of the
property sys.Structure.a.Value.

For SISO polynomial models, the values of the numerator coefficients
are stored as a row vector in order of:

¢ Ascending powers of z7! or ¢~! (for discrete-time transfer functions).
¢ Descending powers of s or p (for continuous-time transfer functions).

The leading coefficients of A, C, and D are fixed to 1. Any coefficient
whose initial value is not known is stored as NaN.

For MIMO models with Ny outputs and N, inputs, A, B, C, D, and F are
cell arrays of row vectors. Each entry in the cell array contains the
coefficients of a particular polynomial that relates input, output, and
noise values.
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PolynoJrﬂinension Relation Described

A Ny-by-Ny array of row vectors | A{i, j} contains coefficients
of relation between output y;
and output y;

B,F Ny-by-Nu array of row vectors | B{i,j} and F{i, j}contain
coefficients of relations
between output y; and input

]

c,D Ny-by-l array of row vectors | C{i} and D{i}contain
coefficients of relations
between output y, and noise

€

The leading coefficients of the diagonal entries of A (A{i,i}, i=1:Ny)
are fixed to 1. The leading coefficients of the off-diagonal entries of A
are fixed to zero. The leading coefficients of all entries of C, D, and F

, are fixed to 1.

For a time series (a model with no measured inputs), B = [] and F

=[]

Default: B = []1; C = 1 for all outputs; D = 1 for all outputs;
F =11
Variable

String specifying the polynomial model display variable. Variable can
take the following values:

e 'z~-1' — Default for discrete-time models
e 'g~-1' — Equivalent to 'z~-1"

e 's' — Default for continuous-time models
® 'p' — Equivalent to 's'

The value of Variable is reflected in the display, and also affects the
interpretation of the A, B, C, D, and F coefficient vectors for discrete-time
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models. For Variable = 'z*-1'or 'q"-1', the coefficient vectors are
ordered as ascending powers of the variable.

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate
transport delay for each input/output pair.

If you create an idpoly model sys using the idpoly command,
sys.ioDelay contains the initial values of the transport delay that you
specify with a Name,Value argument pair.

If you obtain an idpoly model sys by identification, then sys.ioDelay
contains the estimated values of the transport delay.

For an idpoly model sys, the property sys.ioDelay is an alias to the
value of the property sys.Structure.ioDelay.Value.

For continuous-time systems, transport delays are expressed in the
time unit stored in the TimeUnit property. For discrete-time systems,
specify transport are expressed as integers denoting delay of a multiple
of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay is a
Ny-by-Nu array, where each entry is a numerical value representing the
transport delay for the corresponding input/output pair. You can set
ioDelay to a scalar value to apply the same delay to all input/output
pairs.

Default: 0 for all input/output pairs

IntegrateNoise

Logical vector, denoting presence or absence of integration on noise
channels.

Specify IntegrateNoise as a logical vector of length equal to the
number of outputs.

IntegrateNoise (i) = true indicates that the noise channel for the
ith output contains an integrator. In this case, the corresponding
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D polynomial contains an additional term which is not represented
in the property sys.d. This integrator term is equal to [1 0] for
continuous-time systems, and equal to [1 -1] for discrete-time systems.

Default: O for all output channels

Structure

Information about the estimable parameters of the idpoly

model. sys.Structure.a, sys.Structure.b, sys.Structure.c,
sys.Structure.d, and sys.Structure.f contain information about the
polynomial coefficients. sys.Structure.ioDelay contains information
about the transport delay. sys.Structure.IntegrateNoise contain
information about the integration terms on the noise. Each contains
the following fields:

® Value — Parameter values. For example, sys.Structure.a.Vvalue
contains the initial or estimated values of the A coefficients.

NaN represents unknown parameter values.

For SISO models, each property sys.a, sys.b, sys.c, sys.d, sys.f,
and sys.ioDelay is an alias to the corresponding Value entry in the
Structure property of sys. For example, sys.a is an alias to the
value of the property sys.Structure.a.Vvalue

For MIMO models, sys.a{i,j} is an alias to
sys.Structure.a(i,j).Value, and similarly for the other
1dentifiable coefficient values.

® Minimum — Minimum value that the parameter can assume during
estimation. For example, sys.Structure.ioDelay.Minimum = 0.1
constrains the transport delay to values greater than or equal to 0.1.

sys.Structure.ioDelay.Minimum must be greater than or equal
to zero.

® Maximum — Maximum value that the parameter can assume during
estimation.
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Free — Logical value specifying whether the parameter is a free
estimation variable. If you want to fix the value of a parameter
during estimation, set the corresponding Free = false. For
example, if B is a 3-by-3 matrix, sys.Structure.a.Free = eyes(3)
fixes all of the off-diagonal entries in B to the values specified in
sys.Structure.b.Value. In this case, only the diagonal entries in B
are estimable.

For fixed values, such as the leading coefficients in
sys.Structure.a.Value, the corresponding value of Free is always
false.

Scale — Scale of the parameter’s value. Scale is not used in
estimation.

Info — Structure array for storing parameter units and labels. The
structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe
parameter units and labels.

For a MIMO model with Ny outputs and Nu inputs, the dimensions of
the Structure elements are as follows:

sys.Structure.a — Ny-by-Ny
sys.Structure.b — Ny-by-Nu
sys.Structure.c — Ny-by-1
sys.Structure.d — Ny-by-1
sys.Structure.f — Ny-by-Nu

An inactive polynomaial, such as the B polynomial in a time series model,
is not available as a parameter in the Structure property. For example,
sys = idpoly([1 -0.2 0.5]) creates an AR model. sys.Structure
contains the fields sys.Structure.a, sys.Structure.ioDelay, and
sys.Structure.IntegrateNoise. However, there is no field in
sys.Structure corresponding to b, c, d, or f.

NoiseVariance
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The variance (covariance matrix) of the model innovations e.

An i1dentified model includes a white, Gaussian noise component e(t).
NoiseVariance is the variance of this noise component. Typically, the
model estimation function (such as arx) determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models,
NoiseVariance is a N -by-N, matrix, where N, is the number of outputs
in the system.

Report

Information about the estimation process.

Report contains the following fields:

e InitialCondition — Whether estimation estimated initial
conditions or fixed them at zero.

® Fit — Quantitative quality assessment of estimation, including
percent fit to data and final prediction error.

® Parameters — Estimated values of model parameters and their
covariance.

® OptionsUsed — Options used during estimation (see ssestOptions
or n4sidOptions).

® RandState — Random number stream state at start of estimation.

® Status — Whether model was obtained by construction, estimated,
or modified after estimation.

® Method — Name of estimation method used.

® DataUsed — Attributes of data used for estimation, such as name
and sampling time.

® Termination — Termination conditions for the iterative search
scheme used for prediction error minimization, such as final cost
value or stopping criterion. Not available when the model is
estimated using arx or instrument variable approaches.
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InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay for
each input channel. For continuous-time systems, specify input delays
in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sampling period
Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where
each entry is a numerical value representing the input delay for the
corresponding input channel. You can also set InputDelay to a scalar
value to apply the same delay to all channels.

Default: 0 for all input channels

OvutputDelay
Output delays.
For identified systems, like idpoly, OutputDelay is fixed to zero.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time
models, Ts is a positive scalar representing the sampling period
expressed in the unit specified by the TimeUnit property of the model.
To denote a discrete-time model with unspecified sampling time, set
Ts = -1.

Changing this property does not discretize or resample the model.

Use c2d and d2c to convert between continuous- and discrete-time
representations. Use d2d to change the sampling time of a discrete-time
system.

Default: —1 (discrete-time model with unspecified sampling time)

TimeUnit
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String representing the unit of the time variable, any time delays in
the model (for continuous-time models), and the sampling time Ts (for
discrete-time models). TimeUnit can take the following values:

® 'nanoseconds’
® 'microseconds’
® 'milliseconds’
® 'seconds'

® 'minutes’

® 'hours'
e 'days'

®* 'weeks'
® 'months'
® 'years'

Changing this property changes the overall system behavior. Use
chgTimeUnit to convert between time units without modifying system
behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model.
For a multi-input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for
multi-input models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The software automatically expands the input names to
{'controls(1)';'controls(2)'}.
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You can use the shorthand notation u to refer to the InputName
property. For example, sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:
¢ Identifying channels on model display and plots
e Extracting subsystems of MIMO systems

® Specifying connection points when interconnecting models
Default: Empty string ' ' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units.
Set InputUnit to a string for single-input model, or to a cell array of
strings for a multi-input model. InputUnit has no effect on system
behavior.

Default: Empty string ' ' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the
input channels of MIMO systems into groups and refer to each group by
name. Specify input groups as a structure whose field names are the
group names and whose field values are the input channels belong to
each group. For example:

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input

channels 1, 2 and 3, 5, respectively. You can then extract the subsystem
from the controls inputs to all outputs using:

sys(:,'controls')

Default: Struct with no fields
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OutputName

Output channel names. Set OutputName to a string for single-output
model. For a multi-output model, set OutputName to a cell array of
strings.

Alternatively, use automatic vector expansion to assign output names
for multi-output models. For example, if sys is a two-output model,
enter:

sys.OutputName = 'measurements';
The software automatically expands the output names to
{'measurements(1)'; 'measurements(2)"'}.

You can use the shorthand notation y to refer to the OutputName
property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:
¢ Identifying channels on model display and plots
® Extracting subsystems of MIMO systems

¢ Specifying connection points when interconnecting models
Default: Empty string ' ' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal
units. Set OutputUnit to a string for single-input model, or to a cell
array of strings for a multi-input model. OutputUnit has no effect on
system behavior.

Default: Empty string ' ' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the
output channels of MIMO systems into groups and refer to each group
by name. Specify output groups as a structure whose field names are
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See Also

the group names and whose field values are the output channels belong
to each group. For example:

sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that
include output channels 1, and 3, 5, respectively. You can then extract
the subsystem from all inputs to the measurement outputs using:

sys('measurement’',:)
Default: Struct with no fields

Name

System name. Set Name to a string to label the system.
Default: '

Notes

Any text that you wish to associate with the system. Set Notes to a
string or a cell array of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to
any MATLAB data type.

Default: []

polydata | arx | armax | bj | oe | ar | polyest |
setPolyFormat | idss | idproc | idtf | iv4 | ivar
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Related * “How to Estimate Polynomial Models in the GUI”
Exqmples * “How to Estimate Polynomial Models at the Command Line”
® “Polynomial Sizes and Orders of Multi-Output Polynomial Models”

Concepts e “What Are Polynomial Models?”
“Dynamic System Models”
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Purpose

Syntax

Description

Object
Description

Continuous-time process model with identifiable parameters

sys = idproc(type)
Sys idproc(type,Name,Value)

sys = idproc(type) creates a continuous-time process model with
identifiable parameters. type is a string that specifies aspects of the
model structures, such as the number of poles in the model, whether
the model includes an integrator, and whether the model includes a
time delay.

sys = idproc(type,Name,Value) creates a process model with
additional attributes specified by one or more Name,Value pair
arguments.

An idproc model represents a system as a continuous-time process
model with identifiable (estimable) coefficients.

A simple SISO process model has a gain, a time constant, and a delay:

K P -T,s

SyS =
Y 1+Tp18

Kp is a proportional gain. Kp1 is the time constant of the real pole, and
T, is the transport delay (dead time).

More generally, idproc can represent process models with up to three
poles and a zero:

1+ TZS -T,s

e ) (1 Do) (1 Ty

Two of the poles can be a complex conjugate (underdamped) pair. In
that case, the general form of the process model is:
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1+T,s -
sys =K, i e Lus

(1 +20T, s+ (Tws)2 )(1 + Tp3s)

T is the time constant of the complex pair of poles, and {is the
associated damping constant.

In addition, any idproc model can have an integrator. For example, the
following is a process model that you can represent with idproc:

1 e—Tds
3(1 +2¢6T, s+ (Tws)2 )

sys=Kp

This model has no zero (7, = 0). The model has a complex pair of poles.
The model also has an integrator, represented by the 1/s term.

For idproc models, all the time constants, the delay, the proportional
gain, and the damping coefficient can be estimable parameters. The
idproc model stores the values of these parameters in properties of the
model such as Kp, Tp1, and Zeta. (See “Properties” on page 2-428 for
more information.)

A MIMO process model contains a SISO process model corresponding to
each input-output pair in the system. For idproc models, the form of
each input-output pair can be independently specified. For example, a
two-input, one-output process can have one channel with two poles and
no zero, and another channel with a zero, a pole, and an integrator. All
the coefficients are independently estimable parameters.

There are two ways to obtain an idproc model:

* Estimate the idproc model based on output or input-output
measurements of a system, using the procest command. procest
estimates the values of the free parameters such as gain, time
constants, and time delay. The estimated values are stored as
properties of the resulting idproc model. For example, the properties
sys.Tz and sys.Kp of an idproc model sys store the zero time
constant and the proportional gain, respectively. (See “Properties”
on page 2-428 for more information.) The Report property of the
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Examples

resulting model stores information about the estimation, such as
handling of initial conditions and options used in estimation.

When you obtain an idproc model by estimation, you can extract
estimated coefficients and their uncertainties from the model using
commands such as getpar and getcov.

® (Create an idproc model using the idproc command.

You can create an idproc model to configure an initial
parameterization for estimation of a process model. When you do so,
you can specify constraints on the parameters. For example, you can
fix the values of some coefficients, or specify minimum or maximum
values for the free coefficients. You can then use the configured
model as an input argument to procest to estimate parameter values
with those constraints.

SISO Process Model with Complex Poles and Time Delay

Create a process model with a pair of complex poles and a time delay.
Set the initial value of the model to the following:

0.01 s
sys = ze
1+2(0.1)(10)s +(10s)

Create a process model with the specified structure.

sys = idproc('P2DU")
sys =
Process model with transfer function:
Kp
G(8) = -----ccmcmmme e * exp(-Td*s)

1+2*Zeta*Tw*s+(Tw*s) *2

Kp = NaN
Tw = NaN
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Zeta = NaN
Td = NaN
Parameterization:
"P2DU"

Number of free coefficients: 4
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

The input string 'P2DU' specifies an underdamped pair of poles and a
time delay. The display shows that sys has the desired structure. The
display also shows that the four free parameters, Kp, Tw, Zeta, and Td
are all initialized to NaN.

Set the initial values of all parameters to the desired values.

sys.Kp = 0.01;

sys.Tw = 10;
sys.Zeta = 0.1;
sys.Td = 5;

You can use sys to specify this parametrization and these initial
guesses for process model estimation with procest.

MIMO Process Model

Create a one-input, three-output process model, where each channel
has two real poles and a zero, but only the first channel has a time
delay, and only the first and third channels have an integrator.

type = {'P2zZDI';'P2Z';'P2ZI'};
sys = idproc(type);

Providing an array of type strings causes idproc to create a MIMO
model where each type string in the array defines the structure of the
corresponding I/O pair. Since type is a column vector of strings, sys



idproc

1s a one-input, 3-output model having the specified parametrization
structure. The string type{k, 1} specifies the structure of the
subsystem sys(k,1). All identifiable parameters are initialized to NaN.

Array of Process Models

Create a 3-by-1 array of process models, each containing one output and
two input channels.

Create cell array of type strings.

typel = {'P1D', 'P2DZ'};
type2 = {'PO','P3UI'};
type3 = {'P2D', 'P2DI'};
type = cat(3,typel,type2,type3);
size(type)
ans =
1 2 3

Use type to create the array.
sysarr = idproc(type);

The first two dimensions of the cell array type set the output and input
dimensions of each model in the array of process models. The remaining
dimensions of the cell array set the array dimensions. Thus, sysarrisa
3-model array of 2-input, one-output process models.

Select a model from the array.

sysarr(:,:,2)

Process model with 2 inputs: y = G11(s)ul + G12(s)u2
From input 1 to output 1:

G11(s) = Kp

Kp = NaN
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Input
Arguments

2-426

From input 2 to output 1:

Kp
G12(S) = =--mmmmm e
s(1+2*Zeta*Tw*s+(Tw*s)~2) (1+Tp3*s)
Kp = NaN
Tw = NaN
Zeta = NaN
Tp3 = NaN
Parameterization:
'PO' "P3IU’

Number of free coefficients: 5
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

This two-input, one-output model corresponds to the type2 entry in
the type cell array.

type

String or cell array of strings characterizing the model structure.

For SISO models, type is a string made up of a series of characters that
specify aspects of the model structure.

Characters | Meaning

Pk A process model with % poles (not including an
integrator). £ must be 0, 1, 2, or 3.

z The process model includes a zero (T, # 0). A type
string with PO cannot include Z (a process model with
no poles cannot include a zero).
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Characters | Meaning

D The process model includes a time delay (deadtime)
(T, +0).

I The process model includes an integrator (1/s).

u The process model is underdamped. In this case, the

process model includes a complex pair of poles

Every type string must begin with one of PO, P1, P2, or P3. All other
components of the string are optional.

Example type strings include:

e 'P1D' specifies a process model with one pole and a time delay
(deadtime) term:

i e_Tds

SySs =
P T

Kp, Tp1, and Td are the identifiable parameters of this model.

e 'P2U' creates a process model with a pair of complex poles:

Kp

T (126 T +(T,) )

Kp, Tw, and Zeta are the identifiable parameters of this model.

e 'P3ZDI' creates a process model with three poles. All poles are real,
because the string does not include U. The model also includes a zero,
a time delay, and an integrator:

1+ Tzs -T,s

S U s ) (15 Ty9) (1 Tys)
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The identifiable parameters of this model are Kp, Tz, Tp1, Tp2, Tp3,
and Td.

The values of all parameters in a particular model structure are
initialized to NaN. You can change them to finite values by setting the
values of the corresponding idproc model properties after you create
the model. For example, sys.Td = 5 sets the initial value of the time
delay of sys to 5.

For a MIMO process model with Ny outputs and Nu inputs, type

1s an Ny-by-Nu cell array of strings specifying the structure of each
input/output pair in the model. For example, type{i, j} specifies the
type of the subsystem sys (i, j) from the jth input to the yth output.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuel,...,NameN,ValueN.

Use Name,Value arguments to specify parameter

initial values and additional properties of idproc

models during model creation. For example, sys =

idproc('p2z', 'InputName', 'Voltage', 'Kp',10,'Tz',0);

creates an idtf model with the InputName property set to Voltage. The
command also initializes the parameter Kp to a value of 10, and Tz to 0.

Properties idproc object properties include:

Type
Cell array of strings characterizing the model structure.

For a SISO model sys, the property sys.Type contains a single string
specifying the structure of the system.

For a MIMO model with Ny outputs and Nu inputs, sys.Type is
an Ny-by-Nu cell array of strings specifying the structure of each
input/output pair in the model. For example, type{i, j} specifies the
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structure of the subsystem sys(i,j) from the jth input to the ith
output.

The strings are made up of a series of characters that specify aspects of
the model structure, as follows.

Characters | Meaning

Pk A process model with % poles (not including an
integrator). k1s 0, 1, 2, or 3.

z The process model includes a zero (T, # 0).

D The process model includes a time delay (deadtime)
(T, +0).

I The process model includes an integrator (1/s).

u The process model is underdamped. In this case, the

process model includes a complex pair of poles

If you create an idproc model sys using the idproc command, sys.Type
contains the strings that you specify with the type input argument.

If you obtain an idproc model by identification using procest, then
sys.Type contains the strings describing the model structures that you
specified for that identification.

In general, you cannot change the type string of an existing model.
However, you can change whether the model contains an integrator
using the property sys.Integration.

Kp,Tp1,Tp2,Tp3,Tz,Tw,Zeta,Td
Values of process model parameters.

If you create an idproc model using the idproc command, the values
of all parameters present in the model structure initialize by default

to NaN. The values of parameters not present in the model structure
are fixed to 0. For example, if you create a model, sys, of type 'P1D",
then Kp, Tp1, and Td are initialized to NaN and are identifiable (free)
parameters. All remaining parameters, such as Tp2 and Tz, are inactive
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in the model. The values of inactive parameters are fixed to zero and
cannot be changed.

For a MIMO model with Ny outputs and Nu inputs, each parameter
value is an Ny-by-Nu cell array of strings specifying the corresponding
parameter value for each input/output pair in the model. For example,
sys.Kp(i,j) specifies the Kp value of the subsystem sys (i, j) from the
jth input to the ith output.

For an idproc model sys, each parameter value property such as
sys.Kp, sys.Tp1, sys.Tz, and the others is an alias to the corresponding
Value entry in the Structure property of sys. For example, sys.Tp3 is
an alias to the value of the property sys.Structure.Tp3.Value.

Default: For each parameter value, NaN if the process model
structure includes the particular parameter; O if the structure
does not include the parameter.

Integration

Logical value or matrix denoting the presence or absence of an
integrator in the transfer function of the process model.

For a SISO model sys, sys.Integration = true if the model contains
an integrator.

For a MIMO model, sys.Integration(i,j) = true if the transfer
function from the jth input to the ith output contains an integrator.

When you create a process model using the idproc command, the value
of sys.Integration is determined by whether the corresponding type
string contains I.

NoiseTF

Coefficients of the noise transfer function.

sys.NoiseTF stores the coefficients of the numerator and the
denominator polynomials for the noise transfer function H(s) = N(s)/D(s).
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sys.NoiseTF is a structure with fields num and den. Each field is a
cell array of Ny row vectors, where N, is the number of outputs of sys.
These row vectors specify the coefficients of the noise transfer function
numerator and denominator in order of decreasing powers of s.

Typically, the noise transfer function is automatically computed by the
estimation function procest. You can specify a noise transfer function
that procest uses as an initial value. For example:

NoiseNum = {[1 2.2]; [1 0.541};

NoiseDen = {[1 1.3]1; [1 21};

NoiseTF = struct('num', {NoiseNum}, 'den', {NoiseDen});

sys = idproc({'p2'; 'pl1di'}); % 2-output, 1-input process model
sys.NoiseTF = NoiseTF;

Each vector in sys.NoiseTF.num and sys.NoiseTF.den must be of
length 3 or less (second-order in s or less). Each vector must start
with 1. The length of a numerator vector must be equal to that of the
corresponding denominator vector, so that H(s) is always biproper.

Default:

struct('num',{num2cell(ones(Ny,1))}, 'den',{num2cell(ones(Ny,1))}

Structure
Information about the estimable parameters of the idproc model.

sys.Structure includes one entry for each parameter in the model
structure of sys. For example, if sys is of type 'P1D', then sys
includes identifiable parameters Kp, Tp1, and Td. Correspondingly,
sys.Structure.Kp, sys.Structure.Tp1, and sys.Structure.Td
contain information about each of these parameters, respectively.

Each of these parameter entries in sys.Structure contains the
following fields:

® Value — Parameter values. For example, sys.Structure.Kp.Value
contains the initial or estimated values of the Kp parameter.

NaN represents unknown parameter values.
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For SISO models, each parameter value property such as sys.Kp,
sys.Tp1, sys.Tz, and the others is an alias to the corresponding
Value entry in the Structure property of sys. For example, sys.Tp3
1s an alias to the value of the property sys.Structure.Tp3.Value.

For MIMO models, sys.Kp{i,j} is an alias to
sys.Structure(i,j).Kp.Value, and similarly for the
other identifiable coefficient values.

Minimum — Minimum value that the parameter can assume
during estimation. For example, sys.Structure.Kp.Minimum = 1
constrains the proportional gain to values greater than or equal to 1.

Maximum — Maximum value that the parameter can assume during
estimation.

Free — Logical value specifying whether the parameter is a free
estimation variable. If you want to fix the value of a parameter
during estimation, set the corresponding Free = false. For
example, to fix the dead time to 5:

sys.Td = 5;
sys.Structure.Td.Free = false;

Scale — Scale of the parameter’s value. Scale is not used in
estimation.

Info — Structure array for storing parameter units and labels. The
structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe
parameter units and labels.

Structure also includes a field Integration that stores a logical array
indicating whether each corresponding process model has an integrator.
sys.Structure.Integration is an alias to sys.Integration.

For a MIMO model with Ny outputs and Nu input, Structure is an
Ny-by-Nu array. The element Structure(i,j) contains information
corresponding to the process model for the (i,j) input-output pair.
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NoiseVariance
The variance (covariance matrix) of the model innovations e.

An i1dentified model includes a white, Gaussian noise component e(t).
NoiseVariance is the variance of this noise component. Typically, the
model estimation function (such as procest) determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models,
NoiseVariance is a N -by-N, matrix, where N, is the number of outputs
in the system.

Report

Information about the estimation process.

Report contains the following fields:

e InitialCondition — Whether estimation estimated initial
conditions or fixed them at zero.

® Fit — Quantitative quality assessment of estimation, including
percent fit to data and final prediction error.

® Parameters — Estimated values of model parameters and input
offset, and their covariances.

® OptionsUsed — Options used during estimation (see
procestOptions).

® RandState — Random number stream state at start of estimation.

® Status — Whether model was obtained by construction, estimated,
or modified after estimation.

® Method — Name of estimation method used.

® DataUsed — Attributes of data used for estimation, such as name
and sampling time.

e Termination — Termination conditions for the iterative search
scheme used for prediction error minimization, such as final cost
value or stopping criterion.
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InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay
for each input channel. Specify input delays in the time unit stored
in the TimeUnit property.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where
each entry is a numerical value representing the input delay for the
corresponding input channel. You can also set InputDelay to a scalar
value to apply the same delay to all channels.

Default: 0 for all input channels

OvutputDelay
Output delays.

For identified systems, like idproc, OutputDelay is fixed to zero.

Ts

Sampling time. For idproc, Ts is fixed to zero because all idproc
models are continuous time.

TimeUnit

String representing the unit of the time variable, any time delays in
the model (for continuous-time models), and the sampling time Ts (for
discrete-time models). TimeUnit can take the following values:

® 'nanoseconds’
® 'microseconds’
® 'milliseconds’
® 'seconds’

® 'minutes’

® 'hours'

® 'days'
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® 'weeks'
® 'months'
® 'years'

Changing this pro