System Identification Toolbox ${ }^{\text {TM }}$ Reference

R2012b
Lennart Ljung

How to Contact MathWorks

www.mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

System Identification Toolbox ${ }^{\text {TM }}$ Reference

© COPYRIGHT 1988-2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2007 Online only
March 2008 Online only
October 2008 Online only
March $2009 \quad$ Online only
September 2009 Online only
March $2010 \quad$ Online only
September 2010 Online only
April 2011
September 2011
April 2012
September 2012 Online only

Revised for Version 7.1 (Release 2007b)
Revised for Version 7.2 (Release 2008a)
Revised for Version 7.2.1 (Release 2008b)
Revised for Version 7.3 (Release 2009a)
Revised for Version 7.3.1 (Release 2009b)
Revised for Version 7.4 (Release 2010a)
Revised for Version 7.4.1 (Release 2010b)
Revised for Version 7.4.2 (Release 2011a)
Revised for Version 7.4.3 (Release 2011b)
Revised for Version 8.0 (Release 2012a)
Revised for Version 8.1 (Release 2012b)

Function Reference

1

Data Import and Processing . 1-3
Linear Model Identification . $1-5$

Nonlinear Black-Box Model Identification 1-9

ODE Parameter Estimation . 1-12

Recursive Model Identification . 1-13

Model Analysis . 1 1-14

Simulation and Prediction . 1-19

System Identification Tool GUI . 1 -20

Functions - Alphabetical List
2

Block Reference
3
Data Import and Processing . 3-2
Linear Model Identification . 3-3

Blocks - Alphabetical List

4

Index

Function Reference

Data Import and Processing (p. 1-3)	Represent, process, analyze, and manipulate data
Linear Model Identification (p. 1-5)	Estimate time response, frequency response, transfer function, input-output polynomial, and state-space models from time and frequency domain data
	Estimate nonlinear ARX and
Nonlinear Black-Box Model	Hammerstein-Wiener models
Identification (p. 1-9)	Estimate parameters of linear and nonlinear ordinary differential or difference equations (grey-box models)
Recursive Model Identification	Recursively estimate input-output linear models, such as AR,
(p. 1-13)	ARX, ARMAX, Box-Jenkins, and
Output-Error models	

Simulation and Prediction (p. 1-19)	Simulate and predict linear and nonlinear model output, and estimate initial states
System Identification Tool GUI $($ p. $1-20)$	Start System Identification Toolbox ${ }^{\text {TM }}$ GUI and customize preferences

Data Import and Processing

absorbDelay	Replace time delays by poles at $z=0$ or phase shift
advice	Analysis and recommendations for data or estimated linear models
detrend	Subtract offset or trend from data signals
diff	Difference signals in iddata objects
feedback	Identify possible feedback data
getexp	Specific experiments from multiple-experiment data set
getTrend	Data offset and trend information
iddata	Time- or frequency-domain data
idfilt	Filter data using user-defined passbands, general filters, or Butterworth filters
idfrd	Frequency-response data or model
idresamp	Resample time-domain data by decimation or interpolation
ifft	Transform iddata objects from frequency to time domain
merge (iddata)	Merge data sets into iddata object
misdata	Reconstruct missing input and output data
nkshift	Shift data sequences
pexcit	Level of excitation of input signals
realdata	Determine whether iddata is based on real-valued signals

resample	Resample time-domain data by decimation or interpolation (requires Signal Processing Toolbox ${ }^{\text {TM }}$ software)
retrend	Add offsets or trends to data signals
TrendInfo	Offset and linear trend slope values for detrending data

Linear Model Identification

advice	Analysis and recommendations for data or estimated linear models
ar	Estimate parameters of AR model for scalar time series
armax	Estimate parameters of ARMAX model using time-domain data
armax0ptions	Option set for armax
arOptions	Option set for ar
arx	Estimate parameters of ARX or AR model using least squares
arxOptions	Option set for ar
arxstruc	Compute and compare loss functions for single-output ARX models
bj	Estimate Box-Jenkins polynomial model using time domain data
bjOptions	Option set for bj
c2d	Convert model from continuous to discrete time
c2d0ptions	Create options for continuous- to discrete-time conversions
canon	State-space canonical realization
chgFreqUnit	Change frequency units of frequency-response data model
chgTimeUnit	Change time units of dynamic system
cra	Estimate impulse response using prewhitened-based correlation analysis
d2c	Convert model from discrete to continuous time

d2cOptions	Create option set for discrete- to continuous-time conversions
d2d	Resample discrete-time model Create option set for discrete-time resampling
d2dOptions	Estimate time delay (dead time) from data
delayest	Estimate empirical transfer functions and periodograms
etfe	Identify possible feedback data
feedback	Transform iddata object to frequency domain data
fft	Estimate initial states of identified linear state-space model from data
findstates(idParametric)	Option set for findstates
findstates0ptions	Frequency-response data or model
idfrd	Create parameter for initial states and input level estimation
idpar	Polynomial model with identifiable parameters
idpoly	Continuous-time process model with
identifiable parameters	

```
iv4
iv40ptions
ivar
ivstruc
ivx
merge
n4sid
n4sidOptions
nuderst
Oe
oeOptions
pem
pexcit
polydata
polyest
polyestOptions
procest
procestOptions
```

ARX model estimation using four-stage instrumental variable method.

Option set for iv4
AR model estimation using instrumental variable method

Loss functions for sets of ARX model structures

ARX model estimation using instrumental variable method with arbitrary instruments
Merge estimated models
Estimate state-space model using a subspace method.
Option set for n 4 sid
Set step size for numerical differentiation

Estimate Output-Error polynomial model using time or frequency domain data

Option set for oe
Prediction error estimate of linear or nonlinear model

Level of excitation of input signals
Access polynomial coefficients and uncertainties of identified model

Estimate polynomial model using time or frequency domain data

Option set for polyest
Estimate process model using time or frequency data

Options set for procest
\(\left.\left.$$
\begin{array}{ll}\text { segment } & \begin{array}{l}\text { Segment data and estimate models } \\
\text { for each segment }\end{array} \\
\text { selstruc } & \begin{array}{l}\text { Select model order for single-output } \\
\text { ARX models }\end{array} \\
\text { spa } & \begin{array}{l}\text { Estimate frequency response with } \\
\text { fixed frequency resolution using } \\
\text { spectral analysis }\end{array} \\
\text { spafdr } & \begin{array}{l}\text { Estimate frequency response and } \\
\text { spectrum using spectral analysis }\end{array} \\
\text { with frequency-dependent resolution }\end{array}
$$\right\} \begin{array}{l}State coordinate transformation for

state-space model\end{array}\right\}\)| Estimate state-space model using |
| :--- |
| ssest |
| time or frequency domain data |

Nonlinear Black-Box Model Identification

addreg
customnet
customreg
data2state(idnlarx)
deadzone
evaluate
findop(idnlarx)
findop(idnlhw)
findstates(idnlarx)
findstates(idnlgrey)
findstates(idnlhw)
getDelayInfo
getreg
idnlarx

Add custom regressors to nonlinear ARX model

Custom nonlinearity estimator for nonlinear ARX and Hammerstein-Wiener models

Custom regressor for nonlinear ARX models

Map past input/output data to current states of nonlinear ARX model

Class representing dead-zone nonlinearity estimator for Hammerstein-Wiener models

Value of nonlinearity estimator at given input

Compute operating point for nonlinear ARX model

Compute operating point for Hammerstein-Wiener model

Estimate initial states of nonlinear ARX model from data

Estimate initial states of nonlinear grey-box model from data

Estimate initial states of nonlinear Hammerstein-Wiener model from data

Get input/output delay information for idnlarx model structure

Regressor expressions and numerical values in nonlinear ARX model

Nonlinear ARX model

idnlhw	Hammerstein-Wiener model
idnlmodel	Superclass for nonlinear models
init	Set or randomize initial parameter values
linapp	Linear approximation of nonlinear ARX and Hammerstein-Wiener models for given input
linear	Class representing linear nonlinearity estimator for nonlinear ARX models
linearize(idnlarx)	Linearize nonlinear ARX model
linearize(idnlhw)	Linearize Hammerstein-Wiener model
neuralnet	Class representing neural network
	nonlinearity estimator for nonlinear ARX models
nlarx	Estimate nonlinear ARX model nlhw
Estimate Hammerstein-Wiener model	
operspec(idnlarx)	Construct operating point specification object for idnlarx model
operspec(idnlhw)	Construct operating point specification object for idnlnw model
polyreg	Prediction error estimate of linear or nonlinear model
poly1d	Class representing single-variable polynomial nonlinear estimator for
Hammerstein-Wiener models	
Powers and products of standard	
regressors	

\(\left.$$
\begin{array}{ll}\text { pwlinear } & \begin{array}{l}\text { Class representing piecewise-linear } \\
\text { nonlinear estimator for }\end{array}
$$

Hammerstein-Wiener models\end{array}\right]\)| Class representing saturation |
| :--- |
| nonlinearity estimator for |
| saturation |
| Hammerstein-Wiener models |
| sigmoidnet |
| Hass representing sigmoid network |
| |
| treepartition |
| unitgain |
| |
| nonlinearity estimator for nonlinear |
| |
| ARX and Hammerstein-Wiener |
| models |

ODE Parameter Estimation

getinit	Values of idnlgrey model initial states
getpar	Parameter values and properties of idnlgrey model parameters
greyest	Linear grey box model estimation
greyestOptions	Option set for greyest
idgrey	Linear ODE (grey-box model) with identifiable parameters
idnlgrey	Nonlinear ODE (grey-box model) with unknown parameters
idnlmodel	Superclass for nonlinear models Set or randomize initial parameter values
pem	Prediction error estimate of linear or nonlinear model
setinit	Set initial states of idnlgrey model object
setpar	Set initial parameter values of idnlgrey model object

Recursive Model Identification

rarmax	Estimate recursively parameters of ARMAX or ARMA models
rarx	Estimate parameters of ARX or AR models recursively
rbj	Estimate recursively parameters of Box-Jenkins models
rpem	Estimate recursively output-error models (IIR-filters)
rplr	Estimate general input-output models using recursive prediction-error minimization method
	Estimate general input-output models using recursive pseudolinear regression method

Model Analysis

aic	Akaike Information Criterion for estimated model
bandwidth	Frequency response bandwidth Block-diagonal concatenation of models
blkdiag	Bode plot of frequency response, magnitude and phase of frequency response
bode	Bode magnitude response of LTI models
bodemag	Create list of Bode plot options
bodeoptions	Plot Bode frequency response with additional plot customization options
bodeplot	Compare model output and
compare	measured output Option set for compare
compare0ptions	Natural frequency; damping ratio damp
db2mag	Lonvert decibels (dB) to magnitude
dcgain	system Concatenate FRD models along
fcat	frequency dimension
fdel	Delete specified data from frequency response data (FRD) models
forecast	Forecast linear system response into future
forecastoptions	Option set for forecast
fpe	Akaike Final Prediction Error for estimated model

frdata	Access data for frequency response data (FRD) object
freqresp	Frequency response over grid
fselect	Select frequency points or range in FRD model
get	Access model property values getcov
getoptions	Parameter covariance information in either raw or factored form
getpvec	Return @plotOptions handle or plot options property
goodnessOfFit	Model parameters and associated uncertainty data
identpref	Goodness of fit between test and reference data
idssdata	Set System Identification Toolbox preferences
impulse	State-space data of identified system Impulse response plot of dynamic
impulseplot	system; impulse response data
interp	Plot impulse response and return plot handle
iopzmap	Interpolate FRD model
iopzplot	Plot pole-zero map for I/O pairs of model
isct	Plot pole-zero map for I/O pairs and return plot handle
isdt	Determine if dynamic system model is in continuous time
Determine if dynamic system model	
is in discrete time	

isreal	Determine whether model parameters or data values are real
issiso	Determine if dynamic system model is single-input/single-output (SISO)
isstable	Determine whether system is stable Simulate time response of dynamic system to arbitrary inputs
lsim	Compute linear response characteristics
lsiminfo	Simulate response of dynamic system to arbitrary inputs and return plot handle
lsimplot	Convert magnitude to decibels (dB)
mag2db	Query number of dimensions of dynamic system model or model array
ndims	Noise component of model
noise2meas	Transform idmodel object with noise channels to model with measured channels only
noisecnv	Norm of linear model
norm	Number of model parameters nyquist plot
nparams	List of Nyquist plot options
nyquist	Nyquist plot with additional plot customization options
nyquistoptions	Query model order nyquistplot
model	

```
plot
pole
polydata
predict
predictOptions
present
pzmap
pzoptions
pzplot
resid
rsample
selstruc
set
setcov
setoptions
setPolyFormat
setpvec
showConfidence
```

Plot iddata or model objects
Compute poles of dynamic system
Access polynomial coefficients and uncertainties of identified model

K-step ahead prediction
Option set for predict
Display model information, including estimated uncertainty

Pole-zero plot of dynamic system Create list of pole/zero plot options

Pole-zero map of dynamic system model with plot customization options
Compute and test model residuals (prediction errors)
Random sampling of linear identified systems

Select model order for single-output ARX models

Set or modify model properties
Set parameter covariance data in identified model

Set plot options for response plot
Specify format for B and F polynomials of multi-input polynomial model for backward compatibility
Modify value of model parameters
Display confidence regions on response plots for identified models

sim	Simulate response of identified models to arbitrary inputs
sim(idnlarx)	Simulate nonlinear ARX model
sim(idnlgrey)	Simulate nonlinear ODE model
sim(idnlhw)	Simulate Hammerstein-Wiener model
simOptions	Option set for sim
simsd	Simulate linear models with uncertainty using Monte Carlo
	method
simsdOptions	Option set for simsd
size	Query output/input/array dimensions of input-output
ssdata	model and number of frequencies of
FRD model	

Simulation and Prediction

idinput	Generate input signals
predict	K-step ahead prediction
predictOptions	Option set for predict
sim	Simulate response of identified models to arbitrary inputs
sim(idnlarx)	Simulate nonlinear ARX model
sim(idnlgrey)	Simulate nonlinear ODE model
sim(idnlhw)	Simulate Hammerstein-Wiener model
simOptions	Option set for sim simsd
	Simulate linear models with uncertainty using Monte Carlo method
simsdOptions	Option set for simsd

System Identification Tool GUI

ident
midprefs
Open System Identification Tool GUI
Set folder for storing idprefs.mat containing GUI startup information

Functions - Alphabetical
List

absorbDelay

Purpose Replace time delays by poles at $z=0$ or phase shift
$\begin{array}{ll}\text { Syntax } & \begin{array}{l}\text { sysnd }=\text { absorbDelay (sysd) } \\ {[\text { sysnd, G] }=\text { absorbDelay (sysd) }}\end{array}\end{array}$
Description sysnd = absorbDelay(sysd) absorbs all time delays of the dynamic system model sysd into the system dynamics or the frequency response data.

For discrete-time models (other than frequency response data models), a delay of k sampling periods is replaced by k poles at $z=0$. For continuous-time models (other than frequency response data models), time delays have no exact representation with a finite number of poles and zeros. Therefore, use pade to compute a rational approximation of the time delay.
For frequency response data models in both continuous and discrete time, absorbDelay absorbs all time delays into the frequency response data as a phase shift.
[sysnd,G] = absorbDelay(sysd) returns the matrix G that maps the initial states of the ss model sysd to the initial states of the sysnd.

Examples Example 1

Create a discrete-time transfer function that has a time delay and absorb the time delay into the system dynamics as poles at $z=0$.

```
z = tf('z',-1);
sysd = (-.4*z -.1)/(z^2 + 1.05*z + .08);
sysd.InputDelay = 3
```

These commands produce the result:
Transfer function:

$$
-0.4 \text { z - } 0.1
$$

$z^{\wedge}(-3)$ * ------------------

$$
z^{\wedge} 2+1.05 z+0.08
$$

```
Sampling time: unspecified
```

The display of sysd represents the InputDelay as a factor of $z^{\wedge}(-3)$, separate from the system poles that appear in the transfer function denominator.

Absorb the delay into the system dynamics.

```
sysnd = absorbDelay(sysd)
```

The display of sysnd shows that the factor of $z^{\wedge}(-3)$ has been absorbed as additional poles in the denominator.

Transfer function:
-0.4 z - 0.1
$z^{\wedge} 5+1.05 z^{\wedge} 4+0.08 z^{\wedge} 3$

Sampling time: unspecified
Additionally, sysnd has no input delay:
sysnd.InputDelay
ans $=$
0

Example 2

Convert "nk" into regular coefficients of a polynomial model.
Consider the discrete-time polynomial model:
$m=i d p o l y\left(1,\left[\begin{array}{llll}0 & 0 & 0 & 2\end{array}\right]\right)$;
The value of the B polynomial, m.b, has 3 leading zeros. Two of these zeros are treated as input-output delays. Consequently:

```
sys = tf(m)
```


absorbDelay

creates a transfer function such that the numerator is [$\left.\begin{array}{lll}0 & 2 & 3\end{array}\right]$ and the IO delay is 2 . In order to treat the leading zeros as regular B coefficients, use absorbDelay:
m2 = absorbDelay(m);
sys2 = tf(m2);
sys2's numerator is [00023 3] and IO delay is 0 . The model m2 treats the leading zeros as regular coefficients by freeing their values. m2.Structure.b.Free(1:2) is TRUE while m.Structure.b.Free(1:2) is FALSE.

Purpose

Analysis and recommendations for data or estimated linear models
advice(data) advice(model,data)

Input

Arguments

data

Specify data as an iddata object.

model

Specify model as an idtf, idgrey, idpoly, idproc, or idss model object.

See Also

Purpose Add custom regressors to nonlinear ARX model

```
Syntax m= addreg(model,regressors)
m = addreg(model,regressors,output)
```

Description $\quad m=\operatorname{addreg}$ (model, regressors) adds custom regressors to a nonlinear ARX model by appending the CustomRegressors model property. model and m are idnalrx objects. For single-output models, regressors is an object array of regressors you create using customreg or polyreg, or a cell array of string expressions. For multiple-output models, regressors is 1-by-ny cell array of customreg objects or 1-by-ny cell array of cell arrays of string expressions. addreg adds each element of the ny cells to the corresponding model output channel. If regressors is a single regressor, addreg adds this regressor to all output channels.
$m=$ addreg(model,regressors,output) adds regressors regressors to specific output channels output of a multiple-output model. output is a scalar integer or vector of integers, where each integer is the index of a model output channel. Specify several pairs of regressors and output values to add different regressor variables to the corresponding output channels.

Examples

Add regressors to a nonlinear ARX model as a cell array of strings:
\% Create nonlinear ARX model with standard regressors: m1 = idnlarx([4 2 1],'wavenet','nlr',[1:3]);
\% Create model with additional custom regressors: $m 2=\operatorname{addreg}\left(m 1,\left\{' y 1(t-2)^{\wedge} '^{\prime} ; ' u 1(t) * y 1(t-7) '\right\}\right)$
\% List all standard and custom regressors of m 2 : getreg(m2)

Add regressors to a nonlinear ARX model as customreg objects:
\% Create nonlinear ARX model with standard regressors:
m1 = idnlarx([4 2 1],'wavenet','nlr',[1:3]);
\% Create a model based on m 1 with custom regressors:

```
r1 = customreg(@(x) x^2, {'y1'}, 2)
r2 = customreg(@(x,y)x*y, {'u1','y1'}, [0 7])
m2 = addreg(m1,[r1 r2]);
```

See Also
customreg | getreg | nlarx | polyreg
How To . "Identifying Nonlinear ARX Models"

Purpose
 Akaike Information Criterion for estimated model

```
Syntax
am = aic(model)
am = aic(model1,model2,...)
```

Arguments

Description

Tips
model
Name of an idtf, idgrey, idpoly, idproc, idss, idnlarx, idnlhw, or idnlgrey model object.
am = aic(model) returns a scalar value of the Akaike's Information Criterion (AIC) for the estimated model.
am = aic(model1, model2,...) returns a row vector containing AIC values for the estimated models model1, model2,....

Akaike's Information Criterion (AIC) provides a measure of model quality by simulating the situation where the model is tested on a different data set. After computing several different models, you can compare them using this criterion. According to Akaike's theory, the most accurate model has the smallest AIC.

Note If you use the same data set for both model estimation and validation, the fit always improves as you increase the model order and, therefore, the flexibility of the model structure.

Akaike's Information Criterion (AIC) is defined by the following equation:

$$
A I C=\log V+\frac{2 d}{N}
$$

where V is the loss function, d is the number of estimated parameters, and N is the number of values in the estimation data set.

The loss function V is defined by the following equation:

$$
V=\operatorname{det}\left(\frac{1}{N} \sum_{1}^{N} \varepsilon\left(t, \theta_{N}\right)\left(\varepsilon\left(t, \theta_{N}\right)\right)^{T}\right)
$$

where θ_{N} represents the estimated parameters.
For $d \ll N$:

$$
A I C=\log \left(V\left(1+\frac{2 d}{N}\right)\right)
$$

Note $A I C$ is approximately equal to $\log (F P E)$.

AIC is formally defined as the negative log-likelihood function Λ, evaluated at the estimated parameters, plus the number of estimated parameters. You can derive AIC from this definition, as follows:

If the disturbance source is Gaussian with the covariance matrix Λ, the logarithm of the likelihood function is

$$
L(\theta, \Lambda)=-\frac{1}{2} \sum_{1}^{N} \varepsilon(t, \theta)^{T} \Lambda^{-1} \varepsilon(t, \theta)-\frac{N}{2} \log (\operatorname{det} \Lambda)+\text { const }
$$

Maximizing this analytically with respect to Λ, and then maximizing the result with respect to θ, gives

$$
L(\theta, \Lambda)=\text { const }+\frac{N}{2}+\frac{N}{2} \log (V)
$$

References Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999. See sections about the statistical framework for parameter estimation and maximum likelihood method and comparing model structures.

See Also fpe

Purpose
Group models by appending their inputs and outputs

Syntax

Description
sys = append(sys1,sys2,...,sysN)
sys = append(sys1,sys2,...,sysN)
append appends the inputs and outputs of the models sys $1, \ldots$, sysN to form the augmented model sys depicted below.

For systems with transfer functions $H_{1}(s), \ldots, H_{\mathrm{N}}(s)$, the resulting system sys has the block-diagonal transfer function

$$
\left[\begin{array}{cccc}
H_{1}(s) & 0 & \cdots & 0 \\
0 & H_{2}(s) & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
0 & \cdots & 0 & H_{N}(s)
\end{array}\right]
$$

For state-space models sys1 and sys2 with data $\left(A_{1}, B_{1}, C_{1}, D_{1}\right)$ and ($A_{2}, B_{2}, C_{2}, D_{2}$), append(sys1, sys2) produces the following state-space model:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]}
\end{aligned}
$$

Arguments

The input arguments sys1,..., sysN can be model objects s of any type. Regular matrices are also accepted as a representation of static gains, but there should be at least one model in the input list. The models should be either all continuous, or all discrete with the same sample time. When appending models of different types, the resulting type is determined by the precedence rules (see "Precedence Rules That Determine Model Type" for details).
There is no limitation on the number of inputs.

Examples The commands

```
sys1 = tf(1,[11 0]);
sys2 = ss(1,2,3,4);
sys = append(sys1,10,sys2)
```

produce the state-space model
a =

	x 1	x 2
x 1	0	0
x 2	0	1

$\mathrm{b}=$

	$u 1$	$u 2$	$u 3$
$\times 1$	1	0	0
$\times 2$	0	0	2

C =

	$x 1$	$x 2$
$y 1$	1	0

y2 $0 \quad 0$

$$
\begin{array}{lll}
\text { y3 } & 0 & 3
\end{array}
$$

$$
d=
$$

u1 u2 u3

$$
\begin{array}{llll}
\mathrm{y} 1 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{llll}
\mathrm{y} 2 & 0 & 10 & 0
\end{array}
$$

$$
\begin{array}{llll}
\text { y3 } & 0 & 0 & 4
\end{array}
$$

Continuous-time model.
See Also connect | feedback | parallel | series

Purpose

Estimate parameters of AR model for scalar time series

Syntax

```
\(m=\operatorname{ar}(\mathrm{y}, \mathrm{n})\)
[m,ref1] = ar(y,n,approach,window)
\(m=\operatorname{ar}(\mathrm{y}, \mathrm{n}\), Name, Value)
\(m=\operatorname{ar}(y, n, \ldots, o p t)\)
```

Note Use for scalar time series only. For multivariate data, use arx.
$\mathrm{m}=\operatorname{ar}(\mathrm{y}, \mathrm{n})$ returns an idpoly model m .
[m,ref1] = ar(y, n, approach, window) returns an idpoly model m and the variable refl. For the two lattice-based approaches, 'burg' and 'gl', refl stores the reflection coefficients in the first row, and the corresponding loss function values in the second row. The first column of refl is the zeroth-order model, and the $(2,1)$ element of refl is the norm of the time series itself.
$m=\operatorname{ar}(y, n$, Name, Value) specifies model structure attributes using one or more Name, Value pair arguments.
$m=\operatorname{ar}(y, n, \ldots, o p t)$ specifies the estimations options using opt.

y

iddata object that contains the time-series data (one output channel).

n

Scalar that specifies the order of the model you want to estimate (the number of A parameters in the AR model).

approach

One of the following text strings, specifying the algorithm for computing the least squares AR model:

- 'burg': Burg's lattice-based method. Solves the lattice filter equations using the harmonic mean of forward and backward squared prediction errors.
- 'fb': (Default) Forward-backward approach. Minimizes the sum of a least- squares criterion for a forward model, and the analogous criterion for a time-reversed model.
- 'gl': Geometric lattice approach. Similar to Burg's method, but uses the geometric mean instead of the harmonic mean during minimization.
- 'ls': Least-squares approach. Minimizes the standard sum of squared forward-prediction errors.
- 'yw': Yule-Walker approach. Solves the Yule-Walker equations, formed from sample covariances.

window

One of the following text strings, specifying how to use information about the data outside the measured time interval (past and future values):

- 'now': (Default) No windowing. This value is the default except when the approach argument is 'yw'. Only measured data is used to form regression vectors. The summation in the criteria starts at the sample index equal to $n+1$.
- 'pow': Postwindowing. Missing end values are replaced with zeros and the summation is extended to time $\mathrm{N}+\mathrm{n}$ (N is the number of observations).
- 'ppw': Pre- and postwindowing. Used in the Yule-Walker approach.
- 'prw': Prewindowing. Missing past values are replaced with zeros so that the summation in the criteria can start at time equal to zero.

opt

Estimation options.
opt is an options set that specifies the following:

- data offsets
- covariance handling
- estimation approach
- estimation window

Use arOptions to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

ts

Positive scalar that specifies the sample time. Use when you specify Y as double vector rather than an IDDATA object.

IntegrateNoise

Boolean value that specifies whether the noise source contains an
integrator or not. Use it to create "ARI" structure models: $A y=\frac{e}{\left(1-z^{-1}\right)}$
Default: false

Output
 m
 Arguments
 An idpoly model.
 ref 1

An 2-by-2 array. The first row stores the reflection coefficients, and the second row stores the corresponding loss function values. The first
column of refl is the zeroth-order model, and the $(2,1)$ element of refl is the norm of the time series itself.

Examples

Given a sinusoidal signal with noise, compare the spectral estimates of Burg's method with those found from the forward-backward approach and no-windowing method on a Bode plot.

```
y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);
mb = ar(y,4,'burg');
mfb = ar(y,4);
bode(mb,mfb)
```

Estimate an ARI model.

```
load iddata9 z9
Ts = z9.Ts;
y = cumsum(z9.y);
model = ar(y, 4, 'ls', 'Ts', Ts, 'IntegrateNoise', true)
compare(y,model,5) % 5 step ahead prediction
```

Use option set to choose 'ls' estimation approach and to specify that covariance matrix should not be estimated.

```
y = rand(100,1);
opt = arOptions('Approach', 'ls', 'EstCovar', false);
model = ar(y, N, opt);
```

Algorithms
The AR model structure is given by the following equation:

$$
A(q) y(t)=e(t)
$$

AR model parameters are estimated using variants of the least-squares method. The following table summarizes the common names for
methods with a specific combination of approach and window argument values.

Method	Approach and Windowing
Modified Covariance Method	(Default) Forward-backward approach and no windowing.
Correlation Method	Yule-Walker approach, which corresponds to least squares plus pre- and postwindowing.
Covariance Method	Least squares approach with no windowing. arx uses this routine.

[^0]Purpose
Estimate parameters of ARMAX model using time-domain data

Syntax

sys $=\operatorname{armax}(d a t a,[n a \operatorname{nb} n c$ nk])
sys $=$ armax(data,[na nb nc nk],Name, Value)
sys $=$ armax(data,init_sys)
sys $=\operatorname{armax}(d a t a, \ldots$, opt $)$

Description

Tips

Input
Arguments
Note armax supports only time-domain data. For frequency-domain data, use oe.
sys = armax(data,[na nb nc nk]) returns an idpoly model, sys, with estimated parameters and covariance (parameter uncertainties). Estimates the parameters using the prediction-error method and specified polynomial orders.
sys = armax(data,[na nb nc nk],Name, Value) returns an idpoly model, sys, with additional options specified by one or more Name, Value pair arguments.
sys = armax(data,init_sys) estimates a polynomial model using the ARMAX structure polynomial model init_sys to configure the initial parameterization.
sys $=\operatorname{armax}(d a t a, \ldots$, opt $)$ specifies estimation options using the option set opt.

- Use the IntegrateNoise property to add integrators to the noise source.

data

Estimation data.

Specify data as an iddata object containing the time-domain input-output data.

You cannot use frequency-domain data for estimating ARMAX models.

[na nb nc nk]

Polynomial orders.
[na nb nc nk] define the polynomial orders of an "ARMAX Model" on page 2-22.

- na - Order of the polynomial $A(q)$.

Specify na as an $N y$-by- $N y$ matrix of nonnegative integers. $N y$ is the number of outputs.

- nb - Order of the polynomial $B(q)+1$.
nb is an $N y$-by- $N u$ matrix of nonnegative integers. $N y$ is the number of outputs and $N u$ is the number of inputs.
- nc - Order of the polynomial $C(q)$.
nc is a column vector of nonnegative integers of length $N y . N y$ is the number of outputs.
- nk - Input-output delay expressed as fixed leading zeros of the B polynomial.

Specify nk as an $N y$-by- $N u$ matrix of nonnegative integers. $N y$ is the number of outputs and $N u$ is the number of inputs.

init_sys

Linear polynomial model that configures the initial parameterization of sys.
init_sys must be an ARMAX model. You may obtain init_sys by either performing an estimation using measured data, or by direct construction.

Use the Structure property of init_sys to configure initial guesses and constraints for $A(q), B(q)$, and $C(q)$.

To specify an initial guess for, say, the $A(q)$ term of init_sys, set init_sys.Structure.a.Value as the initial guess.

To specify constraints for, say, the $B(q)$ term of init_sys:

- set init_sys.Structure.b.Minimum to the minimum $B(q)$ coefficient values
- set init_sys.Structure.b.Maximum to the maximum $B(q)$ coefficient values
- set init_sys.Structure.b.Free to indicate which $B(q)$ coefficients are free for estimation

You can similarly specify the initial guess and constraints for the other polynomials.

If opt is not specified, and init_sys was created by estimation, then the estimation options from init_sys.Report.OptionsUsed are used.

opt

Estimation options.
opt is an options set that specifies estimation options, including:

- estimation objective
- handling of initial conditions
- numerical search method to be used in estimation

Use armaxOptions to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. Specify input delays in integer multiples of the sampling period Ts. For example, InputDelay = 3 means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

Specify transport delays as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny -by-Nu array, where each entry is a numerical value representing the transport delay for the corresponding input/output pair. You can also set ioDelay to a scalar value to apply the same delay to all input/output pairs. Useful as a replacement for the nk order, you can factor out $\max (\mathrm{nk}-1,0)$ lags as the ioDelay value.

Default: 0 for all input/output pairs

IntegrateNoise

Logical vector specifying integrators in the noise channel.
IntegrateNoise is a logical vector of length $N y$, where $N y$ is the number of outputs.

Setting IntegrateNoise to true for a particular output results in the model:

$$
A(q) y(t)=B(q) u(t-n k)+\frac{C(q)}{1-q^{-1}} e(t)
$$

Where, $\frac{1}{1-q^{-1}}$ is the integrator in the noise channel, $e(t)$.

Use IntegrateNoise to create an ARIMA model.
For example,
load iddata9 z9;
z9.y = cumsum(z9.y); \%integrated data sys = armax(z9,[4 1],'IntegrateNoise',true); compare(z9,sys,10) \%10-step ahead prediction

Default: false($\mathrm{Ny}, 1$) ($N y$ is the number of outputs.)

Output Arguments

Definitions

ARMAX Model

The ARMAX model structure is

$$
\begin{aligned}
& y(t)+a_{1} y(t-1)+\ldots+a_{n_{a}} y\left(t-n_{a}\right)= \\
& b_{1} u\left(t-n_{k}\right)+\ldots+b_{n_{b}} u\left(t-n_{k}-n_{b}+1\right)+ \\
& \quad c_{1} e(t-1)+\ldots+c_{n_{c}} e\left(t-n_{c}\right)+e(t)
\end{aligned}
$$

A more compact way to write the difference equation is

$$
A(q) y(t)=B(q) u\left(t-n_{k}\right)+C(q) e(t)
$$

where

- $y(t)$ - Output at time t.
- n_{a} - Number of poles.
- n_{b} - Number of zeroes plus 1 .
- n_{c} - Number of C coefficients.
- n_{k} - Number of input samples that occur before the input affects the output, also called the dead time in the system.
- $y(t-1) \ldots y\left(t-n_{a}\right)-$ Previous outputs on which the current output depends.
- $u\left(t-n_{k}\right) \ldots u\left(t-n_{k}-n_{b}+1\right)$ - Previous and delayed inputs on which the current output depends.
- $e(t-1) \ldots e\left(t-n_{c}\right)-$ White-noise disturbance value.

The parameters na, nb, and nc are the orders of the ARMAX model, and $n k$ is the delay. q is the delay operator. Specifically,

$$
\begin{aligned}
& A(q)=1+a_{1} q^{-1}+\ldots+a_{n_{a}} q^{-n_{a}} \\
& B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n_{b}} q^{-n_{b}+1} \\
& C(q)=1+c_{1} q^{-1}+\ldots+c_{n_{c}} q^{-n_{c}}
\end{aligned}
$$

If data is a time series, which has no input channels and one output channel, then armax calculates an ARMA model for the time series

$$
A(q) y(t)=e(t)
$$

In this case

```
orders = [na nc]
```


ARIMAX Model

An ARIMAX model structure is similar to ARMAX, except that it contains an integrator in the noise source $e(t)$:

$$
A(q) y(t)=B(q) u(t-n k)+\frac{1}{\left(1-q^{-1}\right)} e(t)
$$

If there are no inputs, this reduces to an ARIMA model:

$$
A(q) y(t)=\frac{1}{\left(1-q^{-1}\right)} e(t)
$$

Examples

Specifying Estimation Options

Estimate an ARMAX model from measured data and specify the estimation options.

Estimate an ARMAX model with simulation focus, using 'lm' as the search method and maximum number of search iterations set to 10 .

```
load twotankdata
z = iddata(y,u,0.2);
opt = armaxOptions;
opt.Focus = 'simulation';
opt.SearchMethod = 'lm';
opt.SearchOption.MaxIter = 10;
opt.Display = 'on';
sys = armax(z, [2 2 2 1], opt)
```

The termination conditions for measured component of the model shown in the progress viewer is that the maximum number of iterations were reached. To improve results, re-estimate the model using a greater value for MaxIter, or we can continue iterations on the previously estimated model as follows:
sys2 = armax(z, sys);
compare(z, sys, sys2)
where sys2 refines the parameters of sys to improve the fit to data.

Estimate an ARIMA Model

Estimate an ARIMA Model from measured data.
Estimate a 4th order ARIMA model for univariate time series data.

```
load iddata9
```

z9.y = cumsum(z9.y); \% integrated data
model = armax(z9, [4 1], 'IntegrateNoise', true);
compare(z9, model, 10) \% 10-step ahead prediction

Estimate ARMAX Models Iteratively

Estimate ARMAX models of varying orders iteratively from measured data.

Estimate ARMAX models of orders varying between 1 and 4 for dryer data

```
load dryer2
z = iddata(y2,u2,0.08,'Tstart',0);
na = 2:4; nc = 1:2; nk = 0:2;
models = cell(1,18);
ct = 1;
for i = 1:3
    na_ = na(i);
    nb_ = na_;
    for j = 1:2
        nc_ = nc(j);
        for k = 1:3
            nk_ = nk(k);
            models{ct} = armax(z, [na_, nb_, nc_, nk_]);
            ct = ct+1;
        end
    end
end
```

Stack the estimated models and compare their simulated responses to estimation data z .

```
models = stack(1,models{:});
compare(z,models)
```


Algorithms

An iterative search algorithm minimizes a robustified quadratic prediction error criterion. The iterations are terminated either when the maximum number of iterations is reached, or when the expected improvement is less than the specified tolerance, or when a lower value of the criterion cannot be found. You can get information about the stopping criteria using sys.Report.Termination.

Use the armaxOptions option set to create and configure options affecting the estimation results. In particular, set the search algorithm attributes, such as MaxIter and Tolerance, using the 'SearchOption' property.

When you do not specify initial parameter values for the iterative search as an initial model, they are constructed in a special four-stage LS-IV algorithm.

The cutoff value for the robustification is based on the Advanced.ErrorThreshold estimation option and on the estimated standard deviation of the residuals from the initial parameter estimate. It is not recalculated during the minimization. By default, no robustification is performed; the default value of ErrorThreshold option is 0 .

To ensure that only models corresponding to stable predictors are tested, the algorithm performs a stability test of the predictor. Generally, both
$C(q)$ and $F(q)$ (if applicable) must have all zeros inside the unit circle.
Minimization information is displayed on the screen when the estimation option 'Display' is 'On' or 'Full'. With 'Display' = 'Full', both the current and the previous parameter estimates are displayed in column-vector form, listing parameters in alphabetical order. Also, the values of the criterion function (cost) are given and the

Gauss-Newton vector and its norm are also displayed. With 'Display ' $=$ 'On' only the criterion values are displayed.

References Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999. See chapter about computing the estimate.

Alternatives armax does not support continuous-time model estimation. Use tfest to estimate a continuous-time transfer function model, or ssest to estimate a continuous-time state-space model.
 See Also
 armaxOptions | arx | bj | oe | polyest | ssest | tfest | idpoly | iddata | idfrd | forecast

Purpose Option set for armax

Syntax \quad| opt $=\operatorname{armaxOptions}$ |
| :--- |
| opt |$=\operatorname{armaxOptions(Name,~Value)~}$

Description opt $=$ armaxOptions creates the default options set for armax.
opt $=$ armaxOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Input
 Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

InitialCondition

Specify handling of initial conditions during estimation.
InitialCondition takes one of the following values:

- 'zero' - Initial conditions are set to 0.
- 'estimate' - Initial conditions, along with the model parameters, are treated as estimation parameters.
- 'backcast' - Initial conditions are estimated using a backcasting (backward filtering) process.
- 'auto ' - The software chooses the initial condition handling method based on the estimation data.

Default: 'auto'

Focus

Defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.
Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus can take the following values:

- 'simulation' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input spectrum has the most power.
This method provides a stable model.
- 'prediction' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. This minimizes the one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this is the optimal weighting function. However, this method neglects the approximation aspects (bias) of the fit. Might not result in a stable model. Use 'stability ' when you want to ensure a stable model.
- 'stability' - Same as 'prediction', but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
[wl,wh]
[w1l,w1h;w2l,w2h;w31,w3h;...]
where $w l$ and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.

- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

EstCovar

Controls whether parameter covariance data is generated or not.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

Default: true

Display

Specifies whether estimation progress should be displayed.
Display requires one of the following strings:

- 'on ' - Information on model structure and estimation results are displayed in a progress viewer window
- 'off' - No progress or results information is displayed

Default: 'off'
 InputOffset

Removes offset from time domain input data during estimation.
Specify as a column vector of length $N u$, where $N u$ is the number of inputs.

Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a Nu -by- Ne matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by Input0ffset is subtracted from the corresponding input data.

Default: []

OutputOffset

Removes offset from time domain output data during estimation.
Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments. Each entry specified by OutputOffset is subtracted from the corresponding output data.

Default: []

SearchMethod

Search method used for iterative parameter estimation.
SearchMethod is a string that can take the following values:

- gn - The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max (size(J)) *norm(J)
are discarded when computing the search direction. J is the Jacobian matrix. The Hessian matrix is approximated by $J^{T} J$. If there is no improvement in this direction, the function tries the gradient direction.
- gna - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [1]. Eigenvalues less than gamma*max(sv) of the Hessian are neglected, where sv are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see Advanced for more information) and is increased by the factor LMStep each time the search fails to find a lower value of the criterion in less than 5 bisections. It is decreased by the factor 2*LMStep each time a search is successful without any bisections.
- $1 m$ - Uses the Levenberg-Marquardt method. This means that the next parameter value is - pinv ($\mathrm{H}+\mathrm{d} * \mathrm{I}$) *grad from the previous one, where H is the Hessian, I is the identity matrix, and grad is the gradient. d is a number that is increased until a lower value of the criterion is found.
- lsqnonlin - Uses lsqnonlin optimizer from Optimization Toolbox ${ }^{\mathrm{TM}}$ software. You must have Optimization Toolbox installed to use this option. This search method can only handle the Trace criterion.
- grad - The steepest descent gradient search method.
- auto - A choice among the above is made in the algorithm. The descent direction is calculated using gn, gna, lm and grad successively, in that order, at each iteration until a sufficient reduction in error is achieved.

Default: 'auto'

SearchOption

SearchOption is an options set for the search algorithm with the fields:

SearchMerkrodhOption

gn,gna,l $\boldsymbol{\prime}, \bullet$ Tolerance - Minimum percentage difference (divided grad by 100) between the current value of the loss function and and its expected improvement after the next iteration.
auto When the percentage of expected improvement is less than Tolerance, the iterations are stopped. The estimate of the expected loss-function improvement at the next iteration is made based on the Gauss-Newton vector computed for the current parameter value.

Default: 0.01

- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter $=0$ returns the result of the startup procedure.
Use sys.Report.Termination.Iterations to get the actual number of iterations during an estimation, where sys is an idtf model.

Default: 20

- Advanced - Search settings:
- GnPinvConst - Singular values of the Jacobian that are smaller than GnPinvConst*max(size(J)*norm(J)*eps are discarded when computing the search direction and SearchMethod is 'gn'.

GnPinvConst must be a positive real value.
Default: 10000

- InitGnaTol - Initial value of gamma when SearchMethod is 'gna'.
Default: . 0001

SearchMertrodhOption

- LMStartValue - Starting value of search-direction length d in the Levenberg-Marquardt method. Applicable when SearchMethod is ' 1 m '.

Default: . 001

- LMStep - Size of the Levenberg-Marquardt step. The next value of the search-direction length d in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is 'lm'.

Default: 2

- MaxBisections - Maximum number of bisections used by the line search along the search direction.

Default: 25

- MaxFunEvals - Iterations are stopped if the number of calls to the model file exceeds this value.

MaxFunEvals must be a positive integer value.
Default: Inf

- MinParChange - Smallest parameter update allowed per iteration

MinParChange must be a positive, real value.
Default: 0

- RelImprovement - Iterations are stopped if the relative improvement of the criterion function is less than RelImprovement.

RelImprovement must be a positive integer value.
Default: 0

SearchMestrodhOption

- StepReduction - Suggested parameter update is reduced by the factor StepReduction after each try until either MaxBisections tries are completed or a lower value of the criterion function is obtained.

StepReduction must be a positive, real value that is greater than 1.

Default: 2
lsqnonlite TolFun - Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values.
The value of TolFun is the same as that of sys.SearchOption.Advanced.TolFun.
Default: 1e-5

- TolX - Termination tolerance on the estimated parameter values.
The value of TolX is the same as that of sys.SearchOption.Advanced.TolX.
Default: 1e-6
- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as TolFun etc..

The value of MaxIter is the same as that of sys.SearchOption.Advanced.MaxIter.
Default: 20

- Advanced - Options set for lsqnonlin.

For more information, see "Optimization Options".

SearchMEthoodhOption

Use optimset('lsqnonlin') to create an options set for lsqnonlin and then modify it to specify its various options.

Advanced

Advanced is a structure with the following fields:

- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. (See the section about choosing a robust norm in the chapter "Computing the Estimate" of [1].) ErrorThreshold = 0 disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, ErrorThreshold is set to zero. ErrorThreshold = 1.6 is a good choice for estimation when data contains outliers.

Default: 0

- MaxSize - Specifies the maximum number of elements in a segment when input-output data is split into segments.

MaxSize must be a positive integer.
Default: 250000

- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s-Specifies the location of the right-most pole to test the stability of continuous-time models. A model is considered stable when its right-most pole is to the left of s.

Default: 0

- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

- AutoInitThreshold - Specifies when to automatically estimate the initial conditions.

When InitialCondition = 'Auto', the initial condition is estimated when the ratio of the prediction-error norm with a zero initial condition to the norm with an estimated initial condition exceeds AutoInitialState.

Default: 1.05

Output opt

Arguments Option set containing the specified options for armax.

Examples Create Default Options Set for ARMAX Estimation

Create a default options set for armax.
opt = armaxOptions;

Specify Options for ARMAX Estimation

Create an options set for armax using the 'stability' for Focus and set the Display to 'on'.

```
opt = armaxOptions('Focus','stability','Display','on');
```

Alternatively, use dot notation to set the values of opt.

```
opt = armaxOptions;
opt.Focus = 'stability';
opt.Display = 'on';
```

References	[1] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for Multivariable System Estimates" IFAC World Congress, Prague, 2005.
	[2] Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999.
See Also	armax \| idfilt

Purpose Option set for ar

Syntax \quad| opt $=\operatorname{arOptions}$ |
| :--- |
| opt $=\operatorname{arOptions(Name,~Value)~}$ |

Description

Input
Arguments

```
opt = arOptions
opt = arOptions(Name,Value)
```

opt $=$ arOptions creates the default options set for ar.
opt = arOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Approach

Technique used for AR model estimation.
Approach takes one of the following strings:

- 'fb' - Forward-backward approach.
- 'ls' - Least-squares method.
- 'yw' - Yule-Walker approach.
- 'burg' - Burg's method.
- 'gl' - Geometric lattice method.

Default: 'fb'

Window

Data windowing technique.
Window determines how the data outside the measured time interval (past and future values) should be handled.

Window takes one of the following strings:

- 'now' - No windowing.
- 'prw' - Pre-windowing.
- 'pow' - Post-windowing.
- 'ppw' - Pre- and post-windowing.

Default: 'now' (except when Approach is 'yw')

DataOffset

Data offset level that must be removed before estimation of parameters.
Specify DataOffset as a double scalar. For multi-experiment data, specify DataOffset as a vector of length $N e$, where $N e$ is the number of experiments. Each entry of the vector is subtracted from the corresponding data.

Default: [] (no offsets)

MaxSize

Specifies the maximum number of elements in a segment when input-output data is split into segments.

If larger matrices are needed, the software will use loops for calculations. Use this option to manage the trade-off between memory management and program execution speed. The original data matrix must be smaller than the matrix specified by MaxSize.

MaxSize must be a positive integer.
Default: 250000

Output opt
 Arguments
 Option set containing the specified options for ar.

Examples Create Default Options Set for AR Estimation

Create a default options set for ar.
opt = arOptions;

Specify Options for AR Estimation

Create an options set for ar using the least squares algorithm for estimation and set the Window to 'ppw'.

```
opt = arOptions('Approach','ls','Window','ppw');
```

Alternatively, use dot notation to set the values of opt.

```
opt = arOptions;
opt.Approach = 'ls';
opt.Window = 'ppw';
```

[^1]
Purpose

Estimate parameters of ARX or AR model using least squares

Syntax

sys $=\operatorname{arx}(d a t a,[n a \operatorname{nb} n k])$
sys $=$ arx(data,[na nb nk],Name, Value)
sys $=\operatorname{arx}(d a t a,[n a \operatorname{nb} n k], \ldots, o p t)$

Description

Input

 ArgumentsNote arx does not support continuous-time estimations. Use tfest instead.
sys = arx(data,[na nb nk]) returns an ARX structure polynomial model, sys, with estimated parameters and covariances (parameter uncertainties) using the least-squares method and specified orders. sys = arx(data,[na nb nk],Name, Value) estimates a polynomial model with additional options specified by one or more Name, Value pair arguments.
sys = arx(data,[na nb nk],__, opt) specifies estimation options that configure the estimation objective, initial conditions and handle input/output data offsets.

data

Estimation data.

Specify data as an iddata object, an frd object, or an idfrd frequency-response-data object.

[na nb nk]

Polynomial orders.
[na nb nk] define the polynomial orders of an ARX model.

- na - Order of the polynomial $A(q)$.

Specify na as an $N y$-by- $N y$ matrix of nonnegative integers. $N y$ is the number of outputs.

- nb - Order of the polynomial $B(q)+1$.
nb is an $N y$-by- $N u$ matrix of nonnegative integers. $N y$ is the number of outputs and $N u$ is the number of inputs.
- nk - Input-output delay expressed as fixed leading zeros of the B polynomial.

Specify nk as an $N y$-by- $N u$ matrix of nonnegative integers. $N y$ is the number of outputs and $N u$ is the number of inputs.

opt

Estimation options.
opt is an options set that specifies estimation options, including:

- input/output data offsets
- output weight

Use arxOptions to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. Specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.
For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

Specify transport delays as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array, where each entry is a numerical value representing the transport delay for the corresponding input/output pair. You can also set ioDelay to a scalar value to apply the same delay to all input/output pairs. Useful as a replacement for the nk order, you can factor out $\max (\mathrm{nk}-1,0)$ lags as the ioDelay value.

Default: 0 for all input/output pairs

IntegrateNoise

Logical vector specifying integrators in the noise channel.
IntegrateNoise is a logical vector of length $N y$, where $N y$ is the number of outputs.

Setting IntegrateNoise to true for a particular output results in the ARIX model:

$$
A(q) y(t)=B(q) u(t-n k)+\frac{1}{1-q^{-1}} e(t)
$$

Where, $\frac{1}{1-q^{-1}}$ is the integrator in the noise channel, $e(t)$.
Default: false(Ny,1) (Ny is the number of outputs.)

Output sys

Arguments
Identified ARX structure polynomial model.
sys is a discrete-time idpoly model, which encapsulates the estimated A and B polynomials and the parameter covariance information.

Definitions

ARX structure

arx estimates the parameters of the ARX model structure:

$$
\begin{aligned}
& y(t)+a_{1} y(t-1)+\ldots+a_{n a} y(t-n a)= \\
& b_{1} u(t-n k)+\ldots+b_{n b} u(t-n b-n k+1)+e(t)
\end{aligned}
$$

The parameters na and nb are the orders of the ARX model, and nk is the delay.

- $y(t)$ - Output at time t.
- n_{a} - Number of poles.
- n_{b} - Number of zeroes plus 1 .
- n_{k} - Number of input samples that occur before the input affects the output, also called the dead time in the system.
- $y(t-1) \ldots y\left(t-n_{a}\right)-$ Previous outputs on which the current output depends.
- $u\left(t-n_{k}\right) \ldots u\left(t-n_{k}-n_{b}+1\right)$ - Previous and delayed inputs on which the current output depends.
- $e(t-1) \ldots e\left(t-n_{c}\right)$ - White-noise disturbance value.

A more compact way to write the difference equation is

$$
A(q) y(t)=B(q) u\left(t-n_{k}\right)+e(t)
$$

q is the delay operator. Specifically,

$$
A(q)=1+a_{1} q^{-1}+\ldots+a_{n_{a}} q^{-n_{a}}
$$

$$
B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n_{b}} q^{-n_{b}+1}
$$

Time Series Models

For time-series data that contains no inputs, one output and orders = na, the model has AR structure of order na.

The AR model structure is

$$
A(q) y(t)=e(t)
$$

Multiple Inputs and Single-Output Models

For multiple-input systems, nb and nk are row vectors where the ith element corresponds to the order and delay associated with the ith input.

$$
\begin{array}{r}
y(t)+A_{1} y(t-1)+A_{2} y(t-2)+\ldots+A_{n a} y(t-n a)= \\
B_{0} u(t)+B_{1} u(t-1)+\ldots+B_{n b} u(t-n b)+e(t)
\end{array}
$$

Multi-Output Models

For models with multiple inputs and multiple outputs, na, nb, and nk contain one row for each output signal.

In the multiple-output case, arx minimizes the trace of the prediction error covariance matrix, or the norm

$$
\sum_{t=1}^{N} e^{T}(t) e(t)
$$

To transform this to an arbitrary quadratic norm using a weighting matrix Lambda

$$
\sum_{t=1}^{N} e^{T}(t) \Lambda^{-1} e(t)
$$

use the syntax

```
opt = arxOptions('OutputWeight', inv(lambda))
m = arx(data, orders, opt)
```


Estimating Initial Conditions

For time-domain data, the signals are shifted such that unmeasured signals are never required in the predictors. Therefore, there is no need to estimate initial conditions.

For frequency-domain data, it might be necessary to adjust the data by initial conditions that support circular convolution.

Set the InitialCondition estimation option (see arxOptions) to one the following values:

- 'zero' - No adjustment.
- 'estimate ' - Perform adjustment to the data by initial conditions that support circular convolution.
- 'auto' - Automatically choose between 'zero' and 'estimate' based on the data.

Examples

This example generates input data based on a specified ARX model, and then uses this data to estimate an ARX model.

```
A = [1 -1.5 0.7]; B = [0 1 0.5];
m0 = idpoly(A,B);
u = iddata([],idinput(300,'rbs'));
e = iddata([],randn(300,1));
y = sim(mO, [u e]);
z = [y,u];
m = arx(z,[2 2 1]);
```


Algorithms

QR factorization solves the overdetermined set of linear equations that constitutes the least-squares estimation problem.

The regression matrix is formed so that only measured quantities are used (no fill-out with zeros). When the regression matrix is larger
than MaxSize, data is segmented and QR factorization is performed iteratively on these data segments.

See Also arxOptions | arxstruc|ar|armax|bj|iv4|n4sid| oe | nlarx
How To • "Using Linear Model for Nonlinear ARX Estimation"

Purpose

ARX parameters from multiple-output models with variance information

Note arxdata will be removed in a future release. Use polydata instead.
[A,B] = arxdata(m)
$[A, B, d A, d B]=\operatorname{arxdata}(m)$

Syntax

Arguments

Description

m
An idarx model object.
Also accepts single-output idpoly models with an underlying ARX structure with orders $n c=n d=n f=0$.
[A,B] = arxdata(m) returns A and B as 3-D arrays.
Suppose $n y$ is the number of outputs (the dimension of the vector $y(t)$) and $n u$ is the number of inputs.
A is an ny-by-ny-by-(na+1) array such that
$A(:,:, k+1)=A k$
$A(:,:, 1)=\operatorname{eye}(n y)$
where $k=0,1, \ldots$, na.
B is an ny-by-nu-by-(nb+1) array with
$B(:,:, k+1)=B k$
$A(0)$ is always the identity matrix. The leading entries in B equal to zero, which means there are no delays in the model.

arxdata

Note For a time series, B = [].
$[A, B, d A, d B]=\operatorname{arxdata}(m)$ returns A and B matrices, and $d A$ and $d B$ as the estimated standard deviations of A and B, respectively.

Tips
A and B are 2-D or 3-D arrays and are returned in the standard multivariable ARX format (see idarx), describing the model.

$$
\begin{array}{r}
y(t)+A_{1} y(t-1)+A_{2} y(t-2)+\ldots+A_{n a} y(t-n a)= \\
B_{0} u(t)+B_{1} u(t-1)+\ldots+B_{n b} u(t-n b)+e(t)
\end{array}
$$

where A_{k} and B_{k} matrices have dimensions $n y$-by-ny and $n y$-by- $n u$, respectively. $n y$ is the number of outputs (the dimension of the vector $y(t)$) and $n u$ is the number of inputs.

See Also idarx | idpoly

Purpose Option set for ar

Syntax \quad| opt | $=\operatorname{arxOptions}$ |
| ---: | :--- |
| opt | $=\operatorname{arxOptions}($ Name, Value $)$ |

Description

Input
Arguments
Arguments

```
opt = arxOptions
opt = arxOptions(Name,Value)
```

opt $=$ arxOptions creates the default options set for arx.
opt $=$ arxOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

InitialCondition

Specify handling of initial conditions during estimation.
InitialCondition takes one of the following values:

- 'zero' - Initial conditions are set to 0 .
- 'estimate' - Initial conditions, along with the model parameters, are treated as estimation parameters.
- 'backcast' - Initial conditions are estimated using a backcasting (backward filtering) process.
- 'auto ' - The software chooses the initial condition handling method based on the estimation data.

Default: 'auto'

Focus

Defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.
Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus can take the following values:

- 'simulation' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input spectrum has the most power.
This method provides a stable model.
- 'prediction' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. This minimizes the one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this is the optimal weighting function. However, this method neglects the approximation aspects (bias) of the fit. Might not result in a stable model. Use 'stability ' when you want to ensure a stable model.
- 'stability' - Same as 'prediction', but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:

```
[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]
```

where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.

- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The $\{A, B, C, D\}$ format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.

- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

EstCovar

Controls whether parameter covariance data is generated or not.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

Default: true

Display

Specifies whether estimation progress should be displayed.
Display requires one of the following strings:

- 'on' - Information on model structure and estimation results are displayed in a progress viewer window
- 'off' - No progress or results information is displayed

Default: 'off'

InputOffset

Removes offset from time domain input data during estimation.
Specify as a column vector of length $N u$, where $N u$ is the number of inputs.

Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.
Each entry specified by InputOffset is subtracted from the corresponding input data.

Default: []

OutputOffset

Removes offset from time domain output data during estimation.
Specify as a column vector of length $N y$, where $N y$ is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a Ny -by- Ne matrix. Ny is the number of outputs, and $N e$ is the number of experiments. Each entry specified by OutputOffset is subtracted from the corresponding output data.

Default: []

OutputWeight

Weight of prediction errors in multi-output estimation.
Specify OutputWeight as a positive semi-definite symmetric matrix (W). The software will minimize the trace of the weighted prediction error matrix trace ($E^{\prime}{ }^{*} \mathrm{E}^{*} \mathrm{~W}$). Where E is the matrix of prediction errors,
with one column for each output, and W is the positive semi-definite symmetric matrix of size equal to the number of outputs. Use W to specify the relative importance of outputs in multiple-input multiple-output models, or the reliability of corresponding data.
This option is relevant only for multi-output models.

Advanced

Advanced is a structure with the following fields:

- MaxSize - Specifies the maximum number of elements in a segment when input-output data is split into segments.
MaxSize must be a positive integer.
Default: 250000
- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s - Specifies the location of the right-most pole to test the stability of continuous-time models. A model is considered stable when its right-most pole is to the left of s.

Default: 0

- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance z from the origin.

Default: $1+$ sqrt (eps)

Output
 Arguments

opt
Option set containing the specified options for arx.

Examples Create Default Options Set for ARX Estimation

Create a default options set for arx.

```
opt = arxOptions;
```


arxOptions

Specify Options for ARX Estimation

Create an options set for arx using zero initial conditions for estimation and set Display to 'on'.
opt = arxOptions('InitialCondition','zero','Display','on');

Alternatively, use dot notation to set the values of opt.

```
opt = arxOptions;
opt.InitialCondition = 'zero';
opt.Display = 'on';
```

See Also arx | idfilt

Purpose

Compute and compare loss functions for single-output ARX models

Syntax

Arguments
ze
Estimation data set can be iddata or idfrd object.
zv
Validation data set can be iddata or idfrd object.
NN
Matrix defines the number of different ARX-model structures. Each row of NN is of the form:

```
    nn = [na nb nk]
```

maxsize

Specifies the maximum number of elements in a segment when input-output data is split into segments.

If larger matrices are needed, the software will use loops for calculations. Use this option to manage the trade-off between memory management and program execution speed. The original data matrix must be smaller than the matrix specified by maxsize.
maxsize must be a positive integer.

Description

Note Use arxstruc for single-output systems only. arxstruc supports both single-input and multiple-input systems.
$\mathrm{V}=$ arxstruc (ze, zv, NN) returns V , which contains the loss functions in its first row. The remaining rows of V contain the transpose of NN , so that the orders and delays are given just below the corresponding loss functions. The last column of V contains the number of data points in ze.
$\mathrm{V}=\operatorname{arxstruc}(z e, z v, \mathrm{NN}$, maxsize) uses the additional specification of the maximum data size.
with the same interpretation as described for arx. See struc for easy generation of typical NN matrices.

The output argument V is best analyzed using selstruc. The selection of a suitable model structure based on the information in v is normally done using selstruc.

Tips

Examples

Each of ze and zv is an iddata object containing output-input data. Frequency-domain data and idfrd objects are also supported. Models for each of the model structures defined by NN are estimated using the data set ze. The loss functions (normalized sum of squared prediction errors) are then computed for these models when applied to the validation data set $z v$. The data sets ze and $z v$ need not be of equal size. They could, however, be the same sets, in which case the computation is faster.

This example uses the simulation data from a second-order idpoly model with additive noise. The data is split into two parts, where one part is the estimation data and the other is the validation data. You select the best model by comparing the output of models with orders ranging between 1 and 5 with the validating data. All models have an input-to-output delay of 1 .

```
% Create an ARX model for generaing data:
A = [1 -1.5 0.7]; B = [0 1 0.5];
m0 = idpoly(A,B);
% Generate a random input signal:
u = iddata([],idinput(400,'rbs'));
e = iddata([],0.1*randn(400,1));
% Simulate the output signal from the model m0:
y = sim(m0, [u e]);
z = [y,u]; % analysis data
NN = struc(1:5,1:5,1);
V = arxstruc(z(1:200),z(201:400),NN);
nn = selstruc(V,0);
```

```
m = arx(z,nn);
arx | idpoly | ivstruc | selstruc | struc
```


bandwidth

Purpose Frequency response bandwidth

```
Syntax fb = bandwidth(sys)
fb = bandwidth(sys,dbdrop)
```

Description $\quad f b=$ bandwidth(sys) computes the bandwidth fb of the SISO dynamic system model sys, defined as the first frequency where the gain drops below 70.79 percent $(-3 \mathrm{~dB})$ of its DC value. The frequency fb is expressed in rad/TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys.

For FRD models, bandwidth uses the first frequency point to approximate the DC gain.
$\mathrm{fb}=$ bandwidth(sys, dbdrop) further specifies the critical gain drop in dB . The default value is -3 dB , or a 70.79 percent drop.

If sys is an S1-by...-by-Sp array of models, bandwidth returns an array of the same size such that
fb(j1, ..., jp) = bandwidth(sys(:,:, j1, ..., jp))
See Also dcgain | issiso

Purpose

Estimate Box-Jenkins polynomial model using time domain data
Syntax

```
sys = bj(data, [nb nc nd nf nk])
sys = bj(data,[nb nc nd nf nk], Name,Value)
sys = bj(data, init_sys)
sys = bj(data, ___, opt)
```


Input Arguments

sys = bj(data, [nb nc nd nf nk]) estimates a Box-Jenkins polynomial model, sys, using the time domain data, data. [nb nc nd nf nk] define the orders of the polynomials used for estimation.
sys = bj(data,[nb nc nd nf nk], Name, Value) estimates a polynomial model with additional options specified by one or more Name, Value pair arguments.
sys = bj(data, init_sys) estimates a Box-Jenkins polynomial using the polynomial model init_sys to configure the initial parameterization of sys.
sys = bj(data, ___ , opt) estimates a Box-Jenkins polynomial using the option set, opt, to specify estimation behavior.

data

Estimation data.
data is an iddata object containing the input and output signal values.

[$\mathbf{n b} \mathbf{n c} \mathbf{n d} \mathbf{n f} \mathbf{n k}$]

A vector of matrices containing the orders and delays of the Box-Jenkins model. Matrixes must contain nonnegative integers.

- nb is the order of the B polynomial plus 1 (Ny-by-Nu matrix)
- nc is the order of the C polynomial plus 1 (Ny-by-1 matrix)
- nd is the order of the D polynomial plus 1 (Ny-by-1 matrix)
- nf is the order of the F polynomial plus 1 (Ny-by-Nu matrix)
- nk is the input delay (in number of samples, Ny-by-Nu matrix) where Nu is the number of inputs and Ny is the number of outputs.

opt

Estimation options.
opt is an options set that configures, among others, the following:

- estimation objective
- initial conditions
- numerical search method to be used in estimation

Use bjOptions to create the options set.

init_sys

Polynomial model that configures the initial parameterization of sys.
init_sys must be an idpoly model with the Box-Jenkins structure that has only B, C, D and F polynomials active. bj uses the parameters and constraints defined in init_sys as the initial guess for estimating sys.

Use the Structure property of init_sys to configure initial guesses and constraints for $B(q), F(q), C(q)$ and $D(q)$.
To specify an initial guess for, say, the $C(q)$ term of init_sys, set init_sys.Structure.c.Value as the initial guess.

To specify constraints for, say, the $B(q)$ term of init_sys:

- set init_sys.Structure.b.Minimum to the minimum $B(q)$ coefficient values
- set init_sys.Structure.b.Maximum to the maximum $B(q)$ coefficient values
- set init_sys.Structure.b. Free to indicate which $B(q)$ coefficients are free for estimation

You can similarly specify the initial guess and constraints for the other polynomials.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. Specify input delays in integer multiples of the sampling period Ts. For example, InputDelay $=3$ means a delay of three sampling periods.
For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

Specify transport delays as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny -by-Nu array, where each entry is a numerical value representing the transport delay for the corresponding input/output pair. You can also set ioDelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

IntegrateNoise

Logical specifying integrators in the noise channel.
IntegrateNoise is a logical vector of length $N y$, where $N y$ is the number of outputs.

Setting IntegrateNoise to true for a particular output results in the model:

$$
y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} \frac{e(t)}{1-q^{-1}}
$$

Where, $\frac{1}{1-q^{-1}}$ is the integrator in the noise channel, $e(t)$.
Default: false ($\mathrm{Ny}, 1$) ($N y$ is the number of outputs)

Output
 sys

Arguments

Definitions

Identified polynomial model of Box-Jenkins structure.
sys is a discrete-time idpoly model which encapsulates the identified polynomial model.

Box-Jenkins Model Structure

The general Box-Jenkins model structure is:

$$
y(t)=\sum_{i=1}^{n u} \frac{B_{i}(q)}{F_{i}(q)} u_{i}\left(t-n k_{i}\right)+\frac{C(q)}{D(q)} e(t)
$$

where $n u$ is the number of input channels.
The orders of Box-Jenkins model are defined as follows:

$$
\begin{aligned}
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n c: & C(q)=1+c_{1} q^{-1}+\ldots+c_{n c} q^{-n c} \\
n d: & D(q)=1+d_{1} q^{-1}+\ldots+d_{n d} q^{-n d} \\
n f: & F(q)=1+f_{1} q^{-1}+\ldots+f_{n f} q^{-n f}
\end{aligned}
$$

Examples Identify SISO Box-Jenkins Model

Estimate the parameters of a single-input, single-output Box-Jenkins model from measured data.

```
load iddata1 z1;
nb = 2;
nc = 2;
nd = 2;
nf = 2;
nk = 1;
sys = bj(z1,[nb nc nd nf nk])
```

sys is a discrete-time idpoly model with estimated coefficients. The order of sys is as described by nb, nc, nd, nf, and nk.

Use getpvec to obtain the estimated parameters and getcov to obtain the covariance associated with the estimated parameters.

Estimate a Multi-Input, Single-Output Box-Jenkins Model

Estimate the parameters of a multi-input, single-output Box-Jenkins model from measured data.

```
load iddata8;
nb = [2 1 1];
nc = 1;
nd = 1;
nf = [2 1 2];
nk = [5 10 15];
sys = bj(z8,[nb nc nd nf nk]);
```

sys estimates the parameters of a model with three inputs and one output. Each of the inputs has a delay associated with it.

Configure Estimation Options

Estimate the parameters of a single-input, single-output Box-Jenkins model while configuring some estimation options.

Generate estimation data.

```
B = [l0 1 0.5];
C = [11 -1 0.2];
D = [11 1.5 0.7];
F = [lllll}1.5 0.7]
sys0 = idpoly(1,B,C,D,F,0.1);
e = iddata([],randn(200,1));
u = iddata([],idinput(200));
y = sim(sys0,[u e]);
data = [y u];
```

data is a single-input, single-output data set created by simulating a known model.

Estimate initial Box-Jenkins model.

```
nb = 2;
nc = 2;
nd = 2;
nf = 2;
nk = 1;
init_sys = bj(data,[2 2 2 2 1]);
```

Create an estimation option set to refine the parameters of the estimated model.

```
opt = bjOptions;
opt.Display = 'on';
opt.SearchOption.MaxIter = 50;
```

opt is an estimation option set that configures the estimation to iterate 50 times at most and display the estimation progress.

Reestimate the model parameters using the estimation option set.

```
sys = bj(data,init_sys,opt)
```

sys is estimated using init_sys for the initial parameterization for the polynomial coefficients.
To view the estimation result, enter sys. Report at the MATLAB command prompt.

Estimate MIMO Box-Jenkins Model

Estimate a multi-input, multi-output Box-Jenkins model from estimated data.

Load measured data.

```
load iddata1 z1
load iddata2 z2
data = [z1, z2(1:300)];
```

data contains the measured data for two inputs and two outputs.
Estimate the model.

```
nb = [2 2; 3 4];
nc = [2;2];
nd = [2;2];
nf = [1 0; 2 2];
nk = [1 1; 0 0];
sys = bj(data, [nb nc nd nf nk])
```

The polynomial order coefficients contain one row for each output.
sys is a discrete-time idpoly model with two inputs and two outputs.
Alternatives To estimate a continuous-time model, use:

- tfest - returns a transfer function model
- ssest - returns a state-space model
- bj to first estimate a discrete-time model and convert it a continuous-time model using d2c.

References

See Also
[1] Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999.

```
bjoptions | tfest | arx | armax | iv4 | ssest | oe |
polyest | idpoly | iddata | d2c | forecast | sim | compare
```

Purpose Option set for bj

Option set for bj
Syntax

Description

Input
Arguments
Arguments

```
opt = bjOptions
```

opt = bjOptions
opt = bjOptions(Name,Value)

```
opt = bjOptions(Name,Value)
```

opt $=$ bjOptions creates the default options set for bj .
opt = bjOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

InitialCondition

Specify how initial conditions are handled during estimation.
InitialCondition takes one of the following values:

- 'zero' - The initial conditions are set to zero.
- 'estimate' - The initial conditions are treated as independent estimation parameters.
- 'backcast' - The initial conditions are estimated using the best least squares fit.
- 'auto' - The software chooses the method to handle initial conditions based on the estimation data.
Default: 'auto'

Focus

bjOptions

Defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus can take the following values:

- 'simulation' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.
This method provides a stable model.
- prediction - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. The weighting function minimizes the one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this is the optimal weighting function. However, this method neglects the approximation aspects (bias) of the fit. Use 'stability ' when you want to ensure a stable model.
- 'stability' - Same as 'prediction', but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:

```
[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]
```

where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.

- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The $\{A, B, C, D\}$ format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.

- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

EstCovar

Controls whether parameter covariance data is generated or not.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

Default: true

Display

Specifies whether estimation progress should be displayed.
Display requires one of the following strings:

- 'on ' - Information on model structure and estimation results are displayed in a progress viewer window
- 'off' - No progress or results information is displayed

Default: 'off'

InputOffset

Removes offset from time domain input data during estimation.
Specify as a column vector of length $N u$, where $N u$ is the number of inputs.

Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

Default: []

OutputOffset

Removes offset from time domain output data during estimation.
Specify as a column vector of length $N y$, where $N y$ is the number of outputs.

Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. $N y$ is the number of outputs, and $N e$ is the number of experiments. Each entry specified by OutputOffset is subtracted from the corresponding output data.

Default: []

SearchMethod

Search method used for iterative parameter estimation.
SearchMethod is a string that can take the following values:

- gn - The subspace Gauss-Newton direction.
- gna - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [1].
- Im - Uses the Levenberg-Marquardt method.
- lsqnonlin - Uses the trust region reflective algorithm. Requires the Optimization Toolbox software.
- grad - The steepest descent gradient search method.
- auto - A choice among the above is made in the algorithm. The descent direction is calculated using gn, gna, lm and grad successively, in that order, at each iteration until a sufficient reduction in error is achieved.

Default: 'auto'

SearchOption

SearchOption is an options set for the search algorithm with the fields:

SearchMEtrodhOption

gn,gna,l 1 , \bullet Tolerance - Minimum percentage difference (divided grad by 100) between the current value of the loss function and auto and its expected improvement after the next iteration. When the percentage of expected improvement is less than Tolerance, the iterations are stopped. The estimate of the expected loss-function improvement at the next iteration is made based on the Gauss-Newton vector computed for the current parameter value.

Default: 0.01

- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter = 0 returns the result of the startup procedure.

bjOptions

SearchMerthodhOption

Use sys.Report.Termination.Iterations to get the actual number of iterations during an estimation, where sys is an idtf model.
Default: 20

- Advanced - Search settings:
- GnPinvConst - Singular values of the Jacobian that are smaller than GnPinvConst*max(size(J)*norm(J)*eps are discarded when computing the search direction and SearchMethod is 'gn'.
GnPinvConst must be a positive real value.
Default: 10000
- InitGnaTol - Initial value of gamma when SearchMethod is 'gna'.

Default: . 0001

- LMStartValue - Starting value of search-direction length d in the Levenberg-Marquardt method. Applicable when SearchMethod is ' 1 m '.
Default: . 001
- LMStep - Size of the Levenberg-Marquardt step. The next value of the search-direction length d in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is 'lm'.

Default: 2

- MaxBisections - Maximum number of bisections used by the line search along the search direction.
Default: 25

SearchMerdrodhOption

- MaxFunEvals - Iterations are stopped if the number of calls to the model file exceeds this value.

MaxFunEvals must be a positive integer value.
Default: Inf

- MinParChange - Smallest parameter update allowed per iteration

MinParChange must be a positive, real value.
Default: 0

- RelImprovement - Iterations are stopped if the relative improvement of the criterion function is less than RelImprovement.

RelImprovement must be a positive integer value.
Default: 0

- StepReduction - Suggested parameter update is reduced by the factor StepReduction after each try until either MaxBisections tries are completed or a lower value of the criterion function is obtained.

StepReduction must be a positive, real value that is greater than 1.

Default: 2
lsqnonlite TolFun - Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values.
The value of TolFun is the same as that of sys.SearchOption.Advanced.TolFun.

Default: 1e-5

bjOptions

SearchMertrodhOption

- TolX - Termination tolerance on the estimated parameter values.
The value of TolX is the same as that of sys.SearchOption.Advanced.TolX.
Default: 1e-6
- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as TolFun etc..
The value of MaxIter is the same as that of sys.SearchOption.Advanced.MaxIter.
Default: 20
- Advanced - Options set for lsqnonlin.

For more information, see "Optimization Options".
Use optimset('lsqnonlin') to create an options set for lsqnonlin and then modify it to specify its various options.

Advanced

Advanced is a structure with the following fields:

- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. See the section about choosing a robust norm in the chapter "Computing the Estimate" of [2]. ErrorThreshold = 0 disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data,

ErrorThreshold is set to zero. ErrorThreshold = 1.6 is a good choice for estimation when data contains outliers.

Default: 0

- MaxSize - Specifies the maximum number of elements in a segment when input-output data is split into segments.

MaxSize must be a positive integer.
Default: 250000

- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s - Specifies the location of the right-most pole to test the stability of continuous-time models. A model is considered stable when its right-most pole is to the left of s.

Default: 0

- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

- AutoInitThreshold - Specifies when to automatically estimate the initial conditions.

When InitialCondition = 'Auto', the initial condition is estimated when the ratio of the prediction-error norm with a zero initial condition to the norm with an estimated initial condition exceeds AutoInitialState.

Default: 1.05

Output opt

Arguments
Option set containing the specified options for bj .
References [1] Wills, Adrian , B. Ninness, and S. Gibson. "On Gradient-Based Search for Multivariable System Estimates" IFAC World Congress, Prague, 2005.[2] Ljung, L. System Identification: Theory for the User, Upper SaddleRiver, NJ, Prentice-Hal PTR, 1999.
Examples Create Default Options Set for Box-Jenkins EstimationCreate a default options set for bj .
opt = bjOptions;

Specify Options for Box-Jenkins Estimation

Create an options set for bj using zero initial conditions for estimation and set Display to 'on'.
opt = bjOptions('InitialCondition','zero','Display','on');
Alternatively, use dot notation to set the values of opt.

```
opt = bjOptions;
opt.InitialCondition = 'zero';
opt.Display = 'on';
```


See Also
 bj | idfilt

Purpose
Block-diagonal concatenation of models

Syntax

sys = blkdiag(sys1,sys2,...,sysN)
Description
sys = blkdiag(sys1,sys2, \ldots, sysN) produces the aggregate system

$$
\left[\begin{array}{cccc}
s y s 1 & 0 & . . & 0 \\
0 & s y s 2 & . & : \\
: & . & . & 0 \\
0 & . . & 0 & s y s N
\end{array}\right]
$$

blkdiag is equivalent to append.

Examples The commands

```
sys1 = tf(1,[1 0]);
sys2 = ss(1,2,3,4);
sys = blkdiag(sys1,10,sys2)
```

produce the state-space model
a $=$
x1 x2

$x 1$	0	0

x2 $0 \quad 1$
b =

	u1	u2	u3
$\times 1$	1	0	0
x2	0	0	2

c =

	$x 1$	$x 2$
y1	1	0
y2	0	0
y3	0	3

blkdiag

$$
\begin{array}{lrrr}
d= & & \\
& \text { u1 } & \text { u2 } & \text { u3 } \\
\text { y1 } & 0 & 0 & 0 \\
\text { y2 } & 0 & 10 & 0 \\
\text { y3 } & 0 & 0 & 4
\end{array}
$$

Continuous-time model.

See Also append | series | parallel | feedback

Purpose

Syntax

Description

Bode plot of frequency response, magnitude and phase of frequency response

```
bode(sys)
```

bode(sys)
bode(sys1,...,sysN)
bode(sys1,...,sysN)
bode(sys1,PlotStyle1,...,sysN,PlotStyleN)
bode(sys1,PlotStyle1,...,sysN,PlotStyleN)
bode(...,w)
bode(...,w)
[mag,phase] = bode(sys,w)
[mag,phase] = bode(sys,w)
[mag,phase,wout] = bode(sys)
[mag,phase,wout] = bode(sys)
[mag,phase,wout,sdmag,sdphase] = bode(sys)

```
[mag,phase,wout,sdmag,sdphase] = bode(sys)
```

bode (sys) creates a Bode plot of the frequency response of a dynamic system model sys. The plot displays the magnitude (in dB) and phase (in degrees) of the system response as a function of frequency.
When sys is a multi-input, multi-output (MIMO) model, bode produces an array of Bode plots, each plot showing the frequency response of one I/O pair.
bode automatically determines the plot frequency range based on system dynamics.

bode (sys1, ..., sysN) plots the frequency response of multiple dynamic systems in a single figure. All systems must have the same number of inputs and outputs.
bode(sys1,PlotStyle1, ...,sysN,PlotStyleN) plots system responses using the color, linestyle, and markers specified by the PlotStyle strings.
bode (...,w) plots system responses at frequencies determined by w.

- If w is a cell array \{wmin, wmax\}, bode(sys,w) plots the system response at frequency values in the range \{wmin, wmax\}.
- If w is a vector of frequencies, bode (sys,w) plots the system response at each of the frequencies specified in w.
[mag, phase] = bode(sys,w) returns magnitudes mag in absolute units and phase values phase in degrees. The response values in mag and phase correspond to the frequencies specified by w as follows:
- If w is a cell array \{wmin, wmax\}, [mag,phase] = bode(sys,w) returns the system response at frequency values in the range \{wmin, wmax $\}$.
- If w is a vector of frequencies, [mag, phase] = bode(sys,w) returns the system response at each of the frequencies specified in w.
[mag, phase,wout] = bode(sys) returns magnitudes, phase values, and frequency values wout corresponding to bode(sys).
[mag,phase,wout,sdmag,sdphase] = bode(sys) additionally returns the estimated standard deviation of the magnitude and phase values when sys is an identified model and [] otherwise.

sys

Dynamic system model, such as a Numeric LTI model, or an array of such models.

PlotStyle

Line style, marker, and color of both the line and marker, specified as a one-, two-, or three-part string enclosed in single quotes (' '). The elements of the string can appear in any order. The string can specify only the line style, the marker, or the color.
For more information about configuring the PlotStyle string, see "Colors, Line Styles, and Markers" in the MATLAB documentation.

w

Input frequency values, specified as a row vector or a two-element cell array.
Possible values of w:

- Two-element cell array \{wmin, wmax\}, where wmin is the minimum frequency value and wmax is the maximum frequency value.
- Row vector of frequency values.

For example, use logspace to generate a row vector with logarithmically-spaced frequency values.
Specify frequency values in radians per TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys.

Output

Arguments

mag

Bode magnitude of the system response in absolute units, returned as a 3 -D array with dimensions (number of outputs) \times (number of inputs) \times (number of frequency points).

- For a single-input, single-output (SISO) sys, mag ($1,1, k$) gives the magnitude of the response at the kth frequency.
- For MIMO systems, mag(i, j,k) gives the magnitude of the response from the jth input to the ith output.

You can convert the magnitude from absolute units to decibels using:

```
magdb = 20*log10(mag)
```


phase

Phase of the system response in degrees, returned as a 3-D array with dimensions are (number of outputs) \times (number of inputs) \times (number of frequency points).

- For SISO sys, phase $(1,1, k)$ gives the phase of the response at the kth frequency.
- For MIMO systems, phase (i, j,k) gives the phase of the response from the j th input to the ith output.

wout

Response frequencies, returned as a row vector of frequency points. Frequency values are in radians per TimeUnit, where TimeUnit is the value of the TimeUnit property of sys.

sdmag

Estimated standard deviation of the magnitude. sdmag has the same dimensions as mag.

If sys is not an identified LTI model, sdmag is [].

sdphase

Estimated standard deviation of the phase. sdphase has the same dimensions as phase.

If sys is not an identified LTI model, sdphase is [].

Examples Bode Plot of Dynamic System

Create Bode plot of the dynamic system:

$$
H(s)=\frac{s^{2}+0.1 s+7.5}{s^{4}+0.12 s^{3}+9 s^{2}}
$$

$H(s)$ is a continuous-time SISO system.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
bode(H)
```


bode automatically selects the plot range based on the system dynamics.

Bode Plot at Specified Frequencies

Create Bode plot over a specified frequency range. Use this approach when you want to focus on the dynamics in a particular range of frequencies.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
```

bode (H, $\{0.1,10\}$)

The cell array $\{0.1,10\}$ specifies the minimum and maximum frequency values in the Bode plot.

bode

Alternatively, you can specify a vector of frequencies to use for evaluating and plotting the frequency response.

```
w = logspace(-1,1,50);
bode(H,w)
```

logspace defines a logarithmically spaced frequency vector in the range of 0.1-10 rad/s.

Compare Bode Plots of Several Dynamic Systems

Compare the frequency response of a continuous-time system to an equivalent discretized system on the same Bode plot.

1 Create continuous-time and discrete-time dynamic systems.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
Hd = c2d(H,0.5,'zoh');
```

2 Create Bode plot that includes both systems.
bode (H,Hd)

Bode Plot with Specified Line and Marker Attributes

Specify the color, linestyle, or marker for each system in a Bode plot using the PlotStyle input arguments.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
```

Hd = c2d(H,0.5,'zoh');
H and Hd are two different systems.
bode(H,'r',Hd,'b--')
The string ' r ' specifies a solid red line for the response of H. The string 'b-- ' specifies a dashed blue line for the response of Hd.

bode

Obtain Magnitude and Phase Data

Compute the magnitude and phase of the frequency response of a dynamic system.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
[mag phase wout] = bode(H);
```

Because H is a SISO model, the first two dimensions of mag and phase are both 1 . The third dimension is the number of frequencies in wout.

Bode Plot of Identified Model

Compare the frequency response of a parametric model, identified from input/output data, to a non-parametric model identified using the same data.

1 Identify parametric and non-parametric models based on data.

```
load iddata2 z2;
```

```
w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);
```

sys_np is a non-parametric identified model. sys_p is a parametric identified model.

2 Create a Bode plot that includes both systems.

```
bode(sys_np,sys_p,w);
```


Obtain Magnitude and Phase Standard Deviation Data of Identified Model

Compute the standard deviation of the magnitude and phase of an identified model. Use this data to create a 3σ plot of the response uncertainty.

1 Identify a transfer function model based on data. Obtain the standard deviation data for the magnitude and phase of the frequency response.

bode

```
load iddata2 z2;
sys_p = tfest(z2,2);
w = linspace(0,10*pi,128);
[mag,ph,w,sdmag,sdphase] = bode(sys_p,w);
```

sys_p is an identified transfer function model.
sdmag and sdphase contain the standard deviation data for the magnitude and phase of the frequency response, respectively.

2 Create a 3σ plot corresponding to the confidence region.

```
mag = squeeze(mag);
sdmag = squeeze(sdmag);
semilogx(w,mag,'b',w,mag+3*sdmag,'k:',w,mag-3*sdmag,'k:');
```


bode computes the frequency response using these steps:
1 Computes the zero-pole-gain (zpk) representation of the dynamic system.

2 Evaluates the gain and phase of the frequency response based on the zero, pole, and gain data for each input/output channel of the system.
a For continuous-time systems, bode evaluates the frequency response on the imaginary axis $s=j \omega$ and considers only positive frequencies.
b For discrete-time systems, bode evaluates the frequency response on the unit circle. To facilitate interpretation, the command parameterizes the upper half of the unit circle as

$$
z=e^{j \omega T_{s}}, \quad 0 \leq \omega \leq \omega_{N}=\frac{\pi}{T_{s}},
$$

where T_{s} is the sampling time. ω_{N} is the Nyquist frequency. The equivalent continuous-time frequency ω is then used as the x-axis variable. Because $H\left(e^{j \omega T_{s}}\right)$ is periodic and has a period $2 \omega_{N}$, bode plots the response only up to the Nyquist frequency ω_{N}. If you do not specify a sampling time, bode uses $T_{s}=1$.
Alternativ
See Also
Use bodeplot when you need additional plot customization options.
See Also bodeplot | freqresp | nichols | nyquist | spectrum
How To . "Dynamic System Models"

bodemag

Purpose Bode magnitude response of LTI models

Syntax
\section*{Description}

bodemag(sys)
bodemag(sys, \{wmin, wmax\})
bodemag(sys,w)
bodemag(sys1,sys2,...,sysN,w)
bodemag(sys1,'r',sys2,'y--',sys3,'gx')
bodemag (sys) plots the magnitude of the frequency response of the dynamic system model sys (Bode plot without the phase diagram). The frequency range and number of points are chosen automatically.
bodemag (sys, \{wmin, wmax\}) draws the magnitude plot for frequencies between wmin and wmax (in rad/TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys).
bodemag(sys,w) uses the user-supplied vector W of frequencies, in rad/TimeUnit, at which the frequency response is to be evaluated.
bodemag(sys1, sys2, ...,sysN,w) shows the frequency response magnitude of several models sys1,sys2,... sysN on a single plot. The frequency vector w is optional. You can also specify a color, line style, and marker for each model, as in
bodemag(sys1,'r',sys2,'y--',sys3,'gx')

See Also
bode | ltiview

bodeoptions

Purpose
 Create list of Bode plot options

Syntax
P = bodeoptions
P = bodeoptions('cstprefs')
Description
P = bodeoptions returns a list of available options for Bode plots with default values set. You can use these options to customize the Bode plot appearance using the command line.

P = bodeoptions('cstprefs') initializes the plot options with the options you selected in the Control System Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor" in the User's Guide documentation.

The following table summarizes the Bode plot options.

Option	Description
Title, XLabel, YLabel	Label text and style
TickLabel	Tick label style
Grid	Show or hide the grid Specified as one of the following strings: ' off ' \| 'on' Default: 'off'
XlimMode, YlimMode	Limit modes
Xlim, Ylim	Axes limits
IOGrouping	Grouping of input-output pairs Specified as one of the following strings: 'none ' \|'inputs ' I output ' I 'all' ' Default: 'none '
InputLabels, OutputLabels	Input and output label styles
InputVisible, OutputVisible	Visibility of input and output channels

bodeoptions

Option	Description
ConfidenceRegionNum	dusibber of standard deviations to use to plotting the response confidence region (identified models only). Default: 1.
FreqUnits	Frequency units, specified as one of the following strings: - 'Hz' - 'rad/second' - 'rpm' - 'kHz' - 'MHz' - 'GHz' - 'rad/nanosecond' - 'rad/microsecond' - 'rad/millisecond' - 'rad/minute' - 'rad/hour' - 'rad/day' - 'rad/week' - 'rad/month' - 'rad/year' - 'cycles/nanosecond' - 'cycles/microsecond' - 'cycles/millisecond' - 'cycles/hour' - 'cycles/day'

Option	Description
	- 'cycles/week' - 'cycles/month' - 'cycles/year' Default: 'rad/s' You can also specify 'auto' which uses frequency units $\mathrm{rad} /$ TimeUnit relative to system time units specified in the TimeUnit property. For multiple systems with different time units, the units of the first system are used.
FreqScale	Frequency scale Specified as one of the following strings: 'linear' \| 'log' Default: ' log'
MagUnits	Magnitude units Specified as one of the following strings: ' dB ' \| 'abs ' Default: 'dB'
MagScale	```Magnitude scale Specified as one of the following strings: 'linear' \| 'log' Default: 'linear'```
MagVisible	Magnitude plot visibility Specified as one of the following strings: 'on' \| 'off' Default: ' on
MagLowerLimMode	Enables a lower magnitude limit Specified as one of the following strings: 'auto' \| 'manual' Default: 'auto'
MagLowerLim	Specifies the lower magnitude limit
PhaseUnits	Phase units Specified as one of the following strings: 'deg ' \| 'rad' Default: 'deg'

bodeoptions

Option	Description
PhaseVisible	Phase plot visibility Specified as one of the following strings: 'on ' \| 'off' Default: 'on'
PhaseWrapping	Enables phase wrapping Specified as one of the following strings: ' on ' \| 'off' Default: 'off '
PhaseMatching	Enables phase matching Specified as one of the following strings: 'on ' \| 'off' Default: 'off'
PhaseMatchingFreq	Frequency for matching phase
PhaseMatchingValue	The value to which phase responses are matched closely

Examples
In this example, set phase visibility and frequency units in the Bode plot options.

```
P = bodeoptions; % Set phase visiblity to off and frequency units to Hz in options
P.PhaseVisible = 'off';
P.FreqUnits = 'Hz'; % Create plot with the options specified by P
h = bodeplot(tf(1,[1,1]),P);
```

The following plot is created, with the phase plot visibility turned off and the frequency units in Hz .

See Also
bode | bodeplot | getoptions | setoptions | showConfidence

bodeplot

Purpose
Plot Bode frequency response with additional plot customization options
Syntax

```
h = bodeplot(sys)
bodeplot(sys)
bodeplot(sys1,sys2,...)
bodeplot(AX,...)
bodeplot(..., plotoptions)
bodeplot(sys,w)
```


Description

$\mathrm{h}=$ bodeplot(sys) plot the Bode magnitude and phase of the dynamic system model sys and returns the plot handle h to the plot. You can use this handle to customize the plot with the getoptions and setoptions commands.
bodeplot (sys) draws the Bode plot of the model sys. The frequency range and number of points are chosen automatically.
bodeplot(sys1,sys2,...) graphs the Bode response of multiple models sys1,sys2,... on a single plot. You can specify a color, line style, and marker for each model, as in
bodeplot(sys1,'r',sys2,'y--',sys3,'gx')
bodeplot (AX,...) plots into the axes with handle AX.
bodeplot(..., plotoptions) plots the Bode response with the options specified in plotoptions. Type
help bodeoptions
for a list of available plot options. See "Example 2" on page 2-99 for an example of phase matching using the PhaseMatchingFreq and PhaseMatchingValue options.
bodeplot (sys,w) draws the Bode plot for frequencies specified by w. When $w=\{w m i n$, wmax $\}$, the Bode plot is drawn for frequencies between wmin and wmax (in rad/TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys.).

When w is a user-supplied vector w of frequencies, in rad/TimeUnit, the Bode response is drawn for the specified frequencies.

See logspace to generate logarithmically spaced frequency vectors.

Tips

Examples

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

Example 1

Use the plot handle to change options in a Bode plot.

```
sys = rss(5);
h = bodeplot(sys);
% Change units to Hz and make phase plot invisible
setoptions(h,'FreqUnits','Hz','PhaseVisible','off');
```


Example 2

The properties PhaseMatchingFreq and PhaseMatchingValue are parameters you can use to specify the phase at a specified frequency. For example, enter the following commands.
sys = tf(1,[11]);
$\mathrm{h}=$ bodeplot(sys) \% This displays a Bode plot.

bodeplot

Use this code to match a phase of 750 degrees to $1 \mathrm{rad} / \mathrm{s}$.

```
p = getoptions(h);
p.PhaseMatching = 'on';
p.PhaseMatchingFreq = 1;
p.PhaseMatchingValue = 750; % Set the phase to 750 degrees at 1
    % rad/s.
setoptions(h,p); % Update the Bode plot.
```


The first bode plot has a phase of -45 degrees at a frequency of $1 \mathrm{rad} / \mathrm{s}$. Setting the phase matching options so that at $1 \mathrm{rad} / \mathrm{s}$ the phase is near 750 degrees yields the second Bode plot. Note that, however, the phase can only be $-45+\mathrm{N}^{*} 360$, where N is an integer, and so the plot is set to the nearest allowable phase, namely 675 degrees (or $2 * 360-45=675$).

Example 3

Compare the frequency responses of identified state-space models of order 2 and 6 along with their 2 std confidence regions.

```
load iddata1
```

sys1 = n4sid(z1, 2) \% discrete-time IDSS model of order 2
sys2 $=n 4 s i d(z 1,6) \%$ discrete-time IDSS model of order 6

Both models produce about 76% fit to data. However, sys2 shows higher uncertainty in its frequency response, especially close to Nyquist frequency as shown by the plot:

bodeplot

```
w = linspace(8,10*pi,256);
h = bodeplot(sys1,sys2,w);
setoptions(h, 'PhaseMatching', 'on', 'ConfidenceRegionNumberSD', 2);
```

Use the context menu by right-clicking Characteristics > Confidence
Region to turn on the confidence region characteristic.

Example 4

Compare the frequency response of a parametric model, identified from input/output data, to a nonparametric model identified using the same data.

1 Identify parametric and non-parametric models based on data.

```
load iddata2 z2;
w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);
```

spa and tfest require System Identification Toolbox software. sys_np is a non-parametric identified model. sys_p is a parametric identified model.

2 Create a Bode plot that includes both systems.

```
opt = bodeoptions; opt.PhaseMatching = 'on';
bodeplot(sys_np,sys_p,w, opt);
```

See Also
bode | bodeoptions | getoptions | setoptions | showConfidence

Purpose
 Syntax
 Description

Convert model from continuous to discrete time

```
sysd = c2d(sys,Ts)
sysd = c2d(sys,Ts,method)
sysd = c2d(sys,Ts,opts)
[sysd,G] = c2d(sys,Ts,method)
[sysd,G] = c2d(sys,Ts,opts)
```

Tips

Input
 Arguments

sysd = c2d(sys,Ts) discretizes the continuous-time dynamic system model sys using zero-order hold on the inputs and a sample time of Ts seconds.
sysd = c2d(sys,Ts,method) discretizes sys using the specified discretization method method.
sysd = c2d(sys,Ts,opts) discretizes sys using the option set opts, specified using the c2dOptions command.
[sysd,G] = c2d(sys,Ts,method) returns a matrix, G that maps the continuous initial conditions x_{0} and u_{0} of the state-space model sys to the discrete-time initial state vector x [0]. method is optional. To specify additional discretization options, use [sysd,G] = c2d(sys,Ts,opts).

- Use the syntax sysd = c2d(sys,Ts,method) to discretize sys using the default options for method. To specify additional discretization options, use the syntax sysd = c2d(sys,Ts,opts).
- To specify the tustin method with frequency prewarping (formerly known as the 'prewarp' method), use the PrewarpFrequency option of c2dOptions.

sys

Continuous-time dynamic system model (except frequency response data models). sys can represent a SISO or MIMO system, except that the 'matched' discretization method supports SISO systems only.
sys can have input/output or internal time delays; however, the 'matched' and 'impulse' methods do not support state-space models with internal time delays.
The following identified linear systems cannot be discretized directly:

- idgrey models with FcnType is 'c'. Convert to idss model first.
- idproc models. Convert to idtf or idpoly model first.

For the syntax [sysd,G] = c2d(sys,Ts,opts), sys must be a state-space model.

Ts

Sample time.

method

String specifying a discretization method:

- 'zoh' - Zero-order hold (default). Assumes the control inputs are piecewise constant over the sampling period Ts.
- 'foh ' - Triangle approximation (modified first-order hold). Assumes the control inputs are piecewise linear over the sampling period Ts.
- 'impulse ' - Impulse invariant discretization.
- 'tustin' - Bilinear (Tustin) method.
- 'matched ' - Zero-pole matching method.

For more information about discretization methods, see "Continuous-Discrete Conversion Methods".

opts

Discretization options. Create opts using c2dOptions.

Output
 Arguments

sysd

Discrete-time model of the same type as the input system sys.

When sys is an identified (IDLTI) model, sysd:

- Includes both measured and noise components of sys. The innovations variance λ of the continuous-time identified model sys, stored in its NoiseVarianceproperty, is interpreted as the intensity of the spectral density of the noise spectrum. The noise variance in sysd is thus $\lambda / T s$.
- Does not include the estimated parameter covariance of sys. If you want to translate the covariance while discretizing the model, use translatecov.

G

Matrix relating continuous-time initial conditions x_{0} and u_{0} of the state-space model sys to the discrete-time initial state vector $x[0]$, as follows:

$$
x[0]=G \cdot\left[\begin{array}{l}
x_{0} \\
u_{0}
\end{array}\right]
$$

For state-space models with time delays, c2d pads the matrix G with zeroes to account for additional states introduced by discretizing those delays. See "Continuous-Discrete Conversion Methods" for a discussion of modeling time delays in discretized systems.

Examples Discretize the continuous-time transfer function:

$$
H(s)=\frac{s-1}{s^{2}+4 s+5}
$$

with input delay $T_{d}=0.35$ second. To discretize this system using the triangle (first-order hold) approximation with sample time $T_{s}=0.1$ second, type

```
H = tf([1 -1], [1 4 5], 'inputdelay', 0.35);
Hd = c2d(H, 0.1, 'foh'); % discretize with FOH method and
    % 0.1 second sample time
```

```
Transfer function:
0.0115 z^3 + 0.0456 z^2 - 0.0562 z - 0.009104
    z^6 - 1.629 z^5 + 0.6703 z^4
```

Sampling time: 0.1
The next command compares the continuous and discretized step responses.

```
step(H,'-',Hd,'--')
```

```
A) Figure No. 1 - -a|
File Edit View Insert Tools Window Help
```


Discretize the delayed transfer function

$$
H(s)=e^{-0.25 s} \frac{10}{s^{2}+3 s+10}
$$

using zero-order hold on the input, and a $10-\mathrm{Hz}$ sampling rate.

```
h = tf(10,[1 3 10],'iodelay',0.25); % create transfer function
hd = c2d(h, 0.1) % zoh is the default method
```

These commands produce the discrete-time transfer function

```
Transfer function:
```

 \(0.01187 z^{\wedge} 2+0.06408 z+0.009721\)
 $z^{\wedge}(-3)$
$z^{\wedge} 2-1.655 z+0.7408$

Sampling time: 0.1

In this example, the discretized model hd has a delay of three sampling periods. The discretization algorithm absorbs the residual half-period delay into the coefficients of hd.

Compare the step responses of the continuous and discretized models using
step(h,'--',hd,'-')

Discretize a state-space model with time delay, using a Thiran filter to model fractional delays:

```
sys = ss(tf([1, 2], [1, 4, 2])); % create a state-space model
sys.InputDelay = 2.7 % add input delay
```

This command creates a continuous-time state-space model with two states, as the output shows:
a =

	x1	x2
x1	-4	-2
x2	1	0

b =

```
    x1 2
    x2 0
C =
    y rerre
d =
            u1
    y1 0
Input delays (listed by channel): 2.7
Continuous-time model.
```

Use c2dOptions to create a set of discretization options, and discretize the model. This example uses the Tustin discretization method.

```
opt = c2dOptions('Method', 'tustin', 'FractDelayApproxOrder', 3);
sysd1 = c2d(sys, 1, opt) % 1s sampling time
```

These commands yield the result
a =

	x1	x2	x3	x4	x5
x1	-0.4286	-0.5714	-0.00265	0.06954	2.286
x2	0.2857	0.7143	-0.001325	0.03477	1.143
x3	0	0	-0.2432	0.1449	-0.1153
x4	0	0	0.25	0	0
x5	0	0	0	0.125	0

$\mathrm{b}=$
u1
x1 0.002058
x2 0.001029
x3 8
X4 0
$x 5 \quad 0$

```
c =
    rrrrrrer
d =
    y1 0.001029
Sampling time: 1
Discrete-time model.
```

The discretized model now contains three additional states $x 3$, $x 4$, and $x 5$ corresponding to a third-order Thiran filter. Since the time delay divided by the sampling time is 2.7 , the third-order Thiran filter (FractDelayApproxOrder $=3$) can approximate the entire time delay.

Discretize an identified, continuous-time transfer function and compare its performance against a directly estimated discrete-time model

Estimate a continuous-time transfer function and discretize it.

```
load iddata1
sys1c = tfest(z1, 2);
sys1d = c2d(sys1c, 0.1, 'zoh');
```

Estimate a second order discrete-time transfer function.
sys2d = tfest(z1, 2, 'Ts', 0.1);
Compare the two models.
compare(z1, sys1d, sys2d)

The two systems are virtually identical.

Discretize an identified state-space model to build a one-step ahead predictor of its response.

```
load iddata2
sysc = ssest(z2, 4);
sysd = c2d(sysc, 0.1, 'zoh');
[A,B,C,D,K] = idssdata(sysd);
Predictor = ss(A-K*C, [K B-K*D], C, [O D], 0.1);
```

The Predictor is a two input model which uses the measured output and input signals ([z1.y z1.u]) to compute the 1 -steap predicted response of sysc.

For information about the algorithms for each c2d conversion method, see "Continuous-Discrete Conversion Methods".

See Also c2doptions \| d2c|d2d | thiran | translatecov How To
- "Dynamic System Models"
- "Discretize a Compensator"
- "Continuous-Discrete Conversion Methods"

c2dOptions

Purpose

Create option set for continuous- to discrete-time conversions

Syntax
\section*{Description}

```
opts = c2dOptions
opts = c2dOptions('OptionName',
    OptionValue)
```


Input Arguments

opts = c2dOptions returns the default options for c2d.
opts = c2dOptions('OptionName', OptionValue) accepts one or more comma-separated name/value pairs that specify options for the c2d command. Specify OptionName inside single quotes.

Name-Value Pair Arguments

Method

Discretization method, specified as one of the following values:

'zoh'	Zero-order hold, where c2d assumes the control inputs are piecewise constant over the sampling period Ts.
'foh'	Triangle approximation (modified first-order hold), where c2d assumes the control inputs are piecewise linear over the sampling period Ts. (See [1], p. 228.)
'impulse'	Impulse-invariant discretization.
'tustin'	Bilinear (Tustin) approximation. By default, c2d discretizes with no prewarp and rounds any fractional time delays to the nearest multiple of the sample
time. To include prewarp, use the PrewarpFrequency	
option. To approximate fractional time delays, use	
theFractDelayApproxOrder option.	
Zero-pole matching method. (See [1], p. 224.) By	
default, c2d rounds any fractional time delays	
to the nearest multiple of the sample time. To	
approximate fractional time delays, use the	

Default: 'zoh'

PrewarpFrequency

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit is the time units, specified in the TimeUnit property, of the discretized system. Takes positive scalar values. A value of 0 corresponds to the standard 'tustin' method without prewarp.

Default: 0

FractDelayApproxOrder

Maximum order of the Thiran filter used to approximate fractional delays in the 'tustin' and 'matched' methods. Takes integer values. A value of 0 means that c2d rounds fractional delays to the nearest integer multiple of the sample time.

Default: 0

Examples

Discretize two models using identical discretization options.

```
% generate two arbitrary continuous-time state-space models
sys1 = rss(3, 2, 2);
sys2 = rss(4, 4, 1);
```

Use c2dOptions to create a set of discretization options.

```
opt = c2dOptions('Method', 'tustin', 'PrewarpFrequency', 3.4);
```

Then, discretize both models using the option set.

```
dsys1 = c2d(sys1, 0.1, opt); % 0.1s sampling time
dsys2 = c2d(sys2, 0.2, opt); % 0.2s sampling time
```

The c2dOptions option set does not include the sampling time Ts. You can use the same discretization options to discretize systems using a different sampling time.

References
 [1] Franklin, G.F., Powell, D.J., and Workman, M.L., Digital Control of Dynamic Systems (3rd Edition), Prentice Hall, 1997.

See Also
 c2d

Purpose State-space canonical realization

```
Syntax csys = canon(sys,type)
[csys,T]= canon(sys,type)
csys = canon(sys,'modal',condt)
```


Description

Input
 Arguments

csys $=$ canon(sys, type) transforms the linear model sys into a canonical state-space model csys. The argument type specifies whether csys is in modal or companion form.
[csys,T]= canon(sys,type) also returns the state-coordinate transformation T that relates the states of the state-space model sys to the states of csys.
csys $=$ canon(sys,'modal', condt) specifies an upper bound condt on the condition number of the block-diagonalizing transformation.

sys

Any linear dynamic system model, except for frd models.

type

String specifying the type of canonical form of csys. type can take one of the two following values:

- 'modal' - convert sys to modal form.
- 'companion' - convert sys to companion form.

condt

Positive scalar value specifying an upper bound on the condition number of the block-diagonalizing transformation that converts sys to csys. This argument is available only when type is 'modal'.

Increase condt to reduce the size of the eigenvalue clusters in the A matrix of csys. Setting condt $=$ Inf diagonalizes A.

Default: 1 e8

Output Arguments

csys

State-space (ss) model. csys is a state-space realization of sys in the canonical form specified by type.

T

Matrix specifying the transformation between the state vector x of the state-space model sys and the state vector x_{c} of csys:

$$
x_{c}=T x
$$

This argument is available only when sys is state-space model.

Definitions

Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically 1-by-1 for real eigenvalues and 2-by-2 for complex eigenvalues. However, if there are repeated eigenvalues or clusters of nearby eigenvalues, the block size can be larger.

For example, for a system with eigenvalues ($\lambda_{1}, \sigma \pm j \omega, \lambda_{2}$), the modal A matrix is of the form

$$
\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \sigma & \omega & 0 \\
0 & -\omega & \sigma & 0 \\
0 & 0 & 0 & \lambda_{2}
\end{array}\right]
$$

Companion Form

In the companion realization, the characteristic polynomial of the system appears explicitly in the rightmost column of the A matrix. For a system with characteristic polynomial

$$
p(s)=s^{n}+\alpha_{1} s^{n-1}+\ldots+\alpha_{n-1} s+\alpha_{n}
$$

the corresponding companion A matrix is

$$
A=\left[\begin{array}{cccccc}
0 & 0 & . . & . . & 0 & -\alpha_{n} \\
1 & 0 & 0 & . . & 0 & -\alpha_{n}-1 \\
0 & 1 & 0 & . & : & : \\
: & 0 & . & . & : & : \\
0 & . & . & 1 & 0 & -\alpha_{2} \\
0 & . . & . . & 0 & 1 & -\alpha_{1}
\end{array}\right]
$$

The companion transformation requires that the system be controllable from the first input. The companion form is poorly conditioned for most state-space computations; avoid using it when possible.

Examples

This example uses canon to convert a system having doubled poles and clusters of close poles to modal canonical form.

Consider the system G having the following transfer function:

$$
G(s)=100 \frac{(s-1)(s+1)}{s(s+10)(s+10.0001)(s-(1+i))^{2}(s-(1-i))^{2}} .
$$

To create a linear model of this system and convert it to modal canonical form, enter:

```
G = zpk([1 -1],[0 -10 -10.0001 1+1i 1-1i 1+1i 1-1i],100);
Gc = canon(G,'modal');
```

The system G has a pair of nearby poles at $s=-10$ and $s=-10.0001$. G also has two complex poles of multiplicity 2 at $s=1+i$ and $s=1-i$. As a result, the modal form, has a block of size 2 for the two poles near $s=-10$, and a block of size 4 for the complex eigenvalues. To see this, enter the following command:

Gc.A

This command returns the result:
ans =

0	0	0	0	0	0	
0	1.0000	1.0000	0	0	0	0
0	-1.0000	1.0000	2.0548	0	0	
0	0	0	1.0000	1.0000	0	
0	0	0	-1.0000	1.0000	0	-10.0000
0	0	0	0	0	0	-10.057
0	0	0	0	0		

To separate the two poles near $s=-10$, you can increase the value of condt. For example, entering the commands:

Gc2 = canon(G,'modal',1e10);
Gc2.A
returns the result:
ans $=$

0	0	0	0	0	0	
0	1.0000	1.0000	0	0	0	0
0	-1.0000	1.0000	2.0548	0	0	0
0	0	0	1.0000	1.0000	0	0
0	0	0	-1.0000	1.0000	0	-10.0000
0	0	0	0	0	0	-10.000
0	0	0	0	0		

The A matrix of Gc2 includes separate diagonal elements for the poles near $s=-10$. The cost of increasing the maximum condition number of A is that the B matrix includes some large values.

```
format shortE
Gc2.B
ans =
    3.2000e-001
```

$$
\begin{array}{r}
-6.5691 e-003 \\
5.4046 e-002 \\
-1.9502 e-001 \\
1.0637 e+000 \\
3.2533 e+005 \\
3.2533 e+005
\end{array}
$$

This example estimates a state-space model that is freely parameterized and convert to companion form after estimation.

```
load icEngine.mat
z = iddata(y,u,0.04);
FreeModel = n4sid(z,4,'InputDelay',2);
CanonicalModel = canon(FreeModel, 'companion')
```

Obtain the covariance of the resulting form by running a zero-iteration update to model parameters.

```
opt = ssestOptions; opt.SearchOption.MaxIter = 0;
```

CanonicalModel = ssest(z, CanonicalModel, opt)

Compare frequency response confidence bounds of FreeModel to CanonicalModel.
h = bodeplot(FreeModel, CanonicalModel)
the bounds are identical.

Algorithms
 The canon command uses the bdschur command to convert sys into modal form and to compute the transformation T. If sys is not a state-space model, the algorithm first converts it to state space using ss.
 The reduction to companion form uses a state similarity transformation based on the controllability matrix [1].

References
[1] Kailath, T. Linear Systems, Prentice-Hall, 1980.

See Also ctrb \| ctrbf \| ss2ss

chgFreqUnit

Purpose Change frequency units of frequency-response data model

```
Syntax sys_new = chgFrequnit(sys,newfrequnits)
sys_new = chgFreqUnit(sys,newfrequnits)
```

Description

Tips

Input
Arguments
sys_new $=$ chgFreqUnit(sys, newfrequnits) changes units of the frequency points in sys to newfrequnits. Both Frequency and FrequencyUnit properties of sys adjust so that the frequency responses of sys and sys_new match.

- Use chgFreqUnit to change the units of frequency points without modifying system behavior.

sys

Frequency-response data (frd, idfrd, or genfrd) model

newfrequnits

New units of frequency points, specified as one of the following strings:

- 'rad/TimeUnit'
- 'cycles/TimeUnit'
- 'rad/s'
- 'Hz'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rpm'
rad/TimeUnit and cycles/TimeUnit express frequency units relative to the system time units specified in the TimeUnit property.

Default: 'rad/TimeUnit'

Output
 Arguments

Examples

sys_new

Frequency-response data model of the same type as sys with new units of frequency points. The frequency response of sys_new is same as sys.

This example shows how to change units of the frequency points in a frequency-response data model.

1 Create a frequency-response data model.
load AnalyzerData;
sys = frd(resp,freq);
The data file AnalyzerData has column vectors freq and resp. These vectors contain 256 test frequencies and corresponding complex-valued frequency response points, respectively. The default frequency units of sys is rad/TimeUnit, where TimeUnit is the system time units.

2 Change the frequency units.

```
sys1 = chgFreqUnit(sys,'rpm');
```

The FrequencyUnit property of sys1 is rpm.
3 Compare the Bode responses of sys and sys1.
bode(sys,'r',sys1, 'y--');
legend('sys', 'sys1')

The magnitude and phase of sys and sys1 match.

4 (Optional) Change the FrequencyUnit property of sys to compare the Bode response with the original system.
sys2=sys;
sys2.FrequencyUnit = 'rpm';
bode(sys,'r',sys2,'gx');
legend('sys','sys2');
Changing the FrequencyUnit property changes the original system. Therefore, the Bode responses of sys and sys2 do not match. For example, the original corner frequency at $2 \mathrm{rad} / \mathrm{s}$ changes to 2 rpm (or $0.2 \mathrm{rad} / \mathrm{s}$).

See Also
chgTimeUnit | frd | idfrd

chgFreqUnit

Tutorials

- "Specify Frequency Units of Frequency-Response Data Model" ${ }^{1}$

1.

chgTimeUnit

Purpose Change time units of dynamic system
Syntax sys_new = chgTimeUnit(sys,newtimeunits)
Description sys_new = chgTimeUnit(sys, newtimeunits) changes the timeunits of sys to newtimeunits. The time- and frequency-domaincharacteristics of sys and sys_new match.
Tips- Use chgTimeUnit to change the time units without modifying systembehavior.
Input sys
Arguments
Dynamic system model
newtimeunits
New time units, specified as one of the following strings:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'
Default: 'seconds'

Output
 sys_new

Arguments
Dynamic system model of the same type as sys with new time units. The time response of sys_new is same as sys.
If sys is an identified linear model, both the model parameters as and their minimum and maximum bounds are scaled to the new time units.

Examples This example shows how to change the time units of a transfer function model.

1 Create a transfer function model.

```
num = [4 2];
den = [[1 3 10}]
sys = tf(num,den);
```

The default time units of sys is seconds.
2 Change the time units.

```
sys1 = chgTimeUnit(sys,'minutes');
```

The TimeUnit property of sys1 is milliseconds.
3 Compare the step responses of sys and sys1.

```
step(sys,'r',sys1,'y--');
legend('sys','sys1');
```


The step responses of sys and sys1 match.
4 (Optional) Change the TimeUnit property of sys, and compare the step response with the original system.
sys2=sys;
sys2.TimeUnit = 'minutes';
step(sys,'r', sys2,'gx');
legend('sys','sys2');
Changing the TimeUnit property changes the original system. Therefore, the step responses of sys and sys2 do not match. For example, the original rise time of 0.04 seconds changes to 0.04 minutes.


```
See Also
chgFreqUnit \| tf | zpk | ss | frd | pid | idss | idpoly | idtf | idproc
```


Tutorials

- "Specify Model Time Units"

Compare model output and measured output

```
compare(data,sys)
compare(data,sys,prediction_horizon)
compare(data,sys,style,prediction_horizon)
compare(data,sys1,...,sysN,style,prediction_horizon)
compare(data,sys1,style1,...,sysN,styleN,prediction_horizon)
compare(data,sys1,..., ___,opt)
[y,fit,x0] = compare(data,___)
```

compare(data, sys) plots the simulated response of a dynamic system model, sys, superimposed over validation data, data, for comparison. The plot also displays the normalized root mean square (NRMSE) measure of the goodness of the fit.
compare(data, sys, prediction_horizon) compares the predicted response of sys to the measured response in data. Measured output values in data up to time t-prediction_horizon are used to predict the output of sys at time t.

The matching of the input/output channels in data and sys is based on the channel names. So, it is possible to evaluate models that do not use all the input channels that are available in data.
compare(data, sys, style, prediction_horizon) allows specification of the line style, color, or marker for the plot.
compare(data, sys1, ..., sysN, style, prediction_horizon) compares multiple dynamic systems responses in a single figure.
compare(data, sys1, style1,...,sysN,styleN, prediction_horizon)
compares systems responses using the color, linestyle, and markers specified by the style strings.
compare(data, sys1,..., _ opt) configures the comparison using an option set, opt.
[y,fit, x0] = compare(data, __) returns the model response, y, goodness of fit value, fit, and the initial states, $x 0$. No plot is generated.

Input Arguments

data

Validation data.
Specify data as either an iddata or idfrd object.
If sys is an iddata object, then data must be an iddata object with matching domain, number of experiments and time or frequency vectors.

If sys is a frequency response model (idfrd or frd), then data must be a frequency response model too.
data can represent either time- or frequency domain data when comparing with linear models. data must be time-domain data when comparing with a nonlinear model.

For frequency domain data, the real and imaginary parts of the corresponding frequency functions are shown in separate axes.

When data is an FRD model, the frequency responses of data and sys are plotted.
sys
Dynamic system model or data object.
Specify sys as either a dynamic system model or an iddata object.
When the time or frequency units of data do not match those of sys, sys is rescaled to match the units of data.

prediction_horizon

Prediction horizon.
Specify prediction_horizon as Inf to obtain a pure simulation of the system.
prediction_horizon is ignored when sys is an iddata object, an FRD model or a dynamic system with no noise component. prediction_horizon is also ignored when using frequency response validation data.

For time-series models, use a finite value for prediction_horizon.

Default: Inf

style

Line style, marker, and color of both the linear and marker, specified as a one-, two-, or three-part string enclosed in single quotes (' '). The elements of the string can appear in any order. The string can specify only the line style, the marker, or the color.

For more information about configuring the style string, see "Colors, Line Styles, and Markers" in the MATLAB documentation.

opt

Comparison option set.
opt is an option set that specifies, among other options, the following:

- handling of initial conditions
- sample range for computing fit numbers
- data offsets
- output weighting

Use compareOptions to create the option set.

Output
 y
 Arguments
 Model response.

Measured output values in data up to time $t=t$-prediction_horizon are used to predict the output of sys at time t.

For multi-model comparisons, y is a cell array, with one entry for each input model.

For multi-experiment data, y is a cell array, with one entry for each experiment.

For multi-model comparisons using multi-experiment data, y is an Nsys-by-Nexp cell array. Here, Nsys is the number of models, and Nexp is the number of experiments.

If sys is a model array, then, y is an array, with an entry corresponding to each model in sys and experiment in data..

fit

NRMSE fitness value.
The fit is calculated (in percentage) using :

$$
\text { fit }=100\left(1-\frac{\|y-\hat{y}\|}{\|y-\operatorname{mean}(y)\|}\right)
$$

where y is the validation data output and \hat{y} is the output of sys.
For FRD models, fit is calculated by comparing the complex frequency response; the magnitude and phase curves shown in the plot are not compared separately.

If data is an iddata object, fit is an $N y$-by- 1 vector, where $N y$ is the number of outputs.

If data is an FRD model with $N y$ outputs and $N u$ inputs, fit is an $N y$-by- $N u$ matrix. Each entry of fit corresponds to an input/output pair in sys.

For multi-model comparisons, fit is a cell array, with one entry for each input model.

For multi-experiment data, fit is a cell array, with one entry for each experiment.

For multi-model comparisons using multi-experiment data, fit is an Nsys-by-Nexp cell array. Here, Nsys is the number of models, and Nexp is the number of experiments.

x0

Initial conditions used to compute system response.
When sys is an frd or iddata object, x 0 is [].

For multi-model comparisons, x 0 is a cell array, with one entry for each input model.

For multi-experiment data, x 0 is a cell array, with one entry for each experiment.

For multi-model comparisons using multi-experiment data, x 0 is an Nsys-by-Nexp cell array. Here, Nsys is the number of models, and Nexp is the number of experiments.

Examples Compare Estimated Model to Data

Compare the output of an estimated state-space model to measured data.

Estimate a state-space model for measured data.

```
load iddata1 z1;
```

sys = ssest(z1,3)
sys, an idss model, is a continuous-time state-space model.
Compare the 10 step ahead predicted output to the measured output.

```
prediction_horizon = 10;
compare(z1,sys,prediction_horizon);
```


Compare Multiple Estimated Models

Compare the outputs of an estimated process model, and an estimated Output-Error polynomial model to measured data.

Estimate a process model and an Output-Error polynomial for frequency response data.

```
load demofr % frequency response data
zfr = AMP.*exp(1i*PHA*pi/180);
Ts = 0.1;
data = idfrd(zfr,W,Ts);
sys1 = procest(data,'P2UDZ');
sys2 = oe(data,[2 2 1]);
```

sys1, an idproc model, is a continuous-time process model. sys2, an idpoly model, is a discrete-time Output-Error model.

Compare the frequency response of the estimated models to data.

```
compare(data,sys1,'g',sys2,'r');
```


Compare Estimated Model to Data and Specify Comparison Options

Compare an estimated model to measured data and specify that the initial conditions be estimated such that the prediction error of the observed output is minimized.

Estimate a transfer function for measured data.

```
load iddata1 z1;
sys = tfest(z1,3)
```

sys, an idtf model, is a continuous-time transfer function model.
Create an option set to specify the initial condition handling.

```
opt = compareOptions('InitialCondition','e');
```

Compare the estimated transfer function model's output to the measured data using the comparison option set.

```
compare(z1,sys,opt);
```


See Also

```
compareOptions | sim | predict | resid | forecast | interp
    | goodnessOfFit | chgTimeUnit | chgFreqUnit | bode
```

Purpose Option set for compare

Syntax \quad| opt $=$ compareOptions |
| :--- |
| opt |$=$ compareOptions (Name, Value)

Description opt = compareOptions creates the default options set for compare.
opt $=$ compareOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Input
 Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Samples

Data for which compare calculates fit values.
Specify Samples as a vector containing the data sample indices. For multiexperiment data, use a cell array of $N e$ vectors, where $N e$ is the number of experiments.

InitialCondition

Specify how initial conditions are handled.
InitialCondition requires one of the following values:

- 'z' - Zero initial conditions.
- 'e' - Estimate initial conditions such that the prediction error for observed output is minimized.
- 'd' - Similar to 'e', but absorbs nonzero delays into the model coefficients. Use this option for discrete-time models only.
- x0 - Numerical column vector denoting initial states. For multiexperiment data, use a matrix with $N e$ columns, where $N e$ is the number of experiments. Use this option for state-space models only.
- io - Structure with the following fields:
- Input
- Output

Use the Input and Output fields to specify the input/output history for a time interval that starts before the start time of the data used by compare. If the data used by compare is a time-series model, specify Input as []. Use a row vector to denote a constant signal value. The number of columns in Input and Output must always equal the number of input and output channels, respectively. For multiexperiment data, specify io as a struct array of $N e$ elements, where $N e$ is the number of experiments.

- xOobj - Specification object created using idpar. Use this object for discrete-time state-space models only (idss, idgrey). Use x0obj to impose constraints on the initial states by fixing their value or specifying minimum/maximum bounds.

Default: 'e'

InputOffset

Removes offset from time domain input data for model response computation.

Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a Nu -by- Ne matrix. In this case, $N u$ is the number of inputs and $N e$ is the number of experiments.
Each entry specified by InputOffset is subtracted from the corresponding input data.

Default: []

OutpurOffset

Removes offset from time domain output data for model response prediction.

Specify as a column vector of length $N y$, where $N y$ is the number of outputs.

Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. In this case, $N y$ is the number of outputs and $N e$ is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

Default: []

OutputWeight

Weight of output for initial condition estimation.
OutputWeight requires one of the following values:

- [] — No weighting is used. This option is the same as using eye(Ny) for the output weight, where $N y$ is the number of outputs.
- 'noise' - Inverse of the noise variance stored with the model.
- matrix - A positive semi-definite matrix of dimension $N y$-by- $N y$, where $N y$ is the number of outputs.

Default: []

Output opt
 Arguments
 Option set containing the specified options for compare.

Examples Create Default Options Set for Model Comparison

Create a default options set for compare.
opt = compareOptions;

Specify Options for Model Comparison

Create an options set for compare using zero initial conditions. Set the input offset to 5 .

```
opt = compareOptions('InitialCondition','z','InputOffset',5);
```

Alternatively, use dot notation to set the values of opt.

```
opt = compareOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;
```


See Also
 compare

```
Purpose Estimate impulse response using prewhitened-based correlation analysis
```

```
Syntax
ir=cra(data)
[ir,R,cl] = cra(data,M,na,plot)
```

Description

Input
 Arguments

ir=cra(data) estimates the impulse response for the time-domain data, data.
[ir,R,cl] = cra(data,M,na,plot) estimates correlation/covariance information, R , and the 99% confidence level for the impulse response, cl.
cra prewhitens the input sequence; that is, cra filters u through a filter chosen so that the result is as uncorrelated (white) as possible. The output y is subjected to the same filter, and then the covariance functions of the filtered y and u are computed and graphed. The cross correlation function between (prewhitened) input and output is also computed and graphed. Positive values of the lag variable then correspond to an influence from u to later values of y. In other words, significant correlation for negative lags is an indication of feedback from y to u in the data.

A properly scaled version of this correlation function is also an estimate of the system's impulse response ir. This is also graphed along with 99% confidence levels. The output argument ir is this impulse response estimate, so that its first entry corresponds to lag zero. (Negative lags are excluded in ir.) In the plot, the impulse response is scaled so that it corresponds to an impulse of height $1 / T$ and duration T, where T is the sampling interval of the data.

data

Input-output data.
Specify data as an iddata object containing time-domain data only.
data should contain data for a single-input, single-output experiment. For the multivariate case, apply cra to two signals at a time, or use impulse.

M

Number of lags for which the covariance/correlation functions are computed.

M specifies the number of lags for which the covariance/correlation functions are computed. These are from $-M$ to M, so that the length of R is $2 \mathrm{M}+1$. The impulse response is computed from 0 to M .

Default: 20

na

Order of the AR model to which the input is fitted.
For the prewhitening, the input is fitted to an AR model of order na.
Use na $=0$ to obtain the covariance and correlation functions of the original data sequences.

Default: 10

plot

Plot display control.
Specify plot as one of the following integers:

- 0 - No plots are displayed.
- 1 - Plots the estimated impulse response with a 99% confidence region.
- 2 - Plots all the covariance functions.

Default: 1

Output Arguments
 ir

Estimated impulse response.
The first entry of ir corresponds to lag zero. (Negative lags are excluded in ir.)

R

Covariance/correlation information.

- The first column of R contains the lag indices.
- The second column contains the covariance function of the (possibly filtered) output.
- The third column contains the covariance function of the (possibly prewhitened) input.
- The fourth column contains the correlation function. The plots can be redisplayed by cra(R).

cl

99% significance level for the impulse response.

Examples Compare a second-order ARX model's impulse response with the one

 obtained by correlation analysis.```
load iddata1
z=z1;
ir = cra(z);
m = arx(z,[2 2 1]);
imp = [1;zeros(20,1)];
irth = sim(m,imp);
subplot(211)
plot([ir irth])
title('impulse responses')
subplot(212)
plot([cumsum(ir),cumsum(irth)])
title('step responses')
```

Alternatives An often better alternative to cra is the functions impulse and step, which use a high-order FIR model to estimate the impulse response.
See Also impulse | step | impulseest | covf | spa

## Purpose Custom nonlinearity estimator for nonlinear ARX and Hammerstein-Wiener models

```
Syntax
C=customnet(H)
C=customnet(H,PropertyName,PropertyValue)
```

Description

Construction
customnet is an object that stores a custom nonlinear estimator with a user-defined unit function. This custom unit function uses a weighted sum of inputs to compute a scalar output.
$\mathrm{C}=$ customnet $(\mathrm{H})$ creates a nonlinearity estimator object with a user-defined unit function using the function handle H . H must point to a function of the form [ $f, g, a]=$ gaussunit $(x)$, where $f$ is the value of the function, $g=d f / d x$, and a indicates the unit function active range. Name the function gaussunit.m. g is significantly nonzero in the interval [-a a]. Hammerstein-Wiener models require that your custom nonlinearity have only one input and one output.

C=customnet(H,PropertyName, PropertyValue) creates a nonlinearity estimator using property-value pairs defined in "customnet Properties" on page 2-149.

Tips
Use customnet to define a nonlinear function $y=F(x)$, where $y$ is scalar and $x$ is an m-dimensional row vector. The unit function is based on the following function expansion with a possible linear term $L$ :

$$
\begin{aligned}
F(x)=(x-r) P L & +a_{1} f\left((x-r) Q b_{1}+c_{1}\right)+\ldots \\
& +a_{n} f\left((x-r) Q b_{n}+c_{n}\right)+d
\end{aligned}
$$

where $f$ is a unit function that you define using the function handle $H$.
$P$ and $Q$ are m-by-p and m-by-q projection matrices, respectively. The projection matrices $P$ and $Q$ are determined by principal component analysis of estimation data. Usually, $\mathrm{p}=\mathrm{m}$. If the components of $x$ in the estimation data are linearly dependent, then $p<m$. The number of columns of $Q, q$, corresponds to the number of components of $x$ used in the unit function.

When used to estimate nonlinear ARX models, q is equal to the size of the NonlinearRegressors property of the idnlarx object. When used to estimate Hammerstein-Wiener models, $\mathrm{m}=\mathrm{q}=1$ and $Q$ is a scalar.
$r$ is a $1-b y-\mathrm{m}$ vector and represents the mean value of the regressor vector computed from estimation data.
$d, a$, and $c$ are scalars.
$L$ is a p-by- 1 vector.
$b$ represents $q-b y-1$ vectors.
The function handle of the unit function of the custom net must have the form $[f, g, a]=$ function_name $(x)$. This function must be vectorized, which means that for a vector or matrix $x$, the output arguments $f$ and $g$ must have the same size as $x$ and be computed element-by-element.
customnet Properties

You can include property-value pairs in the constructor to specify the object.
After creating the object, you can use get or dot notation to access the object property values. For example:

```
% List all property values
get(C)
% Get value of NumberOfUnits property
C.NumberOfUnits
```

You can also use the set function to set the value of particular properties. For example:
set(C, 'LinearTerm', 'on')
The first argument to set must be the name of a MATLAB variable.

| Property Name | Description |
| :---: | :---: |
| NumberOfUnits | Integer specifies the number of nonlinearity units in the expansion. <br> Default=10. <br> For example: <br> customnet(H, 'NumberOfUnits' , 5) |
| LinearTerm | Can have the following values: <br> - 'on'—Estimates the vector $L$ in the expansion. <br> - 'off'-Fixes the vector $L$ to zero. <br> For example: <br> customnet(H, 'LinearTerm', 'on') |
| Parameters | A structure containing the parameters in the nonlinear expansion, as follows: <br> - Regressormean: 1-by-m vector containing the means of $x$ in estimation data, $r$. <br> - NonLinearSubspace: m-by-q matrix containing $Q$. <br> - LinearSubspace: m-by-p matrix containing $P$. <br> - LinearCoef: p-by-1 vector $L$. <br> - Dilation: $q-b y-1$ matrix containing the values $b_{n}$. <br> - Translation: 1-by-n vector containing the values $c_{n}$. <br> - OutputCoef: n -by-1 vector containing the values $a_{n}$. <br> - OutputOffset: scalar d. <br> Typically, the values of this structure are set by estimating a model with a customnet nonlinearity. |
| UnitFen | Stores the function handle that points to the unit function. |

## Algorithms

Examples Define custom unit function and save it in gaussunit.m:

```
function [f, g, a] = GAUSSUNIT(x)
% x: unit function variable
% f: unit function value
% g: df/dx
% a: unit active range (g(x) is significantly
% nonzero in the interval [-a a])
% The unit function must be "vectorized": for
% a vector or matrix x, the output arguments f and g
% must have the same size as x,
% computed element-by-element.
% GAUSSUNIT customnet unit function example
[f, g, a] = gaussunit(x)
f = exp(-x.*x);
if nargout>1
 g = - 2*x.*f;
 a = 0.2;
end
```

Use custom networks in nlarx and nlhw model estimation commands:

```
% Define handle to example unit function.
H = @gaussunit;
% Estimate nonlinear ARX model using
% Gauss unit function with 5 units.
m = nlarx(Data,Orders,customnet(H,'NumberOfUnits',5));
```

See Also evaluate | nlarx | nlhw
How To . "Identifying Nonlinear ARX Models"

## customnet

- "Identifying Hammerstein-Wiener Models"


## Purpose

Custom regressor for nonlinear ARX models

Syntax

Description

C=customreg(Function, Variables)
C=customreg(Function, Variables,Delays, Vectorized)
customreg class represents arbitrary functions of past inputs and outputs, such as products, powers, and other MATLAB expressions of input and output variables.

You can specify custom regressors in addition to or instead of standard regressors for greater flexibility in modeling your data using nonlinear ARX models. For example, you can define regressors like tan(u(t-1)), $u(t-1)^{2}$, and $u(t-1)^{*} y(t-3)$.

For simpler regressor expressions, specify custom regressors directly in the GUI or in the nlarx estimation command. For more complex expressions, create a customreg object for each custom regressor and specify these objects as inputs to the estimation. Regardless of how you specify custom regressors, the toolbox represents these regressors as customreg objects. Use getreg to list the expressions of all standard and custom regressors in your model.

A special case of custom regressors involves polynomial combinations of past inputs and outputs. For example, it is common to capture nonlinearities in the system using polynomial expressions like $y(t-1) 2$, $u(t-1) 2, y(t-2) 2, \mathrm{y}(t-1)^{*} y(t-2), y(t-1)^{*} u(t-1), y(t-2)^{*} u(t-1)$. At the command line, use the polyreg command to generate polynomial-type regressors automatically by computing all combinations of input and output variables up to a specified degree. polyreg produces customreg objects that you specify as inputs to the estimation.

The nonlinear ARX model (idnlarx object) stores all custom regressors as the CustomRegressors property. You can list all custom regressors using m . CustomRegressors, where m is a nonlinear ARX model. For MIMO models, to retrieve the rth custom regressor for output ky, use m.CustomRegressors\{ky ( $r$ ).

Use the Vectorized property to specify whether to compute custom regressors using vectorized form during estimation. If you know
that your regressor formulas can be vectorized, set Vectorized to 1 to achieve better performance. To better understand vectorization, consider the custom regressor function handle $z=@(x, y) x^{\wedge} 2 * y . x$ and $y$ are vectors and each variable is evaluated over a time grid. Therefore, $z$ must be evaluated for each (xi,yi) pair, and the results are concatenated to produce a $z$ vector:

```
for k = 1:length(x)
 z(k) = x(k)^2* y(k)
end
```

The above expression is a nonvectorized computation and tends to be slow. Specifying a Vectorized computation uses MATLAB vectorization rules to evaluate the regressor expression using matrices instead of the FOR-loop and results in faster computation:

```
% ".*" indicates element-wise operation
z=(x.^2).*y
```


## Construction

C=customreg(Function, Variables) specifies a custom regressor for a nonlinear ARX model. $C$ is a customreg object that stores custom regressor. Function is a handle or string representing a function of input and output variables. Variables is a cell array of strings that represent the names of model inputs and outputs in the function Function. Each input and output name must coincide with the strings in the InputName and OutputName properties of the corresponding idnlarx object. The size of Variables must match the number of Function inputs. For multiple-output models with p outputs, the custom regressor is a p-by- 1 cell array or an array of customreg object, where the kyth entry defines the custom regressor for output ky. You must add these regressors to the model by assigning the CustomRegressors model property or by using addreg.

C=customreg(Function, Variables, Delays, Vectorized) create a custom regressor that includes the delays corresponding to inputs or outputs in Arguments. Delays is a vector of positive integers that represent the delays of Variables variables (default is 1 for each vector element). The size of Delays must match the size of Variables.

Vectorized value of 1 uses MATLAB vectorization rules to evaluate the regressor expression Function. By default, Vectorized value is 0 (false).

## Properties

After creating the object, you can use get or dot notation to access the object property values. For example:

```
% List all property values
get(C)
% Get value of Arguments property
C.Arguments
```

You can also use the set function to set the value of particular properties. For example:

```
set(C,'Vectorized',1)
```

| Property Name | Description |
| :--- | :--- |
| Function | Function handle or string representing a function of standards <br> regressors. <br> For example: <br> $c r=@(x, y) x * y$ |
| Variables | Cell array of strings that represent the names of model input <br> and output variables in the function Function. Each input and <br> output name must coincide with the strings in the InputName <br> and OutputName properties of the idnlarx object-the model <br> for which you define custom regressors. The size of Variables <br> must match the number of Function inputs. <br> For example, Variables correspond to \{'y1', 'u1'\} in: <br> C = customreg(cr, \{'y1', 'u1'\}, [2 3]) |


| Property Name | Description |
| :---: | :---: |
| Delays | Vector of positive integers representing the delays of Variables. The size of Delays must match the size of Arguments. <br> Default: 1 for each vector element. <br> For example, Delays are [2 3] in: <br> C = customreg(cr,\{'y1', 'u1'\},[2 3]) |
| Vectorized | Assignable values: <br> - 0 (default)—Function is not computed in vectorized form. <br> - 1-Function is computed in vectorized form when called with vector arguments. |

[^2]Define custom regressors directly in the estimation command nlarx:

```
m = nlarx(data,[na nb nk],'linear',...
 'CustomRegressors',...
 {'u1(t-1)*sin(y1(t-3))','u1(t-2)^3'});
```

Define custom regressors as an object array of customreg objects:

```
cr1=@(x,y) x*sin(y);
cr2=@(x) x^3;
C=[customreg(cr1,{'u' 'y'},[11 3]),...
 customreg(cr2,{'u'},2)];
m=addreg(m,C);
```

Use vectorization rules to evaluate regressor expression during estimation:
$C=$ customreg(@(x,y) $\left.x^{*} \sin (y),\left\{{ }^{\prime} u^{\prime} y^{\prime} y^{\prime}\right\},\left[\begin{array}{ll}1 & 3\end{array}\right]\right)$
set(C, 'Vectorized',1)
m = nlarx(data,[na nb nk],'sigmoidnet','CustomReg', C)
See Also
addreg | getreg | idnlarx | nlarx | polyreg
How To . "Identifying Nonlinear ARX Models"

## Purpose Convert model from discrete to continuous time

Syntax $\quad$| sysc $=d 2 c($ sysd $)$ |
| :--- |
| sysc $=d 2 c($ sysd, method $)$ |
| sysc $=d 2 c($ sysd, opts $)$ |
| $[$ sysc,G] $=d 2 c($ sysd, method, opts $)$ |

## Description

Tips

## Input <br> Arguments

sysc = d2c(sysd) produces a continuous-time model sysc that is equivalent to the discrete-time dynamic system model sysd using zero-order hold on the inputs.
sysc = d2c(sysd,method) uses the specified conversion method method.
sysc $=$ d2c(sysd,opts) converts sysd using the option set opts, specified using the d2cOptions command.
[sysc, G] = d2c(sysd,method,opts) returns a matrix $G$ that maps the states $x d[k]$ of the state-space model sysd to the states $x c(t)$ of sysc.

- Use the syntax sysc = d2c(sysd, 'method') to convert sysd using the default options for 'method'. To specify tustin conversion with a frequency prewarp (formerly the 'prewarp' method), use the syntax sysc $=\mathrm{d} 2 \mathrm{c}($ sysd,opts). See the d2cOptions reference page for more information.


## sysd

Discrete-time dynamic system model
You cannot directly use an idgrey model with FcnType='d' with d2c. Convert the model into idss form first.

## method

String specifying a discrete-to-continuous time conversion method:

- 'zoh' - Zero-order hold on the inputs. Assumes the control inputs are piecewise constant over the sampling period.
- 'foh' - Linear interpolation of the inputs (modified first-order hold). Assumes the control inputs are piecewise linear over the sampling period.
- 'tustin' - Bilinear (Tustin) approximation to the derivative.
- 'matched ' — Zero-pole matching method of [1] (for SISO systems only).
Default: 'zoh'


## opts

Discrete-to-continuous time conversion options, created using d2cOptions.

## Output <br> sysc

Arguments
Continuous-time model of the same type as the input system sysd.
When sysd is an identified (IDLTI) model, sysc:

- Includes both the measured and noise components of sysd. If the noise variance is $\lambda$ in sysd, then the continuous-time model sysc has an indicated level of noise spectral density equal to $T s^{*} \lambda$.
- Does not include the estimated parameter covariance of sysd. If you want to translate the covariance while converting the model, use translatecov.


## G

Matrix mapping the states $x d[k]$ of the state-space model sysd to the states $\mathrm{xc}(\mathrm{t})$ of sysc :

$$
x_{c}\left(k T_{s}\right)=G\left[\begin{array}{c}
x_{d}[k] \\
u[k]
\end{array}\right] .
$$

Given an initial condition $x 0$ for sysd and an initial input $u 0=u[0]$, the corresponding initial condition for sysc (assuming $u[k]=0$ for $k$ $<0$ is given by:

$$
x_{c}(0)=G\left[\begin{array}{l}
x_{0} \\
u_{0}
\end{array}\right] .
$$

## Examples

## Example 1

Consider the discrete-time model with transfer function

$$
H(z)=\frac{z-1}{z^{2}+z+0.3}
$$

and sample time $T_{s}=0.1 \mathrm{~s}$. You can derive a continuous-time zero-order-hold equivalent model by typing
$\mathrm{Hc}=\mathrm{d} 2 \mathrm{c}(\mathrm{H})$
Discretizing the resulting model Hc with the default zero-order hold method and sampling time $T_{s}=0.1 \mathrm{~s}$ returns the original discrete model $H(z)$ :
c2d (Hc , 0.1)
To use the Tustin approximation instead of zero-order hold, type
Hc = d2c(H,'tustin')
As with zero-order hold, the inverse discretization operation
c2d(Hc,0.1,'tustin')
gives back the original $H(z)$.

## Example 2

Convert an identified transfer function and compare its performance against a directly estimated continuous-time model.

```
load iddata1
sys1d = tfest(z1, 2, 'Ts', 0.1);
sys1c = d2c(sys1d, 'zoh');
sys2c = tfest(z1, 2);
compare(z1, sys1c, sys2c)
```

The two systems are virtually identical.


## Example 3

Analyze the effect of parameter uncertainty on frequency response across d2c operation on an identified model.

```
load iddata1
```

```
sysd = tfest(z1, 2, 'Ts', 0.1);
sysc = d2c(sysd, 'zoh');
```

sys1c has no covariance information. Regenerate it using a zero iteration update with the same estimation command and estimation data:

```
opt = tfestOptions;
opt.SearchOption.MaxIter = 0;
sys1c = tfest(z1, sysc, opt);
h = bodeplot(sysd, sysc);
showConfidence(h)
```

The uncertainties of sysc and sysd are comparable up to the Nyquist frequency. However, sysc exhibits large uncertainty in the frequency range for which the estimation data does not provide any information.

If you do not have access to the estimation data, use translatecov which is a Gauss-approximation formula based translation of covariance across model type conversion operations.

## Algorithms

## Limitations

d2c performs the 'zoh' conversion in state space, and relies on the matrix logarithm (see logm in the MATLAB documentation).
See "Continuous-Discrete Conversion Methods" for more details on the conversion methods.

The Tustin approximation is not defined for systems with poles at $z=-1$ and is ill-conditioned for systems with poles near $z=-1$.

The zero-order hold method cannot handle systems with poles at $z=0$. In addition, the 'zoh' conversion increases the model order for systems with negative real poles, [2]. The model order increases because the matrix logarithm maps real negative poles to complex poles. Single complex poles are not physically meaningful because of their complex time response.

Instead, to ensure that all complex poles of the continuous model come in conjugate pairs, d2c replaces negative real poles $z=-\alpha$ with a pair of complex conjugate poles near $-\alpha$. The conversion then yields a continuous model with higher order. For example, to convert the discrete-time transfer function

$$
H(z)=\frac{z+0.2}{(z+0.5)\left(z^{2}+z+0.4\right)}
$$

type:

```
Ts \(=0.1\) \% sample time 0.1 s
H = zpk(-0.2,-0.5,1,Ts) * tf(1,[11 10.4\(], T s)\)
Hc = d2c (H)
```

These commands produce the following result.

```
Warning: System order was increased to handle real negative poles.
Zero/pole/gain:
 -33.6556 (s-6.273) (s^2 + 28.29s + 1041)
(s^2 + 9.163s + 637.3) (s^2 + 13.86s + 1035)
```

To convert Hc back to discrete time, type:
c2d(Hc, Ts)
yielding

```
Zero/pole/gain:
 (z+0.5) (z+0.2)
(z+0.5)^2 (z^2 + z + 0.4)
```

Sampling time: 0.1

This discrete model coincides with $H(z)$ after canceling the pole/zero pair at $z=-0.5$.

## References

See Also
[1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of Dynamic Systems (3rd Edition), Prentice Hall, 1997..
[2] Kollár, I., G.F. Franklin, and R. Pintelon, "On the Equivalence of z-domain and s-domain Models in System Identification," Proceedings of the IEEE ${ }^{\circledR}$ Instrumentation and Measurement Technology Conference, Brussels, Belgium, June, 1996, Vol. 1, pp. 14-19.
d2cOptions | c2d | d2d | translatecov | logm

## Purpose

Create option set for discrete- to continuous-time conversions
Syntax

Description

## Input Arguments

opts = d2cOptions
opts = d2cOptions(Name, Value)
opts $=$ d2cOptions returns the default options for d2c.
opts = d2cOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

## Name-Value Pair Arguments

## method

Discretization method, specified as one of the following values:
'zoh ' Zero-order hold, where d2c assumes the control inputs are piecewise constant over the sampling period Ts.
'foh ' Linear interpolation of the inputs (modified first-order hold). Assumes the control inputs are piecewise linear over the sampling period.
'tustin' Bilinear (Tustin) approximation. By default, d2c converts with no prewarp. To include prewarp, use the PrewarpFrequency option.
'matched' Zero-pole matching method. (See [1], p. 224.)

Default: 'zoh'

## PrewarpFrequency

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit is the time units, specified in the TimeUnit property, of the discrete-time system. Specify the prewarp frequency as a positive scalar value. A value of 0 corresponds to the 'tustin' method without prewarp.

Default: 0
For additional information about conversion methods, see "Continuous-Discrete Conversion Methods".

Examples Convert a discrete-time model to continuous-time using the 'tustin' method with frequency prewarping.

Create the discrete-time transfer function

```
 z+1
hd = tf([1 1], [1 1 1 1], 0.1); % 0.1s sampling time
```

To convert to continuous-time, use d2cOptions to create the option set.
opts = d2cOptions('Method', 'tustin', 'PrewarpFrequency', 20); hc = d2c(hd, opts);

You can use opts to resample additional models using the same options.

## References

[1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of Dynamic Systems (3rd Edition), Prentice Hall, 1997.

## See Also <br> d2c

## Purpose Resample discrete-time model

```
Syntax sys1 = d2d(sys, Ts)
sys1 = d2d(sys, Ts, 'method')
sys1 = d2d(sys, Ts, opts)
```


## Description

## Tips

## Examples

## Example 1

Consider the zero-pole-gain model

$$
H(z)=\frac{z-0.7}{z-0.5}
$$

with sample time 0.1 s . You can resample this model at 0.05 s by typing H = zpk(0.7, 0.5, 1, 0.1)

```
H2 = d2d(H,0.05)
Zero/pole/gain:
(z-0.8243)
(z-0.7071)
Sampling time: 0.05
```

The inverse resampling operation, performed by typing d2d(H2,0.1), yields back the initial model $H(z)$.

```
Zero/pole/gain:
(z-0.7)

(z-0.5)
```

Sampling time: 0.1

## Example 2

Suppose you estimates a discrete-time model of a sample time commensurate with the estimation data ( $\mathrm{Ts}=0.1$ seconds). However, your deployment application demands a faster sampling frequency (Ts $=0.01$ seconds).
load iddata1
sys = oe(z1, [2 2 1]);
sysFast = d2d(sys, 0.01, 'zoh')
bode(sys, sysFast)
See Also
d2dOptions | c2d | d2c | upsample | translatecov

| Purpose | Create option set for discrete-time resampling |
| :---: | :---: |
| Syntax | opts $=$ d2dOptions |
|  | opts = d2dOptions('OptionName', OptionValue) |
| Description | opts $=$ d2dOptions returns the default options for d2d. |
|  | opts = d2dOptions('OptionName', Optionvalue) accepts one or more comma-separated name/value pairs that specify options for the d2d command. Specify OptionName inside single quotes. |
|  | This table summarizes the options that the d2d command supports. |
| Input | Name-Value Pair Arguments |
|  | Method |
|  | Discretization method, specified as one of the following values: |
|  | 'zoh' Zero-order hold, where d2d assumes the control inputs are piecewise constant over the sampling period Ts. |
|  | 'tustin' Bilinear (Tustin) approximation. By default, d2d resamples with no prewarp. To include prewarp, use the PrewarpFrequency option. |
|  | Default: 'zoh' |
|  | Prewarpfrequency |
|  | Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit is the time units, specified in the TimeUnit property, of the resampled system. Takes positive scalar values. The prewarp frequency must be smaller than the Nyquist frequency before and after resampling. A value of 0 corresponds to the standard 'tustin' method without prewarp. |

Default: 0

Examples Resample a discrete-time model using the 'tustin' method with frequency prewarping.

Create the discrete-time transfer function

$$
\begin{aligned}
& \frac{z+1}{z^{2}+z+1} \\
\text { h1 } & =\operatorname{tf}\left(\left[\begin{array}{ll}
1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right], 0.1\right) ; \quad \% 0.1 \text { s sampling time }
\end{aligned}
$$

To resample to a different sampling time, use d2dOptions to create the option set.
opts = d2dOptions('Method', 'tustin', 'PrewarpFrequency', 20); h2 = d2d(h1, 0.05, opts);

You can use opts to resample additional models using the same options.

## See Also <br> d2d

$\left.\begin{array}{ll}\text { Purpose } & \text { Natural frequency; damping ratio } \\ \text { Syntax } & \begin{array}{l}\text { damp (sys) } \\ \text { [Wn, zeta] }=\text { damp (sys) } \\ \text { [Wn, zeta, P] = damp (sys) }\end{array} \\ \text { Description } & \begin{array}{l}\text { damp (sys) calculates the damping ratio (also called damping factor) and } \\ \text { natural frequency of the poles of the linear model sys. When invoked } \\ \text { without output arguments, damp displays a table of the eigenvalues } \\ \text { of sys, along with the corresponding damping ratios and natural } \\ \text { frequencies. For discrete-time sys, the table includes the magnitude } \\ \text { of each pole and the damping ratio and frequencies of equivalent } \\ \text { continuous-time poles (see "Algorithms" on page 2-173). Frequencies } \\ \text { are expressed in units of the reciprocal of the TimeUnit property of sys. } \\ \text { [Wn, zeta] = damp (sys) returns vectors Wn and zeta containing the }\end{array} \\ \text { natural frequencies } \omega_{n} \text { and damping ratios } \zeta \text { of the poles of sys. }\end{array}\right\}$

Vector containing the damping ratios of each pole of sys, in the same order as Wn.

If sys is a discrete-time model with specified sampling time, zeta contains the damping ratios of the equivalent continuous-time poles (see "Algorithms" on page 2-173). If sys has unspecified sampling time (Ts = -1), zeta is empty.

## P

Vector containing the poles of sys, in order of increasing natural frequency. $P$ is the same as the output of pole(sys), up to ordering.

## Examples Natural Frequency, Damping Ratio, and Poles of a Continuous-Time Transfer Function

Compute the natural frequency, damping ratio and poles of a continuous-time transfer function.

Create the transfer function:

$$
\begin{gathered}
H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3} \\
H=\operatorname{tf}\left(\left[\begin{array}{lll}
2 & 5 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\right) ;
\end{gathered}
$$

Display the natural frequencies, damping ratios, and poles of $H$. damp (H)

| Eigenvalue | Damping | Frequency |
| :---: | :---: | :---: |
| $-1.00 \mathrm{e}+000+1.41 \mathrm{e}+000 \mathrm{i}$ | $5.77 \mathrm{e}-001$ | $1.73 \mathrm{e}+000$ |
| $-1.00 \mathrm{e}+000-1.41 \mathrm{e}+000 \mathrm{i}$ | $5.77 \mathrm{e}-001$ | $1.73 \mathrm{e}+000$ |
| (Frequencies expressed in rad/seconds) |  |  |

The system eigenvalues are the pole locations.

Obtain vectors containing the natural frequencies and damping ratios of the poles.

```
[Wn,zeta] = damp(H);
```


## Natural Frequency, Damping Ratio and Poles of a Discrete-Time Transfer Function

Compute the natural frequency, damping ratio and poles of a discrete-time transfer function.

```
H = tf([5 3 1],[1 6 4 4],0.01);
```

Display information about the poles of $H$.

```
damp(H)
```

| Eigenvalue | Magnitude | Damping | Frequency |
| :---: | ---: | ---: | ---: |
| $-3.02 \mathrm{e}-001+8.06 \mathrm{e}-001 \mathrm{i}$ | $8.61 \mathrm{e}-001$ | $7.74 \mathrm{e}-002$ | $1.93 \mathrm{e}+002$ |
| $-3.02 \mathrm{e}-001-8.06 \mathrm{e}-001 \mathrm{i}$ | $8.61 \mathrm{e}-001$ | $7.74 \mathrm{e}-002$ | $1.93 \mathrm{e}+002$ |
| $-5.40 \mathrm{e}+000$ | $5.40 \mathrm{e}+000$ | $-4.73 \mathrm{e}-001$ | $3.57 \mathrm{e}+002$ |

## (Frequencies expressed in rad/seconds)

The system eigenvalues are the pole locations.
Obtain vectors containing the natural frequencies and damping ratios of the poles.

```
[Wn,zeta] = damp(H);
```


## Algorithms

For a continuous-time linear system $G(s)$, the natural frequency $\omega_{n}$ of a pole at $s=R$ is given by:

$$
\omega_{n}=|R| .
$$

For a discrete-time linear system $G(z)$ with a pole at $z=R$, damp returns the natural frequencies and damping ratios of equivalent continuous time poles. The locations of the equivalent poles are given by

$$
s=\frac{\ln (R)}{T_{s}} .
$$

$T_{s}$ is the sampling time.
The natural frequency, time constant, and damping ratio of the system poles are defined as follows.

|  | Continuous Time | Discrete Time |
| :--- | :--- | :--- |
| Location of Pole | Real or complex <br> eigenvalue at $s=R$ | Real or complex <br> eigenvalue at $z=R$ |
| Natural Frequency | Wn $=$ abs (R) | Wn $=\operatorname{abs}(\log (\mathrm{R})) / \mathrm{Ts}$ |

[^3]
## Purpose

Map past input/output data to current states of nonlinear ARX model
Syntax
X = data2state(MODEL, IOSTRUCT)
X = data2state (MODEL, DATA)

Input
Arguments

- MODEL: idnlarx model.
- IOSTRUCT: Structure with fields Input and Output. Samples in IOSTRUCT must be in the order of increasing time (the last row of values corresponds to the most recent time). Each field contains data samples corresponding to the past input and output of MODEL respectively.
- Input: Matrix of NU columns, where NU is the number of inputs. The number of rows can be equal to either of the following:
- Maximum input delay in MODEL (maximum across all input variables).
- 1 to specify steady-state (constant) input values.
- Output: Matrix of NY columns, where NY is the number of outputs. The number of rows can be equal to either of the following:
- Maximum input delay in MODEL (maximum across all output variables).
- 1 to specify steady-state (constant) output values.


## data2state(idnlarx)

- DATA: iddata object containing data samples. Samples in DATA must be in the order of increasing time (the last row of values corresponds to the most recent time). The number of samples in DATA must be greater than or equal to the maximum delay in the model across all input and output variables.

Note To determine maximum delay in each input and output channel of MODEL, use the getDelayInfo command. For more information, see the getDelayInfo reference page.

Output Arguments

## Examples

X is the state vector of MODEL corresponding to the time after the most recent sample in the input data (IOSTRUCT or DATA).

In this example you determine the current state of an idnlarx model.
1 Load your data and create a data object.

```
load motorizedcamera;
z = iddata(y,u,0.02,'Name','Motorized Camera', ...
 'TimeUnit','s');
```

2 Estimate an idnlarx model from the data. The model has 6 inputs and 2 outputs.
mw1 $=$ nlarx $(z,[$ ones $(2,2)$, ones $(2,6)$, ones $(2,6)]$, wavenet $) ;$
3 Compute the maximum delays across all output variables in mw1.

```
MaxDelays = getDelayInfo(mw1);
```

4 Represent the past input and output samples:

```
IOData = struct('Input', ...
 rand(max(MaxDelays(3+1:end)),6),...
 'Output', ...
```

```
rand(max(MaxDelays(1:3)),2));
```

5 Compute the current states of mw1 based on the past data in IOSTRUCT.

X = data2state(mw1,IOData)
The previous command computes the state vector.

```
Note You can specify constant input levels with scalar values (\(10,20,30,40,50,60\)) for the input variables by setting IOSTRUCT. Input \(=[10,20,30,40,50,60]\) instead of a matrix of values.
```

See Also
findop(idnlarx) | findstates(idnlarx) | getDelayInfo

Purpose Convert decibels $(\mathrm{dB})$ to magnitude

## Syntax $\quad y=d b 2 m a g(y d b)$

Description
$y=\operatorname{db2mag}(y d b)$ returns the corresponding magnitude $y$ for a given decibel (dB) value $y d b$. The relationship between magnitude and decibels is $y d b=20 * \log _{10}(y)$.

See Also mag2db

## Purpose Low-frequency (DC) gain of LTI system

## Syntax <br> k = dcgain(sys)

Description
$\mathrm{k}=$ dcgain(sys) computes the DC gain k of the LTI model sys.

## Continuous Time

The continuous-time DC gain is the transfer function value at the frequency $s=0$. For state-space models with matrices $(A, B, C, D)$, this value is

$$
K=D-C A^{-1} B
$$

## Discrete Time

The discrete-time DC gain is the transfer function value at $z=1$. For state-space models with matrices $(A, B, C, D)$, this value is

$$
K=D+C(I-A)^{-1} B
$$

Tips
The DC gain is infinite for systems with integrators.

## Examples

## Example 1

To compute the DC gain of the MIMO transfer function

$$
H(s)=\left[\begin{array}{cc}
1 & \frac{s-1}{s^{2}+s+3} \\
\frac{1}{s+1} & \frac{s+2}{s-3}
\end{array}\right]
$$

type

```
H = [1 tf([1 -1],[1 1 3]) ; tf(1,[1 1]) tf([1 2],[1 -3])];
dcgain(H)
to get the result:
```


## dcgain

ans =
$1.0000-0.3333$
$1.0000-0.6667$

## Example 2

To compute the DC gain of an identified process model, type;
load iddata1
sys = idproc('p1d');
syse = procest(z1, sys)
dcgain(syse)
The DC gain is stored same as syse. Kp.

## See Also

evalfr | norm

## Purpose

## Syntax

Description

## Tips

$$
\begin{array}{ll}
a \leq x<b & F(x)=0 \\
x<a & F(x)=x-a \\
x \geq b & F(x)=x-b
\end{array}
$$

$y$ and $x$ are scalars.

## Properties

 Hammerstein-Wiener modelss=deadzone(ZeroInterval, I) for estimating Hammerstein-Wiener models. the deadzone object $d$ at $x$.

Class representing dead-zone nonlinearity estimator for
deadzone is an object that stores the dead-zone nonlinearity estimator

You can use the constructor to create the nonlinearity object, as follows:
s=deadzone(ZeroInterval, I) creates a dead-zone nonlinearity estimator object, initialized with the zero interval I.

Use evaluate $(d, x)$ to compute the value of the function defined by

Use deadzone to define a nonlinear function $y=F(x)$, where $F$ is a function of $x$ and has the following characteristics:

You can specify the property value as an argument in the constructor to specify the object.
After creating the object, you can use get or dot notation to access the object property values. For example:

```
% List ZeroInterval property value
get(d)
d.ZeroInterval
```

You can also use the set function to set the value of particular properties. For example:
set(d, 'ZeroInterval', [-1.5 1.5])

The first argument to set must be the name of a MATLAB variable.

| Property Name | Description |
| :--- | :--- |
| ZeroInterval | $\left.\begin{array}{l}\text { 1-by-2 row vector that specifies the initial zero interval of the } \\ \text { nonlinearity. } \\ \text { Default=[NaN NaN }] . \\ \text { For example: } \\ \text { deadzone('ZeroInterval' , [-1.5 1.5 }\end{array}\right]$ |

## Examples <br> See Also <br> nlhw

Use deadzone to specify the dead-zone nonlinearity estimator in Hammerstein-Wiener models. For example:
m=nlhw(Data,Orders,deadzone([-1 1]), []);
The dead-zone nonlinearity is initialized at the interval [-1 1]. The interval values are adjusted to the estimation data by nlhw.

## Purpose

Estimate time delay (dead time) from data

## Syntax

nk = delayest(Data)
nk = delayest(Data,na,nb,nkmin, nkmax, maxtest)

Data is an iddata object containing the input-output data. It can also be an idfrd object defining frequency-response data. Only single-output data can be handled.
nk is returned as an integer or a row vector of integers, containing the estimated time delay in samples from the input(s) to the output in Data. The estimate is based on a comparison of ARX models with different delays:

$$
\begin{aligned}
& y(t)+a_{1} y(t-1)+\ldots+a_{n a} y(t-n a)= \\
& b_{1} u(t-n k)+\ldots+b_{n b} u(t-n b-n k+1)+e(t)
\end{aligned}
$$

The integer na is the order of the A polynomial (default 2). nb is a row vector of length equal to the number of inputs, containing the order(s) of the B polynomial(s) (default all 2).
nkmin and nkmax are row vectors of the same length as the number of inputs, containing the smallest and largest delays to be tested. Defaults are nkmin $=0$ and nkmax $=n k m i n+20$.

If nb, nkmax, and/or nkmin are entered as scalars in the multiple-input case, all inputs will be assigned the same values.
maxtest is the largest number of tests allowed (default 10,000).

## Purpose <br> Subtract offset or trend from data signals

Syntax<br>\section*{Description}

data_d = detrend(data)
data_d = detrend(data,Type)
[data_d,T] = detrend(data,Type)
data_d = detrend(data,1,brkp)

## Examples

data_d = detrend(data) subtracts the mean value from each time-domain or time-series signal data. data_d and data are iddata objects.
data_d = detrend(data,Type) subtracts a mean value from each signal when Type $=0$, a linear trend (least-squares fit) when Type $=$ 1, or a trend specified by a TrendInfo object when Type $=T$.
[data_d, T ] = detrend(data,Type) stores the trend information as a TrendInfo object T.
data_d = detrend(data, $1, b r k p)$ subtracts a piecewise linear trend at one or more breakpoints brkp. brkp is a data index where discontinuities between successive linear trends occur. When brkp contains breakpoints that match the time vector, detrend subtracts a continuous piecewise linear trend. You cannot store piecewise linear trend information as an output argument.

Subtract mean values from input and output signals and store the trend information:

```
% Load SISO data containing vectors u2 and y2.
load dryer2
% Create data object with sampling interval of 0.08 sec.
data=iddata(y2,u2,0.08)
% Plot data on a time plot. Data has a nonzero mean.
plot(data)
% Remove the mean from the data.
[data_d,T] = detrend(data,0)
% Plot detrended data on the same plot.
hold on
```

```
plot(data_d)
```

Remove specified offset from input and output signals:

```
% Load SISO data containing vectors u2 and y2.
load dryer2
% Create data object with sampling time of 0.08 sec.
data=iddata(y2,u2,0.08)
plot(data)
% Create a TrendInfo object for storing offsets and trends.
T = getTrend(data)
% Assign offset values to the TrendInfo object.
T.InputOffset=5;
T.OutputOffset=5;
% Subtract offset from the data.
data_d = detrend(data,T)
% Plot detrended data on the same plot.
hold on
plot(data_d)
```

Subtract several linear trends that connect at three breakpoints [30 60 90]:
data $=$ detrend(data,1,[30 60 90]);
\% [30 60 90] are data indexes where breakpoints occur.

Subtract a mean value from the input signal and a V-shaped trend from the output signal, such that the V peak occurs at the breakpoint value of 119:

```
zd1 = z(:,:,[]); zd2 = z(:,[],:);
zd1(:,1,[]) = detrend(z(:,1,[]),1,119);
zd2(:,[],1) = detrend(z(:,[],1));
zd = [zd1,zd2];
```

See Also
getTrend | | TrendInfo
How To - "Handling Offsets and Trends in Data"

Purpose Difference signals in iddata objects

Syntax $\quad$| zdi | $=\operatorname{diff}(z)$ |
| ---: | :--- |
|  | $z d i=\operatorname{diff}(z, n)$ |

Description
$z$ is a time-domain iddata object. $\operatorname{diff}(z)$ and $\operatorname{diff}(z, n)$ apply this command to each of the input/output signals in $z$.

## Purpose

Estimate empirical transfer functions and periodograms

## Syntax

```
g = etfe(data)
g = etfe(data,M,N)
```

etfe estimates the transfer function $g$ as an idfrd object of the general linear model:

$$
y(t)=G(q) u(t)+v(t)
$$

data contains the output-input data and is an iddata object (time or frequency domain).
g is given as an idfrd object with the estimate of $G\left(e^{i \omega}\right)$ at the frequencies
w = [1:N]/N*pi/T
The default value of N is 128 .
In case data contains a time series (no input channels), $g$ is returned as the periodogram of $y$.

When $M$ is specified other than the default value $M=$ [ ], a smoothing operation is performed on the raw spectral estimates. The effect of $M$ is then similar to the effect of $M$ in spa. This can be a useful alternative to spa for narrowband spectra and systems, which require large values of M.

When etfe is applied to time series, the corresponding spectral estimate is normalized in the way that is defined in "Spectrum Normalization". etfe normalization differs from the spectrum normalization in the Signal Processing Toolbox product.
If the (input) data is marked as periodic (data.Period = integer) and contains an even number of periods, the response is computed at the frequencies k*2*pi/period for k = 0 up to the Nyquist frequency.

```
Examples Compare an empirical transfer function estimate to a smoothed spectral
estimate.
```

```
load iddata z1;
```

load iddata z1;
ge = etfe(z1);
ge = etfe(z1);
gs = spa(z1);
gs = spa(z1);
bode(ge,gs)
bode(ge,gs)
Generate a periodic input, simulate a system with it, and compare the frequency response of the estimated model with the true system at the excited frequency points.

```
```

m = idpoly([[1 -1.5 0.7],[00 1 0.5]);

```
m = idpoly([[1 -1.5 0.7],[00 1 0.5]);
u = iddata([],idinput([50,1,10],'sine'));
u = iddata([],idinput([50,1,10],'sine'));
u.Period = 50;
u.Period = 50;
y = sim(m,u);
y = sim(m,u);
me = etfe([y u])
me = etfe([y u])
bode(me,'b*',m,'r')
```

bode(me,'b*',m,'r')

```

\footnotetext{
Algorithms
The empirical transfer function estimate is computed as the ratio of the output Fourier transform to the input Fourier transform, using fft. The periodogram is computed as the normalized absolute square of the Fourier transform of the time series.

You obtain the smoothed versions (\(M\) less than the length of \(z\)) by applying a Hamming window to the output fast Fourier transform (FFT) times the conjugate of the input FFT, and to the absolute square of the input FFT, respectively, and subsequently forming the ratio of the results. The length of this Hamming window is equal to the number of data points in \(z\) divided by M, plus one.

See Also
bode | | freqresp | idfrd | nyquist | spa | spafdr | impulseest | spectrum
}

\section*{Purpose}

Evaluate frequency response at given frequency

\section*{Syntax}
frsp = evalfr(sys,f)
Description
frsp \(=\operatorname{evalfr}(\) sys,f) evaluates the transfer function of the TF, SS, or ZPK model sys at the complex number f. For state-space models with data \((A, B, C, D)\), the result is
\[
H(f)=D+C(f I-A)^{-1} B
\]
evalfr is a simplified version of freqresp meant for quick evaluation of the response at a single point. Use freqresp to compute the frequency response over a set of frequencies.

\section*{Examples}

\section*{Example 1}

To evaluate the discrete-time transfer function
\[
\begin{aligned}
& \qquad H(z)=\frac{z-1}{z^{2}+z+1} \\
& \text { at } z=1+j \text {, type } \\
& H=\operatorname{tf}\left(\left[\begin{array}{lll}
1 & -1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right],-1\right) ; \\
& z=1+j ; \\
& \text { evalfr }(\mathrm{H}, \mathrm{z}) \\
& \text { to get the result: } \\
& \text { ans }= \\
& 2.3077 \mathrm{e}-01+1.5385 \mathrm{e}-01 \mathrm{i}
\end{aligned}
\]

\section*{Example 2}

To evaluate the frequency response of a continuous-time IDTF model at frequency w = \(0.1 \mathrm{rad} / \mathrm{s}\), type:
sys = idtf(1,[1 2 1]);
\[
\begin{aligned}
& w=0.1 ; \\
& s=1 j * w ; \\
& \text { evalfr(sys, s) }
\end{aligned}
\]

The result is same as freqresp(sys, w).

\section*{Limitations The response is not finite when \(f\) is a pole of sys.}

See Also bode | freqresp | sigma
Purpose Value of nonlinearity estimator at given input
Syntax

value = evaluate(nl, x)
Arguments
Description
ExamplesThe following syntax evaluates the nonlinearity of an estimatednonlinear ARX model m:
```

value = evaluate(m.Nonlinearity,x)

```
where m.Nonlinearity accesses the nonlinearity estimator of the nonlinear ARX model.
See Also

Purpose Concatenate FRD models along frequency dimension
\[
\text { Syntax } \quad \text { sys }=\text { fcat }(\text { sys } 1, \text { sys } 2, \ldots)
\]

Description sys = fcat(sys1,sys2,...) takes two or more frd models and merges their frequency responses into a single frd model sys. The resulting frequency vector is sorted by increasing frequency. The frequency vectors of sys1, sys \(2, \ldots\) should not intersect. If the frequency vectors do intersect, use fdel to remove intersecting data from one or more of the models.

\section*{See Also \\ fdel | fselect | interp | frd | idfrd}

\section*{Purpose}

Delete specified data from frequency response data (FRD) models

\section*{Syntax}

Description

\section*{Tips}

\section*{Input Arguments}

\section*{Output Arguments}

\section*{Examples Remove selected data from a frd model. In this example, first obtain an} frd model:
```

sys = frd(tf([1],[[1 1]), logspace(0,1,10))
Frequency(rad/s) Response
1.0000 0.5000 - 0.5000i
1.2915 0.3748 - 0.4841i

```
\begin{tabular}{rr}
1.6681 & \(0.2644-0.4410 i\) \\
2.1544 & \(0.1773-0.3819 i\) \\
2.7826 & \(0.1144-0.3183 i\) \\
3.5938 & \(0.0719-0.2583 i\) \\
4.6416 & \(0.0444-0.2059 i\) \\
5.9948 & \(0.0271-0.1623 i\) \\
7.7426 & \(0.0164-0.1270 i\) \\
10.0000 & \(0.0099-0.0990 i\)
\end{tabular}

\section*{Continuous-time frequency response.}

The following commands remove the data nearest \(2,3.5\), and \(6 \mathrm{rad} / \mathrm{s}\) from sys.
```

freq = [2, 3.5, 6];
sysout = fdel(sys, freq)

```
\begin{tabular}{|c|c|c|}
\hline Frequency (rad/s) & \multicolumn{2}{|r|}{Response} \\
\hline 1.0000 & 0.5000 & - 0.5000i \\
\hline 1.2915 & 0.3748 & 0.4841 i \\
\hline 1.6681 & 0.2644 & - 0.4410i \\
\hline 2.7826 & 0.1144 & - 0.3183i \\
\hline 4.6416 & 0.0444 & - 0.2059i \\
\hline 7.7426 & 0.0164 & \(0.1270 i\) \\
\hline 10.0000 & 0.0099 & 0.0990 \\
\hline
\end{tabular}

Continuous-time frequency response.
You do not have to specify the exact frequency of the data to remove. fdel removes the data nearest to the specified frequencies.

See Also
fcat | fselect | frd | idfrd

\section*{Purpose Identify possible feedback data}
```

Syntax
[fbck,fbck0,nudir] = feedback(Data)

```

Description
Data is an iddata set with \(N y\) outputs and \(N u\) inputs.
fbck is an \(N y\)-by- \(N u\) matrix indicating the feedback. The \(k y, k u\) entry is a measure of feedback from output \(k y\) to input \(k u\). The value is a probability \(P\) in percent. Its interpretation is that if the hypothesis that there is no feedback from output \(k y\) to input \(k u\) were tested at the level \(P\), it would have been rejected. An intuitive but technically incorrect way of thinking about this is to see \(P\) as "the probability of feedback." Often only values above \(90 \%\) are taken as indications of feedback. When fbck is calculated, direct dependence at lag zero between \(u(t)\) and \(y(t)\) is not regarded as a feedback effect.
fbcko: Same as fbck, but direct dependence at lag 0 between \(u(t)\) and \(y(t)\) is viewed as feedback effect.
nudir: A vector containing those input numbers that appear to have a direct effect on some outputs, that is, no delay from input to output.

See Also advice | iddata

\section*{ffplot}

Purpose
Compute and plot frequency response magnitude and phase for linear frequencies

Note ffplot will be removed in a future release. Use bode or bodeplot instead.

\section*{Syntax}
```

ffplot(m)
ffplot(m,w)
ffplot(m('noise')
ffplot(m1,···.,mN,'sd',sd,'mode','same','ap',ap,'fill')
[mag,phase,w] = ffplot(m)
[mag,phase,w,sdmag,sdphase] = ffplot(m)

```

\section*{Description}
ffplot (m) plots a frequency response plot for the model \(m\), which can be an idpoly, idss, idarx, idgrey, or idfrd object. This frequency response is a function of linear frequencies in units of inverse time (stored as the TimeUnit model property). The default frequency values are determined from the model dynamics. For time series spectra, phase plots are omitted. For MIMO models, press Enter to view the next plot in the sequence of different I/O channel pairs, annotated using the InputNames and OuputNames model properties.
ffplot (\(m, w\)) plots a frequency response plot at specified frequencies \(w\) in inverse time units, which can be:
- A vector of values.
- \{wmin,wmax\}, which specifies 100 linearly spaced frequency values ranging from a minimum value wmin and a maximum value wmax.
- \{wmin, wmax, np\}, which specifies np linearly spaced frequency values.

Note For idfrd models, you cannot specify individual frequencies and can only limit the frequencies range for the internally stored frequencies using \{wmin, wmax\}.
ffplot(m('noise') plots a frequency response plot of the output noise spectra when the model contains noise spectrum information.
ffplot(m1,..., mN,'sd',sd,'mode','same','ap',ap,'fill') plots a frequency response plot for several models. sd specifies the confidence region as a positive number that represents the number of standard deviations. The argument 'fill' indicates that the confidence region is color filled. mode \(=\) 'same' displays all I/O channels in the same plot. Set ap = 'A' to show only amplitude plots, or ap = 'P' to show only phase plots.
[mag, phase,w] = ffplot(m) computes the magnitude mag and phase values of the frequency response, which are 3-D arrays with dimensions (number of outputs)-by-(number of inputs)-by-(length of w). w specifies the frequency values for computing the response even if you did not specify it as an input. For SISO systems, mag (\(1,1, k\)) and phase \((1,1, k)\) are the magnitude and phase (in degrees) at the frequency \(w(k)\). For MIMO systems, mag \((i, j, k)\) is the magnitude of the frequency response at frequency \(w(k)\) from input \(j\) to output \(i\), and similarly for phase (\(i, j, k\)). When \(m\) is a time series, mag is its power spectrum and phase is zero.
[mag, phase,w,sdmag,sdphase] = ffplot(m) computes the standard deviations of the magnitude sdmag and the phase sdphase. sdmag is an array of the same size as mag, and sdphase is an array of the same size as phase.

See Also
```

bode | etfe | freqresp | idfrd | nyquist | spa | spafdr

```

\section*{Purpose Transform iddata object to frequency domain data}
```

Syntax Datf = fft(Data)
Datf = fft(Data,N)
Datf = fft(Data,N,'complex')

```

Description

See Also iddata | ifft | spa power and noise level. argument, 'Complex'.

If Data is a time-domain iddata object with real-valued signals and with constant sampling interval Ts, Datf is returned as a frequency-domain iddata object with the frequency values equally distributed from frequency 0 to the Nyquist frequency. Whether the Nyquist frequency actually is included or not depends on the signal length (even or odd). Note that the FFTs are normalized by dividing each transform by the square root of the signal length. That is in order to preserve the signal

In the default case, the length of the transformation is determined by the signal length. A second argument N will force FFT transformations of length N , padding with zeros if the signals in Data are shorter and truncating otherwise. Thus the number of frequencies in the real signal case will be \(\mathrm{N} / 2\) or \((\mathrm{N}+1) / 2\). If Data contains several experiments, N can be a row vector of corresponding length.

For real signals, the default is that Datf only contains nonnegative frequencies. For complex-valued signals, negative frequencies are also included. To enforce negative frequencies in the real case, add a last

Purpose
Compute operating point for nonlinear ARX model
Syntax
```

[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
[X,U] = findop(SYS,'snapshot',T,UIN,XO)
[X,U,REPORT] = findop(...)
findop(SYS,...,PVPairs)

```

Description

Input Arguments
\([\mathrm{X}, \mathrm{U}]=\) findop(SYS, 'steady', InputLevel,OutputLevel) computes operating-point state values, \(X\), and input values, \(U\), from steady-state specifications for an idnlarx model. For more information about the states of an idnlarx model, see "Definition of idnlarx States" on page 2-354.
\([X, U]=\) findop(SYS,SPEC) computes the equilibrium operating point using the specifications in the object SPEC. Whereas the previous command only lets you specify the input and output level, SPEC provides additional specification for computing the steady-state operating point.
\([\mathrm{X}, \mathrm{U}]=\mathrm{findop}\left(\mathrm{SYS}\right.\), 'snapshot \(\left.{ }^{\prime}, \mathrm{T}, \mathrm{UIN}, \mathrm{XO}\right)\) computes the operating point at a simulation snapshot of time \(T\) using the specified input and initial state values.
[\(\mathrm{X}, \mathrm{U}, \mathrm{REPORT}]=\) findop(...) creates a structure, REPORT, containing information about the algorithm for computing an operating point.
findop(SYS, . . , PVPairs) specifies property-value pairs for setting algorithm options.
- SYS: idnlarx (nonlinear ARX) model.
- 'steady': Computes operating point using steady-state input and output levels.
- 'snapshot': Computes operating point at simulating snapshot of model SYS at time T.
- InputLevel: Steady-state input level for computing operating point. Use NaN when the value is unknown.

\section*{findop(idnlarx)}
- OutputLevel: Steady-state output level for computing the operating point. Use NaN when the value is unknown.
- SPEC: Operating point specifications object. Use SPEC = OPERSPEC(SYS) to construct the SPEC object for model SYS. Then, configure SPEC options, such as signal bounds, known values, and initial guesses. See operspec (idnlarx) for more information.
- T: Simulation snapshot time at which to compute the operating point.
- UIN: Input for simulating the model. UIN is a double matrix or an iddata object. The number of input channels in UIN must match the number of SYS inputs.
- XO: Initial states for model simulation.

Default: Zero.
- PVPairs: Property-value pairs for customizing the model Algorithm property fields, such as SearchMethod, MaxSize, and Tolerance.

\section*{Output \\ Arguments}
- X: Operating point state values.
- U: Operating point input value.
- REPORT: Structure containing the following fields:
- SearchMethod: String indicating the value of the SearchMethod property of MODEL.Algorithm.
- WhyStop: String describing why the estimation stopped.
- Iterations: Number of estimation iterations.
- FinalCost: Final value of the sum of squared errors that the algorithm minimizes.
- FirstOrderOptimality: Measure of the gradient of the search direction at the final parameter values when the search algorithm terminates. It is equal to the \(\infty\)-norm of the gradient vector.
- SignalLevels: Structure containing fields Input and Output, which are the input and output signal levels of the operating point.

\section*{Algorithms}
findop computes the operating point from steady-state operating point specifications or at a simulation snapshot.

\section*{Computing the Operating Point from Steady-State Specifications}

You specify to compute the steady-state operating point by calling findop in either of the following ways:
```

[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)

```

When you use the syntax \([\mathrm{X}, \mathrm{U}]=\) findop(SYS, 'steady', InputLevel, OutputLevel), the algorithm assumes the following operating-point specifications:
- All finite input values are fixed values. Any NaN values specify an unknown input signal with the initial guess of 0 .
- All finite output values are initial guess values. Any NaN values specify an unknown output signal with the initial guess of 0 .
- The minimum and maximum bounds have default values (-/+ Inf) for both Input and Output properties in the specification object.

Using the syntax \([\mathrm{X}, \mathrm{U}]=\) findop(SYS,SPEC), you can specify additional information, such as the minimum and maximum constraints on the input/output signals and whether certain inputs are known (fixed).

To compute the states, X , and the input, U , of the steady-state operating point, findop uses the algorithm specified in the SearchMethod property of MODEL.Algorithm to minimize the norm of the error \(e(t)=\) \(y(t)-f(x(t), u(t))\), where \(f\) is the nonlinearity estimator, \(x(t)\) are the model states, and \(u(t)\) is the input.

The algorithm uses the following independent variables for minimization:
- Unknown (unspecified) inputs
- Output signals

\section*{findop(idnlarx)}

Because the states of a nonlinear ARX (idnlarx) model are delayed samples of the input and output variables, the values of all the states are the constant values of the corresponding steady-state inputs and outputs. For more information about the definition of nonlinear ARX model states, see "Definition of idnlarx States" on page 2-354.

\section*{Computing the Operating Point at a Simulation Snapshot}

When you use the syntax \([\mathrm{X}, \mathrm{U}]=\) findop(SYS, 'snapshot', T, UIN, XO), the algorithm simulates the model output until the snapshot time, T. At the snapshot time, the algorithm passes the input and output samples to the data2state command to map these values to the current state vector.

Note For snapshot-based computations, findop does not perform numerical optimization.

\section*{Examples In this example, you compute the operating point of an idnlarx model} for a steady-state input level of 1 .

1 Estimate an idnlarx model from sample data iddata2.
load iddata2;
M = nlarx(z2,[4 3 2],'wavenet');

2 Compute the steady-state operating point for an input level of 1.
```

x0 = findop(M,'steady',1,NaN)

```

See Also
```

data2state(idnlarx) | operspec(idnlarx) | sim(idnlarx)

```

\section*{findop(idnlhw)}

\section*{Purpose}

Compute operating point for Hammerstein-Wiener model
Syntax
```

[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
[X,U] = findop(SYS,'snapshot',T,UIN,XO)
[X,U,REPORT] = findop(...)
findop(SYS,...,PVPairs)

```

Description

Input
Arguments
[X,U] = findop(SYS,'steady',InputLevel,OutputLevel) computes operating-point state values, \(X\), and input values, \(U\), from steady-state specifications for an idnlhw model. For more information about the states of an idnlhw model, see "idnlhw States" on page 2-389.
\([X, U]=\) findop(SYS,SPEC) computes the equilibrium operating point using the specifications in the object SPEC. Whereas the previous command only lets you specify the input and output level, SPEC provides additional specification for computing the steady-state operating point.
\([\mathrm{X}, \mathrm{U}]=\mathrm{findop}(\mathrm{SYS}\), 'snapshot', \(\mathrm{T}, \mathrm{UIN}, \mathrm{XO})\) computes the operating point at a simulation snapshot of time \(T\) using the specified input and initial state values.
[\(\mathrm{X}, \mathrm{U}, \mathrm{REPORT}]=\) findop(...) creates a structure, REPORT, containing information about the algorithm for computing an operating point.
findop(SYS, ..., PVPairs) specifies property-value pairs for setting algorithm options.
- SYS: idnlhw (Hammerstein-Wiener) model.
- 'steady ': Computes operating point using steady-state input and output levels.
- 'snapshot': Computes operating point at simulating snapshot of model SYS at time T.
- InputLevel: Steady-state input level for computing operating point. Use NaN when the value is unknown. Do not enter OutputLevel when InputLevel does not contain any NaN values.

\section*{findop(idnlhw)}
- OutputLevel: Steady-state output level for computing the operating point. Use NaN when the value is unknown.
- SPEC: Operating point specifications object. Use SPEC = OPERSPEC (SYS) to construct the SPEC object for model SYS. Then, configure SPEC options, such as signal bounds, known values, and initial guesses. See operspec(idnlhw) for more information.
- T: Simulation snapshot time at which to compute the operating point.
- UIN: Input for simulating the model. UIN is a double matrix or an iddata object. The number of input channels in UIN must match the number of SYS inputs.
- XO: Initial states for model simulation.

Default: Zero.
- PVPairs: Property-value pairs for customizing the model Algorithm property fields, such as SearchMethod, MaxSize, and Tolerance.

\section*{Output Arguments}
- X: Operating point state values.
- U: Operating point input value.
- REPORT: Structure containing the following fields:
- SearchMethod: String indicating the value of the SearchMethod property of MODEL.Algorithm.
- WhyStop: String describing why the estimation stopped.
- Iterations: Number of estimation iterations.
- FinalCost: Final value of the sum of squared errors that the algorithm minimizes.
- FirstOrderOptimality: Measure of the gradient of the search direction at the final parameter values when the search algorithm terminates. It is equal to the \(\infty\)-norm of the gradient vector.
- SignalLevels: Structure containing fields Input and Output, which are the input and output signal levels of the operating point.

\section*{findop(idnlhw)}

\section*{Algorithms}
findop computes the operating point from steady-state operating point specifications or at a simulation snapshot.

\section*{Computing the Operating Point from Steady-State Specifications}

You specify to compute the steady-state operating point by calling findop in either of the following ways:
```

[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)

```

When you use the syntax [X,U] = findop(SYS, 'steady', InputLevel,OutputLevel), the algorithm assumes the following operating-point specifications:
- All finite input values are fixed values. Any NaN values specify an unknown input signal with the initial guess of 0 .
- All finite output values are initial guess values. Any NaN values specify an unknown output signal with the initial guess of 0 .
- The minimum and maximum bounds have default values (-/+ Inf) for both Input and Output properties in the specification object.

Using the syntax \([\mathrm{X}, \mathrm{U}]=\) findop(SYS,SPEC), you can specify additional information, such as the minimum and maximum constraints on the input/output signals and whether certain inputs are known (fixed).
findop uses a different approach to compute the steady-state operating point depending on how much information you provide for this computation:
- When you specify values for all input levels (no NaN values). For a given input level, \(U\), the equilibrium state values are \(X=\) \(\operatorname{inv}(I-A) * B^{*} f(U)\), where \([\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}]=\) ssdata(model.LinearModel), and \(f()\) is the input nonlinearity.
- When you specify known and unknown input levels. findop uses numerical optimization to minimize the norm of the error

\section*{findop(idnlhw)}
and compute the operating point. The total error is the union of contributions from \(e_{1}\) and \(e_{2}, e(t)=\left(e_{1}(t) e_{2}(t)\right)\), such that:
- \(e_{1}\) applies for known outputs and the algorithm minimizes \(e_{1}=y\) \(g(L(x, f(u)))\), where \(f\) is the input nonlinearity, \(L(x, u)\) is the linear model with states \(x\), and \(g\) is the output nonlinearity.
- \(e_{2}\) applies for unknown outputs and the error is a measure of whether these outputs are within the specified minimum and maximum bounds. If a variable is within its specified bounds, the corresponding error is zero. Otherwise, the error is equal to the distance from the nearest bound. For example, if a free output variable has a value \(z\) and its minimum and maximum bounds are \(L\) and \(U\), respectively, then the error is \(e_{2}=\max [z-U, L-z, 0]\).
The independent variables for the minimization problem are the unknown inputs. In the error definition \(e\), both the input \(u\) and the states \(x\) are free variables. To get an error expression that contains only unknown inputs as free variables, the algorithm findop specifies the states as a function of inputs by imposing steady-state conditions: \(x=\operatorname{inv}(I-\mathrm{A}) * \mathrm{~B}^{*} f(\mathrm{U})\), where \([\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}]\) are state-space parameters corresponding to the linear model \(L(x, u)\). Thus, substituting \(x=\) \(\operatorname{inv}(I-\mathrm{A}) * \mathrm{~B}^{*} f(\mathrm{U})\) into the error function results in an error expression that contains only unknown inputs as free variables computed by the optimization algorithm.

\section*{Computing the Operating Point at a Simulation Snapshot}

When you use the syntax \([\mathrm{X}, \mathrm{U}]=\) findop(SYS, 'snapshot', T, UIN, XO), the algorithm simulates the model output until the snapshot time, T. At the snapshot time, the algorithm computes the inputs for the linear model block of the Hammerstein-Wiener model (LinearModel property of the idnlhw object) by transforming the given inputs using the input nonlinearity: \(w\) \(=f(u)\). findop uses the resulting \(w\) to compute x until the snapshot time using the following equation: \(x(\mathrm{t}+1)=A x(\mathrm{t})+B w(\mathrm{t})\), where \([\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}]\) \(=\) ssdata(model.LinearModel).

\section*{findop(idnlhw)}

> Note For snapshot-based computations, findop does not perform numerical optimization.

\section*{Examples}

In this example, you compute the operating point of an idnlhw model for a steady-state input level of 1 .

1 Estimate an idnlhw model from sample data iddata2.
load iddata2;
M = nlhw(z2,[4 3 2],'wavenet','pwl');

2 Compute the steady-state operating point for an input level of 1.
x0 = findop(M,'steady',1,NaN)

\section*{See Also}
findstates(idnlhw) | operspec(idnlhw) | sim(idnlhw)

\section*{findstates(idParametric)}

Purpose Estimate initial states of identified linear state-space model from data

Syntax
Description
\(\mathrm{x0}=\) findstates(sys,data)
x0 = findstates(sys,data, \(K\))
x0 = findstates(sys,data,K,opt)

\section*{Input}

Arguments measured output data, data, and the model response. computing the response of sys. offsets, etc.

\section*{sys}

Identified linear state-space model.
\(x 0=\) findstates(sys,data) estimates the initial state values of a state-space model, sys, to maximize the least squares fit between the
x0 = findstates(sys,data,K) specifies the prediction horizon, \(K\), for
x0 = findstates(sys,data, \(\mathrm{K}, \mathrm{opt}\)) estimates the initial state using the option set, opt, to specify initial condition constraints, signal

Specify sys as an idss or idgrey model.

\section*{data}

Input-output data.
Specify data as an iddata object with input/output dimensions that match sys.
data can be a frequency-domain iddata object. Ideally, the frequency vector of data should be symmetric about the origin.
If you are converting time-domain data into frequency-domain data, use fft . Use the 'compl' input argument with fft and ensure that there is sufficient zero padding. Note that for an \(N\)-point fft, the input/output signals are scaled by \(1 / \operatorname{sqrt}(N)\). Therefore, the estimated \(\times 0\) vector is also scaled by this factor. So, scale your data appropriately when you compare \(\times 0\) between the time-domain and frequency-domain.

\section*{findstates(idParametric)}

\section*{K}

Prediction horizon for computing the response of sys.
Specify K as a positive integer between 1 and Inf. The most common values used are:
- \(\mathrm{K}=1\) - Minimizes the 1 -step prediction error. That is, the 1 -step ahead prediction response of sys is compared to the output signals in data to determine \(x 0\).
- K=Inf - Minimizes the simulation error. That is, the difference between the measured output, data.y, and the simulated response of sys to the measured input data, data.u.
For continuous-time models, specify K as either 1 or Inf.
For continuous-time frequency-domain data, specify K as Inf.
Default: 1 (for all data except continuous-time frequency-domain data)

\section*{opt}

Option set.
opt is an options set that allows you to constrain the initial state, remove signal offsets, etc.
Use findstatesOptions to create the options set.

\section*{Output Arguments}
x0
Estimated initial state.
For multi-experiment data, \(x 0\) is a matrix with one column for each experiment.

\section*{Examples Estimate Initial States of State-Space Model}

Estimate an idss model and simulate it such that the response of the estimated model matches the estimation data's output signal as closely as possible.

\section*{findstates(idParametric)}

Load sample data.
load iddata1 z 1 ; \% estimation data \(\mathrm{z1}\);
Estimate a linear model from the data.
model \(=\operatorname{ssest}(z 1,2) ;\)
Estimate the value of the initial states to best fit the measured output z1.y.
x0est = findstates(model,z1,Inf);
Simulate the model.
```

opt = simOptions('InitialCondition',x0est)
sim(model,z1.u,opt)

```

See Also
findstatesOptions | idpar | pe | compare | sim | predict | forecast | findstates(idnlarx) | findstates(idnlhw) | findstates(idnlgrey) | ssest

\section*{findstates(idnlarx)}

\section*{Purpose}

Estimate initial states of nonlinear ARX model from data
Syntax
XO = findstates(MODEL, DATA)
XO = findstates(MODEL,DATA, XOINIT)
XO = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM)
XO = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM,PVPairs) [XO, REPORT] = findstates(...)

Description

\section*{Input Arguments}

XO = findstates(MODEL, DATA) estimates the initial states of an idnlarx model that minimize the error between the output measurements in DATA and the predicted output of the model. The states of an idnlarx model are defined as the delayed samples of input and output variables. For more information about the definition of states for idnlarx models, see "Definition of idnlarx States" on page 2-354.

XO = findstates(MODEL,DATA, XOINIT) specifies an initial guess for estimating the initial states.

XO = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM) allows switching between prediction-error (default) and simulation-error minimization.

XO = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM,PVPairs) lets you specify the algorithm properties that control the numerical optimization process as property-value pairs.
[XO, REPORT] = findstates(...) creates a report to summarize results of numerical optimization that is performed to search for the model states.
- MODEL: idnlarx model.
- DATA: iddata object from which to estimate the initial states of MODEL.
- XOINIT: Initial guess for value of XO. Must be a vector of length equal to the number of the states of MODEL (sum (getDelayInfo(MODEL))).
- PRED_OR_SIM: Specifies minimization criteria using one of the following values:

\section*{findstates(idnlarx)}
- 'prediction': (Default) Estimation of initial states by minimizing the difference between the measured output data and 1 -step-ahead predicted response of the model.
- 'simulation': Estimation of initial states by minimizing the difference between the measured output and the simulated response of the model. This estimation algorithm can be slower than 'prediction'.
- PVPairs: Property-value pairs that specify the algorithm properties that control numerical optimization process. By default, algorithm properties are read from the Algorithm property of MODEL. You can override MODEL.Algorithm properties using property-value pairs. For example you might set SearchMethod, MaxSize, Tolerance, and Display.

\section*{Output Arguments}
- X0: Estimated initial state vector corresponding to time DATA.TStart. For multi-experiment data, X0 is a matrix with as many columns as there are experiments.
- REPORT: Structure containing the following fields:
- 'EstimationCriterion': String containing the minimization method used.
- 'SearchMethod': String indicating the value of the SearchMethod property of MODEL.Algorithm.
- 'WhyStop': String describing why the estimation was stopped.
- 'Iterations ': Number of iterations carried out during estimation.
- 'FinalCost': The final value of the sum of squared errors that the search method attempts to minimize
- 'FirstOrderOptimality': Measure of the gradient of the search direction at the final value of the parameter set when the search algorithm terminates. It is equal to the \(\infty\)-norm of the gradient vector.

\section*{findstates(idnlarx)}

\section*{Examples Estimating Initial States}

In this example, you use sample data \(z 1\) to create a nonlinear ARX model. You use findstates to compute the initial states of the model such that the difference between the predicted output of the model and the output data in \(z 2\) is minimized.

1 Load the sample data and create two data objects z1 and z2.
```

load twotankdata
% Create data objects z1 and z2.
z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000); z2 = z(1001:2000);

```

2 Estimate the idnlarx model.
```

% Estimate a nonlinear ARX model from data in z1.
mw1 = nlarx(z1,[5 1 3],wavenet('NumberOfUnits',8));

```

3 Estimate the initial states of the model.
```

% Find the initial states X0 of mw1 that minimize
% the error between the output data of z2 and the
% simulated output of mw1.
XO = findstates(mw1,z2,[],'sim')

```

\section*{Estimating Initial States for Multiple-Experiment Data}

In this example, you estimate the initial states for each data set in a multiple-experiment data object.

1 Create a multi-experiment data set from z1 and z2:
```

% Create a multi-experiment data set.
zm = merge(z1,z2);

```

\section*{findstates(idnlarx)}

2 Estimate the initial states for each experiment in the data set, such that the one-step-ahead prediction error is minimized for each data set.
\% Estimate initial states for each data set in zm. XO = findstates(mw1,zm)

See Also
data2state(idnlarx) | getDelayInfo | findop(idnlarx) | findstates(idParametric) | findstates(idnlhw)

\section*{findstates(idnlgrey)}

\section*{Purpose}

Estimate initial states of nonlinear grey-box model from data
Syntax
XO = findstates(NLSYS,DATA);
[XO,ESTINFO] = findstates(NLSYS,DATA); [XO,ESTINFO] = findstates(NLSYS,DATA,XOINIT);

\section*{Description}

\section*{Input \\ Arguments}

XO = findstates(NLSYS, DATA) ; estimates the initial states of an idnlgrey model from given data. For more information about the states of idnlgrey models, see "Definition of idnlgrey States" on page 2-375.
[XO,ESTINFO] = findstates(NLSYS,DATA) ; returns basic information about the estimation.
[XO,ESTINFO] = findstates(NLSYS,DATA,XOINIT); specifies an initial guess for XO .
- NLSYS: idnlgrey model whose output is to be predicted.
- DATA: Input/output data DATA = [Y U], where U and Y are the following:
- U: Input data that can be given either as an iddata object or as a matrix \(U=[\) U1 U2 \(\ldots . . \mathrm{Um}]\), where the \(k^{\text {th }}\) column vector is input Uk
- Y: Either an iddata object or a matrix of outputs (with as many columns as there are outputs).

Note For time-continuous idnlgrey models, DATA passed as a matrix will cause the data sample interval \(T s\) to be assumed to be equal to 1 .
- XOINIT: Initial state strategy to use:
- 'zero': Use zero initial state and estimate all states (NLSYS.InitialStates.Fixed is thus ignored). Notice that all states are estimated, whereas they are fixed in predict.

\section*{findstates(idnlgrey)}
- 'estimate': NLSYS.InitialStates determines the values of the states, but all initial states are estimated (NLSYS.InitialStates.Fixed is thus ignored).
- 'model': (Default) NLSYS. InitialStates determines the values of the initial states, which initial states to estimate, as well as their maximum and minimum values.
- vector/matrix: Column vector of appropriate length to be used as an initial guess for initial states. For multiple experiment DATA, XOINIT may be a matrix whose columns give different initial states for each experiment. With this option, all initial states are estimated (and not fixed as in predict) (NLSYS.InitialStates.Fixed is thus ignored).
- struct array: Nx-by-1 structure array with fields:
- Name: Name of the state (a string).
- Unit: Unit of the state (a string).
- Value: Value of the states (a finite real 1-by-Ne vector, where Ne is the number of experiments).
- Minimum: Minimum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same minimum value).
- Maximum: Maximum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same maximum value).
- Fixed: Boolean 1-by-Ne vector, or a scalar Boolean (applicable for all states) specifying whether the initial state is fixed or not.

Output
Arguments
- XO: Matrix containing the initial states. In the single experiment case it is a column vector of length \(N x\). For multi-experiment data, X0 is a matrix with as many columns as there are experiments.
- ESTINFO: Structure or Ne-by-1 structure array containing basic information about the estimation result (some of the fields normally stored in NLSYS.EstimationInfo). For multi-experiment data,

\section*{findstates(idnlgrey)}

\section*{Examples}

\section*{Estimating Individual Initial States Selectively}

In this example you estimate the initial states of a model selectively, fixing the first state and allowing the second state of the model to be estimated. First you create a model from sample data and set the Fixed property of the model such that the second state is free and the first is fixed.

1 Specify the file describing the model structure, the model orders, and model parameters.
```

% Specify the file describing the model structure:
FileName = 'dcmotor_m';
% Specify the model orders [ny nu nx]
Order = [2 1 2];
% Specify the model parameters
% (see idnlgreydemo1 for more information)
Parameters = [0.24365; 0.24964];

```

2 Estimate the model parameters and set the model properties:
```

nlgr = idnlgrey(FileName, Order, Parameters);
set(nlgr, 'InputName', 'Voltage','OutputName', ...
{'Angular position', 'Angular velocity'});

```

3 Free the second state while keeping the first one fixed.
```

setinit(nlgr,'Fixed',{1 0});

```

4 Load the estimation data.
```

load(fullfile(matlabroot,'toolbox','ident',...
'iddemos','data','dcmotordata'));
z = iddata(y,u,0.1,'Name','DC-motor',...
'InputName', 'Voltage', 'OutputName',...
{'Angular position','Angular velocity'});

```

\section*{findstates(idnlgrey)}

5 Estimate the free states of the model.
```

[XO,EstInfo] = findstates(nlgr,z)

```

\section*{Estimating Initial States Starting from States Stored in Model}

This example shows how you can estimate all of the initial states, starting from the initial state 0 , then from the initial states stored in the model nlgr, and finally using a numerical initial states vector as the initial guess.

1 Estimate all the initial states starting from 0.
XO = findstates(nlgr,z,'zero');
2 Estimate the free initial states specified by nlgr, starting from the initial state stored in nlgr.
```

XO = findstates(nlgr, z, 'mod');

```

3 Estimate all the initial states, starting from an initial state vector that you specify.
```

nlgr.Algorithm.Display = 'full';
% Starting from an initial state vector [10;10]
XO = findstates(nlgr,z,[10;10])

```

\section*{Advanced Use of findstates(idnlgrey)}

The following example shows advanced use of findstates. Here you estimate states for multi-experiment data, such that the states of model nlgr are estimated separately for each experiment. After creating a 3 -experiment data set \(z 3\), you estimate individual initial states separately.

1 Create a three-experiment data set.

\section*{findstates(idnlgrey)}
z3 \(=\) merge(z, z, z); \% 3-experiment data
2 Fix some initial states and only estimate the free initial states starting of with the initial state in nlgr. This means that both elements of state vector 1 will be estimated, that no state of the second state vector will be estimated, and that only the first state of state vector 3 is estimated.
```

% prepare model for 3-experiment data
nlgr = pem(z3, nlgr, 'Display', 'off');

```
3 Specify which initial states to fix, and set the Display property of Algorithm to 'full'.
```

nlgr.InitialStates(1).Fixed = [true false true];
nlgr.InitialStates(2).Fixed = [true false false];
nlgr.Algorithm.Display = 'full';

```
4 Estimate the initial states and obtain information about the estimation.
```

[X0, EstInfo] = findstates(nlgr, z3);

```
```

findstates(idnlarx) | findstates(idnlhw) | predict | sim

```

\section*{findstates(idnlhw)}
\begin{tabular}{|c|c|}
\hline Purpose & Estimate initial states of nonlinear Hammerstein-Wiener model from data \\
\hline Syntax & ```
XO = findstates(MODEL,DATA)
XO = findstates(MODEL,DATA,XOINIT)
XO = findstates(MODEL,DATA,XOINIT,PVPairs)
[XO, REPORT] = findstates(...)
``` \\
\hline Description & \begin{tabular}{l}
XO = findstates(MODEL,DATA) estimates the initial states of an idnlhw model from given data. The states of an idnlhw model are defined as the states of its embedded linear model (Model.LinearModel). For more information about the states of idnlhw models, see "idnlhw States" on page 2-389. \\
XO = findstates(MODEL, DATA, XOINIT) specifies an initial guess for value of XO using XOINIT. \\
XO = findstates(MODEL,DATA,XOINIT,PVPairs) specifies property-value pairs representing the algorithm properties that control the numerical optimization process. \\
[XO, REPORT] = findstates(...) creates a report to summarize results of numerical optimization that is performed to search for the model states.
\end{tabular} \\
\hline \begin{tabular}{l}
Input \\
Arguments
\end{tabular} & \begin{tabular}{l}
- MODEL: idnlhw model. \\
- DATA: iddata object from which to estimate the initial states of MODEL. \\
- XOINIT: Initial guess for value of XO. Must be a vector of length equal to the number of the states of MODEL. \\
- PVPairs: Property-value pairs that specify the algorithm properties that control numerical optimization process. By default, algorithm properties are read from the Algorithm property of MODEL. You can override MODEL.Algorithm properties using property-value pairs. For example you might set SearchMethod, MaxSize, Tolerance, and Display.
\end{tabular} \\
\hline
\end{tabular}

\section*{findstates(idnlhw)}

\section*{Output Arguments}

\section*{Examples}
- XO: Estimated initial state vector corresponding to time DATA. TStart. For multi-experiment data, XO is a matrix with as many columns as there are experiments.
- REPORT: Structure containing the following fields:
- 'EstimationCriterion': String containing the minimization method used.
- 'SearchMethod': String indicating the value of the SearchMethod property of MODEL.Algorithm.
- 'WhyStop': String describing why the estimation was stopped.
- 'Iterations ': Number of iterations carried out during estimation.
- 'FinalCost': The final value of the sum of squared errors that the search method attempts to minimize
- 'FirstOrderOptimality': Measure of the gradient of the search direction at the final value of the parameter set when the search algorithm terminates. It is equal to the \(\infty\)-norm of the gradient vector.

In this example, you create an idnlarx model from sample data and estimate initial states using another data set. Next you jointly estimate the states for separate data sets contained in multi-experiment data.

1 Load the data and create iddata objects z 1 and z 2 .
load twotankdata
```

z = iddata(y, u, 0.2,'Name','Two tank system');
z1 = z(1:1000); z2 = z(1001:2000);

```

2 Estimate an idnlhw model from data.
```

m1=nlhw(z1,[4 2 1], 'unitgain' , 'pwlinear')

```

3 Estimate the initial states of m 1 using data \(z 2\).

\section*{findstates(idnlhw)}
\% Estimate initial states. View estimation trace and use
\% only 5 iterations in the search algorithm
X0 = findstates(m1,z2,[],'MaxIter',5,'Display','on')
4 Estimate states using multiple-experiment data. There are separate sets of initial states for each experiment. The states of all data experiments are jointly estimated, and X 0 is returned as a matrix with as many columns as there are data experiments.
zm = merge(z1,z2);
XO = findstates(m1, zm)
See Also
findstates(idnlarx) | findstates(idParametric) | findop(idnlhw)

\section*{Purpose Option set for findstates}

Description

\section*{Input Arguments}
```

Syntax opt = findstatesOptions

```
opt = findstatesOptions(Name,Value)
```

```
```

opt = findstatesOptions(Name,Value)

```
```

opt = findstatesOptions creates the default options set for findstates(idParametric).
opt = findstatesOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

InitialState

Specify how initial states are handled.
InitialState takes one of the following:

- 'e' - Estimate initial state such that the prediction error for observed output is minimized.
- 'd' - Similar to 'e', but absorbs nonzero delays into the model coefficients. Use this option for discrete-time models only.
- xOobj - Specification object created using idpar. Use this object for discrete-time state-space models only and when K is 1 or Inf. Use x0obj to impose constraints on the initial states by fixing their value or specifying minimum/maximum bounds.

Default: 'e'

InputOffset

findstatesOptions

Removes offset from time domain input data during estimation.
Specify as a column vector of length $N u$, where $N u$ is the number of inputs.

Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

Default: []

OutputOffset

Removes offset from time domain output data during estimation.
Specify as a column vector of length $N y$, where $N y$ is the number of outputs.

Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. Ny is the number of outputs, and $N e$ is the number of experiments. Each entry specified by OutputOffset is subtracted from the corresponding output data.

Default: []

OutputWeight

Weight of output for initial condition estimation.
OutputWeight takes one of the following:

- 'noise ' - Inverse of the noise variance stored with the model.
- matrix - A positive semi-definite matrix of dimension $N y$-by- $N y$, where $N y$ is the number of outputs.

Default: 'noise'

Output opt
 Arguments Option set containing the specified options for findstates(idParametric).
 Examples
 Create Default Options Set for State Identification
 Create a default options set for findstates(idParametric).
 opt = findstatesOptions;

Identify Initial States using Options Set

Create an options set for findstates(idParametric) by using an initial state specification object.

Identify a state-space model from data.

```
load iddata8 z8;
ssest_opt = ssestOptions('Focus','simulation');
sys = ssest(z8,4,ssest_opt);
```

z8 is an iddata object containing time-domain system response data.
ssest_opt specifies the 'Focus' option for state-space estimation as 'simulation'.
sys is a fourth-order idss model that is identified from the data.
Configure a specification object for the initial states of sys.

```
xOobj = xOpar([1;nan(3,1)]);
x0obj.Free(1) = false;
xOobj.Minimum(2) = 0;
xOobj.Maximum(2) = 1;
```

xOobj specifies estimation constraints on the initial conditions.
The value of the first state is specified as 1 when xOobj is created. x0obj.Free(1) = false specifies the first initial state as a fixed estimation parameter.

findstatesOptions

The second state is unknown. But, xOobj.Minimum(2) $=0$ and xOobj.Maximum (2) $=1$ specify the lower and upper bounds of the second state as 0 and 1 , respectively.

Create an option set for findstates to identify the initial states of sys.
opt = findstatesOptions('InitialState',xOobj);

Alternatively, use dot notation to set the values of opt.

```
opt = findstatesOptions;
```

opt.InitialState = xOobj;

Identify the initial states of sys.
x0_estimated = findstates(sys,z8,Inf,opt);
findstates(idParametric) | idpar

Purpose Pointwise peak gain of FRD model

```
Syntax
fnrm = fnorm(sys)
fnrm = fnorm(sys,ntype)
```

Description
fnrm $=$ fnorm(sys) computes the pointwise 2 -norm of the frequency response contained in the FRD model sys, that is, the peak gain at each frequency point. The output fnrm is an FRD object containing the peak gain across frequencies.
fnrm = fnorm(sys, ntype) computes the frequency response gains using the matrix norm specified by ntype. See norm for valid matrix norms and corresponding NTYPE values.

See Also
norm | abs

Purpose Forecast linear system response into future

```
Syntax yf = forecast(model,past_data,K)
yf = forecast(model,past_data,K,future_inputs)
yf = forecast(model,past_data,K,___,opt)
[yf,x0efmod] = forecast(model,past_data,K, __ )
```


Description

Input Arguments

$y f=$ forecast(model, past_data,K) forecasts the output of a linear identified time series model, model, K steps into the future using the historical output data record, past_data. Here, "future" denotes the time samples beyond the last sample time in past_data.
yf = forecast(model, past_data,K,future_inputs) uses the future values of the inputs to model, future_inputs to forecast the response of an input-output model.
yf = forecast(model, past_data, K, \ldots, , opt) forecasts the future output of model using the option set opt to specify the forecasting algorithm options.
[yf,x0efmod] = forecast(model, past_data, K, __) returns the estimated values for initial states, xOe , and a forecasting model, fmod.
model
Identified linear model.

past_data

Historical input/output values.
If model is a time-series model, which do not have input signals, past_data may be specified as an iddata object with no inputs. Or, past_data may be a matrix of historical time-series data.

K

Time horizon of the forecast.

K must be a positive integer that is a multiple of the sampling time of the data, past_data.Ts.

future_inputs

Future values of inputs to model.
Specify future_inputs for the time interval past_data.Tstart $+(N+1: N+K) * p a s t _d a t a . T s$, where N is the number of samples in past_data.
future_inputs must be a matrix of size [K, Nu], where K is forecast horizon and Nu is the number of inputs.
future_inputs is only relevant if model is not a time-series model.
Alternatively, use an iddata model to specify future_inputs.
Use [] if model is a time-series model.
If past_data is specified for multiple experiments, then specify future_inputs as:

- a multi-experiment iddata object.
- cell array of matrices, with an array entry for each corresponding past_data experiment data set.

Default: 0

opt

Options set for forecast.
Use forecastOptions to define options.

Output
 yf

Arguments
Forecasted response.
yf is the forecasted response at times after the last sample time in past_data. Let N be the number of samples in past_data. In true

forecast

time, yf contains data for the time interval past_data. Tstart + ($\mathrm{N}+1$: $\mathrm{N}+\mathrm{K}$) *past_data. Ts.

$x 0 e$

Estimated initial states.
$x 0 e$ is returned only for state-space systems.

fmod

Forecasting model.
fmod is a dynamic system whose simulation, using future_inputs and $x 0 e$, yields yf as the output.
fmod is always a discrete-time system.
If past_data is specified for multiple experiments, then fmod is an array of dynamic models, with each entry corresponding to an experiment in past_data.

Examples Forecast Response of Time Series Model

Forecast the response of a time series model for a given number of time steps in the future.

Obtain a time series model and past data.
load iddata9 z9
model = ar(z9,4);
past_data = z9.OutputData(1:51); \% double data
z9 is an iddata object that contains the measured output only.
model is an idpoly time-series model.
past_data contains the first 51 data points of $z 9$.
Forecast the system response into the future for a given time horizon.
K = 100;

```
yf = forecast(model,past_data(1:50),K);
```

K specifies the forecasting time horizon as 100 samples, with the same sampling time as past_data.
yf is the forecasted model response.
Analyze the forecasted data.
$\mathrm{t}=$ z9.SamplingInstants;
$\mathrm{t} 1=\mathrm{t}(1: 51)$;
$\mathrm{t} 2=\mathrm{t}(51: 150)^{\prime}$;
plot(t1, past_data, t2,yf,'r')
legend('Measured', 'Forecasted')

Forecast Model Response Using Future Inputs

Forecast the response of a model using the knowledge of its future inputs.

Obtain past data, future inputs and identified linear model.

forecast

```
load iddata1 z1
z1 = iddata(cumsum(z1.y),cumsum(z1.u),z1.Ts,'InterSample','foh'); % inteo
past_data = z1(1:100);
future_inputs = z1.u(101:end);
model = polyest(z1, [2 2 2 0 0 1],'IntegrateNoise',true);
z1 is an iddata object that contains integrated data.
model is an idpoly model.
past_data contains the first }100\mathrm{ data points of z1.
future_inputs contains the last 200 data points of z1.
```

Forecast the system response into the future for a given time horizon and future inputs.

K = 200;
yf = forecast(model, past_data,K,future_inputs);

K specifies the forecasting time horizon as 200 samples, with the same sampling time as past_data.
$y f$ is the forecasted model response.
Analyze the forecasted data.
plot(past_data,yf);
legend('Measured', 'Forecasted')

See Also
forecastOptions | predict | compare | sim | lsim | ar | arx
| n4sid | iddata

forecastOptions

Purpose Option set for forecast

Description

Input
Arguments

Syntax \quad| opt | $=$ forecastOptions |
| ---: | :--- |
| opt | $=$ forecastOptions (Name, Value) |

```
opt = forecastOptions
```

opt = forecastOptions(Name,Value)
opt $=$ forecastOptions returns the default option set for forecast.
opt $=$ forecastOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

InitialCondition

Specify initial conditions.
InitialCondition takes one of the following:

- 'z' - Zero initial conditions.
- 'e' - Estimate initial conditions such that the 1 -step prediction error is minimized for the observed output.
- 'd' - Similar to 'e', but absorbs nonzero delays into the model coefficients.
- x0 - Numerical column vector denoting initial states. For multi-experiment data, use a matrix with $N e$ columns, where $N e$ is the number of experiments. Use this option for state-space models only.
- x0obj - Specification object created using idpar. Use this object for discrete-time state-space models only. Use xOobj to impose constraints on the initial states by fixing their value or specifying minimum/maximum bounds.

The effects of initial conditions on the forecasted response is negligible if the observed data is for a sufficiently long time interval, or if the model has finite memory. For such systems, using zero initial conditions is sufficient. Otherwise, the initial conditions will influence the forecasted values; the influence will usually diminish over the forecasted time interval.

Default: 'e'

InputOffset

Input signal offset.
Specify as a column vector of length $N u$, where $N u$ is the number of inputs.

Use [] to indicate no offset.
For multi-experiment data, specify InputOffset as a Nu -by- Ne matrix. Here $N u$ is the number of inputs and $N e$ is the number of experiments.

Each entry specified by InputOffset will be subtracted from the corresponding input data before it is used to simulate the model.

Default: []

OutputOffset

Output signal offset.
Specify as a column vector of length $N y$, where $N y$ is the number of outputs.

Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. Here $N y$ is the number of outputs and $N e$ is the number of experiments.

Each entry specified by OutputOffset will be subtracted from the corresponding output data.

forecastOptions

Default: []

OutputWeight

Weight of output for initial condition estimation.
OutputWeight takes one of the following:

- ' []' - No weighting. This is the same as using eye(Ny), where Ny is the number of outputs.
- 'noise' - Inverse of the noise variance stored with the model.
- matrix - A positive semi-definite matrix of dimension $N y$-by- $N y$, where $N y$ is the number of outputs.

Default: '[]'

Output opt
 Arguments
 Examples
 Option set containing the specified options for forecast.
 Create Default Options Set for Model Forecasting
 Create a default options set for forecast.
 opt = forecastOptions;

Specify Options for Model Forecasting

Create an options set for forecast using zero initial conditions and set the input offset to 5 .
opt = forecastOptions('InitialCondition','z','InputOffset',5);
Alternatively, use dot notation to set the values of opt.

```
opt = forecastOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;
```

```
See Also forecast | idpar
```


Purpose

Syntax

Description

Akaike Final Prediction Error for estimated model
fp = fpe(Model1,Model2,Model3,...)
Model is the name of an idtf, idgrey, idpoly, idproc, idss, idnlarx, idnlhw, or idnlgrey model object.
fp is returned as a row vector containing the values of the Akaike Final Prediction Error (FPE) for the different models.

Akaike's Final Prediction Error (FPE) criterion provides a measure of model quality by simulating the situation where the model is tested on a different data set. After computing several different models, you can compare them using this criterion. According to Akaike's theory, the most accurate model has the smallest FPE.

Note If you use the same data set for both model estimation and validation, the fit always improves as you increase the model order and, therefore, the flexibility of the model structure.

Akaike's Final Prediction Error (FPE) is defined by the following equation:

$$
F P E=V\left(\frac{1+d / N}{1-d / N}\right)
$$

where V is the loss function, d is the number of estimated parameters, and N is the number of values in the estimation data set.

The toolbox assumes that the final prediction error is asymptotic for $d \ll N$ and uses the following approximation to compute FPE:

$$
F P E=V(1+2 d / N)
$$

The loss function V is defined by the following equation:

$$
V=\operatorname{det}\left(\frac{1}{N} \sum_{1}^{N} \varepsilon\left(t, \theta_{N}\right)\left(\varepsilon\left(t, \theta_{N}\right)\right)^{T}\right)
$$

where θ_{N} represents the estimated parameters.

References

Sections 7.4 and 16.4 in Ljung (1999).
See Also aic | goodnessOffit

Purpose
 Syntax
 Description

Access data for frequency response data (FRD) object
[response,freq] = frdata(sys)
[response,freq,covresp] = frdata(sys)
[response,freq,Ts,covresp] = frdata(sys,'v')
[response,freq,Ts] = frdata(sys)
[response,freq] = frdata(sys) returns the response data and frequency samples of the FRD model sys. For an FRD model with Ny outputs and Nu inputs at Nf frequencies:

- response is an Ny-by-Nu-by-Nf multidimensional array where the (i, j) entry specifies the response from input j to output i.
- freq is a column vector of length Nf that contains the frequency samples of the FRD model.

See the frd reference page for more information on the data format for FRD response data.
[response,freq,covresp] = frdata(sys) also returns the covariance covresp of the response data resp for idfrd model sys. The covariance covresp is a 5 D -array where $\operatorname{covH}(\mathrm{i}, \mathrm{j}, \mathrm{k},:,:$) contains the 2 -by- 2 covariance matrix of the response $\operatorname{resp}(i, j, k)$. The (1,1) element is the variance of the real part, the $(2,2)$ element the variance of the imaginary part and the $(1,2)$ and $(2,1)$ elements the covariance between the real and imaginary parts.

For SISO FRD models, the syntax

```
[response,freq] = frdata(sys,'v')
```

forces frdata to return the response data as a column vector rather than a 3 -dimensional array (see example below). Similarly
> [response,freq,Ts,covresp] = frdata(sys,'v') for an IDFRD model sys returns covresp as a 3 -dimensional rather than a 5 -dimensional array.

[response,freq,Ts] = frdata(sys) also returns the sample time Ts.

Other properties of sys can be accessed with get or by direct structure-like referencing (e.g., sys.Frequency).

Arguments

Examples

See Also

The input argument sys to frdata must be an FRD model.

Extract Data from Frequency Response Data Model

Create a frequency response data model and extract the frequency response data.

Create a frequency response data by computing the response of a transfer function on a grid of frequencies.
$H=t f([-1.2,-2.4,-1.5],[1,20,9.1])$;
w = logspace(-2,3,101);
sys = frd(H,w);
sys is a SISO frequency response data (frd) model containing the frequency response at 101 frequencies.

Extract the frequency response data from sys.
[response,freq] = frdata(sys);
response is a 1-by-1-by-101 array. response $(1,1, k)$ is the complex frequency response at the frequency freq(k).

```
frd | get | set | idfrd | freqresp | spectrum
```

Purpose	Frequency response over grid
Syntax	$[H$, wout $]=$ freqresp (sys)
	$H=$ freqresp $($ sys,$w)$
	$H=$ frearesp $($ sys,w, units $)$
	$[H$, wout, covi $]=$ freqresp $($ idsys,\ldots)

Description

Input
 Arguments

[H, wout] = freqresp(sys) returns the frequency response of the dynamic system model sys at frequencies wout. The freqresp command automatically determines the frequencies based on the dynamics of sys.

H = freqresp(sys,w) returns the frequency response on the real frequency grid specified by the vector w.
H = freqresp(sys, w, units) explicitly specifies the frequency units of w with the string units.
[H, wout, covH] = freqresp(idsys, ...) also returns the covariance covH of the frequency response of the identified model idsys.

sys

Any dynamic system model or model array.

w

Vector of real frequencies at which to evaluate the frequency response. Specify frequencies in units of rad/TimeUnit, where TimeUnit is the time units specified in the TimeUnit property of sys.

units

String specifying the units of the frequencies in the input frequency vector w. Units can take the following values:

- 'rad/TimeUnit' - radians per the time unit specified in the TimeUnit property of sys

freqresp

- 'cycles/TimeUnit' - cycles per the time unit specified in the TimeUnit property of sys
- 'rad/s'
- 'Hz'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rpm'

Default: 'rad/TimeUnit'

idsys

Any identified model.

Output Arguments

H

Array containing the frequency response values.
If sys is an individual dynamic system model having Ny outputs and Nu inputs, H is a 3D array with dimensions Ny-by-Nu-by-Nw, where Nw is the number of frequency points. Thus, $\mathrm{H}(:,:, \mathrm{k})$ is the response at the frequency $w(k)$ or wout (k).

If sys is a model array of size [$\mathrm{Ny} \mathrm{NuS1}$. . . Sn], H is an array with dimensions Ny-by-Nu-by-Nw-by-S1-by-...-by-Sn] array.

If sys is a frequency response data model (such as frd, genfrd, or idfrd), freqresp (sys, w) evaluates to NaN for values of w falling outside the frequency interval defined by sys.frequency. The freqresp command can interpolate between frequencies in sys.frequency. However, freqresp cannot extrapolate beyond the frequency interval defined by sys.frequency.

wout

Vector of frequencies corresponding to the frequency response values in H. If you omit w from the inputs to freqresp, the command automatically determines the frequencies of wout based on the system dynamics. If you specify w, then wout $=w$

covH

Covariance of the response H . The covariance is a 5 D array where $\operatorname{covH}(i, j, k,:,:)$ contains the 2 -by- 2 covariance matrix of the response from the ith input to the j th output at frequency $w(k)$. The $(1,1)$ element of this 2 -by- 2 matrix is the variance of the real part of the response. The $(2,2)$ element is the variance of the imaginary part. The $(1,2)$ and $(2,1)$ elements are the covariance between the real and imaginary parts of the response.

Definitions

Frequency Response

In continuous time, the frequency response at a frequency ω is the transfer function value at $s=j \omega$. For state-space models, this value is given by

$$
H(j \omega)=D+C(j \omega I-A)^{-1} B
$$

In discrete time, the frequency response is the transfer function evaluated at points on the unit circle that correspond to the real frequencies. freqresp maps the real frequencies $w(1), \ldots, w(N)$ to points on the unit circle using the transformation $z=e^{j \omega T_{s}} . T_{s}$ is the sample time. The function returns the values of the transfer function at the resulting z values. For models with unspecified sample time, freqresp uses $T_{s}=1$.

Examples Frequency Response

Compute the frequency response of the 2 -input, 2 -output system

$$
\begin{aligned}
& \text { sys }=\left[\begin{array}{cc}
0 & \frac{1}{s+1} \\
\frac{s-1}{s+2} & 1
\end{array}\right] \\
& \text { sys11 }=0 ; \\
& \text { sys22 }=1 ; \\
& \text { sys12 }=\operatorname{tf}\left(1,\left[\begin{array}{ll}
1 & 1]) ; \\
\text { sys21 } & =\operatorname{tf}([1-1],[12]) ; \\
\text { sys }=[\text { sys11, sys12;sys21, sys22] } ; \\
{[H, \text { wout }]=\text { freqresp(sys) } ;}
\end{array}\right.\right.
\end{aligned}
$$

H is a 2-by-2-by-45 array. Each entry $\mathrm{H}(:,:, \mathrm{k})$ in H is a 2 -by- 2 matrix giving the complex frequency response of all input-output pairs of sys at the corresponding frequency wout (k). The 45 frequencies in wout are automatically selected based on the dynamics of sys.

Response on Specified Frequency Grid

Compute the frequency response of the 2 -input, 2 -output system

$$
\text { sys }=\left[\begin{array}{cc}
0 & \frac{1}{s+1} \\
\frac{s-1}{s+2} & 1
\end{array}\right]
$$

on a logarithmically-spaced grid of 200 frequency points between 10 and 100 radians per second.

```
sys11 = 0;
sys22 = 1;
sys12 = tf(1,[11]);
sys21 = tf([1 -1],[1 2]);
sys = [sys11,sys12;sys21,sys22];
w = logspace(1,2,200);
```

H = freqresp(sys,w);

H is a 2-by-2-by-200 array. Each entry $\mathrm{H}(:,:, \mathrm{k})$ in H is a 2 -by- 2 matrix giving the complex frequency response of all input-output pairs of sys at the corresponding frequency $w(k)$.

Frequency Response and Associated Covariance

Compute the frequency response and associated covariance for an identified model at its peak response frequency.

```
load iddata1 z1
model = procest(z1, 'P2UZ');
w = 4.26;
[H,~,covH] = freqresp(model, w)
```


Algorithms

For transfer functions or zero-pole-gain models, freqresp evaluates the numerator(s) and denominator(s) at the specified frequency points. For continuous-time state-space models (A, B, C, D), the frequency response is

$$
D+C(j \omega-A)^{-1} B, \quad \omega=\omega_{1}, \ldots, \omega_{N}
$$

For efficiency, A is reduced to upper Hessenberg form and the linear equation $(j \omega-A) X=B$ is solved at each frequency point, taking advantage of the Hessenberg structure. The reduction to Hessenberg form provides a good compromise between efficiency and reliability. See [1] for more details on this technique.

References [1] Laub, A.J., "Efficient Multivariable Frequency Response Computations," IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407-408.

[^4]
freqresp

See Also

evalfr | bode | nyquist | nichols | sigma | ltiview | interp | spectrum

Purpose Select frequency points or range in FRD model
Syntax subsys = fselect(sys,fmin,fmax)

subsys = fselect(sys,index)
Descriptionsubsys $=$ fselect (sys,fmin,fmax) takes an FRD model sys andselects the portion of the frequency response between the frequenciesfmin and fmax. The selected range [fmin, fmax] should be expressedin the FRD model units. For an IDFRD model, the SpectrumData,CovarianceData and NoiseCovariance values, if non-empty, are alsoselected in the chosen range.
subsys = fselect(sys,index) selects the frequency points specifiedby the vector of indices index. The resulting frequency grid is
sys.Frequency (index)
See Also interp | fcat | fdel | frd | idfrd

Purpose Access model property values

```
Syntax Value = get(sys,'PropertyName')
Struct = get(sys)
```

Description \quad Value $=$ get(sys, 'PropertyName') returns the current value of the property PropertyName of the model object sys. The string 'PropertyName' can be the full property name (for example, 'UserData') or any unambiguous case-insensitive abbreviation (for example, 'user'). See reference pages for the individual model object types for a list of properties available for that model.
Struct = get (sys) converts the TF, SS, or ZPK object sys into a standard MATLAB structure with the property names as field names and the property values as field values.
Without left-side argument,
get(sys)
displays all properties of sys and their values.
Examples Consider the discrete-time SISO transfer function defined by

```
h = tf(1,[1 2],0.1,'inputname','voltage','user','hello')
```

You can display all properties of h with

```
get(h)
            num: {[0 1]}
            den: {[1 2]}
            ioDelay: 0
            Variable: 'z'
            Ts: 0.1
        InputDelay: 0
        OutputDelay: 0
            InputName: {'voltage'}
            OutputName: {''}
```

```
    InputGroup: [1x1 struct]
OutputGroup: [1x1 struct]
            Name: ''
            Notes: {}
    UserData: 'hello'
```

or query only about the numerator and sample time values by
get(h,'num')
ans $=$
[1x2 double]
and
get(h,'ts')
ans $=$
0.1000

Because the numerator data (num property) is always stored as a cell array, the first command evaluates to a cell array containing the row vector [0 1].

Tips
An alternative to the syntax

```
Value = get(sys,'PropertyName')
```

is the structure-like referencing
Value = sys.PropertyName
For example,
sys.Ts
sys.a
sys.user
return the values of the sample time, A matrix, and UserData property of the (state-space) model sys.

See Also

frdata | set | ssdata | tfdata | idssdata | polydata | getpvec | getcov

Purpose

Parameter covariance information in either raw or factored form

Syntax

cov = getcov(sys,format)
cov $=$ getcov(sys, format) returns covariance data for the parameters of the identified model sys.

Input
 Arguments

sys

Identified model.
sys may be an array of identified models.

format

Specifies whether cov should be in the raw or factored form.
format is a string that takes the following values:

- 'value' - specifies the output as raw parameter covariance.
- 'factors' - specifies the output as the factored form of the parameter covariance as output. The factored form of the covariance data is useful when the covariance matrix is ill-conditioned.

Default: 'value'

Output
 cov

Arguments

Parameter covariance information for identified model.

If format is

- 'value' - cov is an $n p$-by- $n p$ matrix of doubles, where $n p$ is the number of parameters of sys.

If a parameter is fixed, then its corresponding row and column entries contain zeros.

For an estimated model, cov is equal to sys.Report.Parameters.ParameterCovariance.

If sys is a model array, then cov is a cell array of corresponding size. Each cell of cov contains the parameter covariance information for the corresponding model.

- 'factors ' - cov is a structure that stores the covariance data in a "factored" form using the following fields:
- R - usually the Cholesky factor of inverse of covariance.
- T - transformation matrix.
- Free - logical vector of length $n p$ indicating if a parameter is free. Here $n p$ is equal to the number of parameters of sys.
To calculate the covariance:

```
cov = getcov(sys,'factors');
Free = cov.Free;
T = cov.T;
R = cov.R;
np = nparams(sys);
covariance_matrix = zeros(np);
covariance_matrix(Free, Free) = T*inv(R'*R)*T';
```

Use this option when the covariance matrix is ill-conditioned; for example, when $\operatorname{rank}(R)<\operatorname{size}(R)$. You can often compute the response uncertainties, such as confidence bounds on the step or frequency response, by using the factors directly, without explicitly forming the covariance matrix.

There is no numerical advantage to fetching the covariance information in the factored form for the following cases:

- sys is estimated using certain instrument variable methods
- the parameter covariance for sys is explicitly set using the deprecated CovarianceMatrix model property
If sys is a model array, then cov is a structure array of corresponding size. Each entry of cov contains the factored parameter covariance information for the corresponding model.

Examples Raw Covariance

Obtain raw covariance for an identified model.
load iddata1 z 1 ;
sys = tfest(z1,2);
cov_raw = getcov(sys);
getcov(sys) uses the default value for the format argument, value, which returns the raw covariance data.

Factored Covariance

Obtain covariance data for an identified model in factored form.

```
load iddata z1;
sys = tfest(z1,2);
cov_factored = getcov(sys,'factors');
```

See Also setcov | nparams | rsample | sim | simsd | getpar

Purpose
Get input/output delay information for idnlarx model structure

Syntax

Description

Input
Arguments
DELAYS = getDelayInfo(MODEL)
DELAYS = getDelayInfo(MODEL,TYPE)
DELAYS = getDelayInfo(MODEL) obtains the maximum delay in each input and output variable of an idnlarx model.
DELAYS = getDelayInfo(MODEL, TYPE) lets you choose between obtaining maximum delays across all input and output variables or maximum delays for each output variable individually. When delays are obtained for each output variable individually a matrix is returned, where each row is a vector containing $n_{y}+n_{u}$ maximum delays for each output variable, and:

- n_{y} is the number of outputs of MODEL.
- n_{u} is the number of inputs of MODEL.

Delay information is useful for determining the number of states in the model. For nonlinear ARX models, the states are related to the set of delayed input and output variables that define the model structure (regressors). For example, if an input or output variable p has a maximum delay of D samples, then it contributes D elements to the state vector:
$p(t-1), p(t-2), \ldots p(t-D)$
The number of states of a nonlinear ARX model equals the sum of the maximum delays of each input and output variable. For more information about the definition of states for idnlarx models, see "Definition of idnlarx States" on page 2-354
getDelayInfo accepts the following arguments:

- MODEL: idnlarx model.
- TYPE: (Optional) Specifies whether to obtain channel delays 'channelwise' or 'all' as follows:
- 'all': Default value. DELAYS contains the maximum delays across each output (vector of $n_{y}+n_{u}$ entries, where [ny, nu] = size (MODEL)).
- 'channelwise': DELAYS contains delay values separated for each output (n_{y}-by- $\left(n_{y}+n_{u}\right)$ matrix).

Output Arguments

Examples

- DELAYS: Contains delay information in a vector of length $n_{y}+n_{u}$ arranged with output channels preceding the input channels, i.e., [y1, y2,.., u1, u2,..].

In the following example you create a 2 -output, 3 -input nonlinear ARX model, then verify the number of delays using getDelayInfo.

1 Create an idnlarx model.

```
M = idnlarx([2 0 2 2 1 1 0 0; 1 0 1 5 0 1 1 0],...
    'linear');
```

2 Compute the maximum delays for each output variable individually.

```
Del = getDelayInfo(M,'channelwise')
Del =
    2 
```

The matrix Del contains the maximum delays for the first and second output of the model M. You can interpret the contents of matrix Del as follows:

- In the dynamics for the output $1\left(y_{1}\right)$ of model M , the maximum delays for each input/output channel are as follows: $y_{1}: 2, y_{2}: 0, u_{1}: 2, u_{2}$: $1, u_{3}: 0$.
- Similarly, in the dynamics for the output $2\left(y_{2}\right)$ of the model, the maximum delays in channels $y_{1}, y_{2}, u_{1}, u_{2}, u_{3}$ are $1,0,1,5$, and 0 respectively.
You can find the maximum delays for all the input and output variables in the order $\left(y_{1}, y_{2}, u_{1}, u_{2}, u_{3}\right)$ by executing the command

Del=getDelayInfo(M, 'all')
which returns
Del =
$\begin{array}{lllll}2 & 0 & 2 & 5 & 0\end{array}$

Note The maximum delay across all output equations can be obtained by executing MaxDel $=\max (\operatorname{Del},[], 1)$. Since input u_{2} has 5 delays (the 4th entry in Del, there are 5 terms corresponding to u_{5} in the state vector ($\left(u_{5}(t-1), \ldots u_{5}(t-5)\right.$. Applying this definition to all I/O channels, the complete state vector for model M becomes:
$X(t)=\left[y_{1}(t-1), y_{1}(t-2), u_{1}(t-1), u_{1}(t-2), u_{2}(t-1), u_{2}(t-2), u_{2}(t-3), u_{2}(t-4)\right.$, $\left.u_{2}(t-5)\right]$

See Also
data2state(idnlarx) | getreg | idnlarx

Purpose

Specific experiments from multiple-experiment data set
Syntax
d1 = getexp(data, ExperimentNumber)
d1 = getexp(data,ExperimentName)
Description
data is an iddata object that contains several experiments. d1
is another iddata object containing the indicated experiment(s). The reference can either be by ExperimentNumber, as in d1 = getexp(data,3) or d1 = getexp(data,[4 2]); or by ExperimentName, as in d1 = getexp(data,'Period1') or d1 = getexp(data,\{'Day1','Day3'\}).

See merge (iddata) and iddata for how to create multiple-experiment data objects.

You can also retrieve the experiments using a fourth subscript, as in d1 = data(:,:,:,ExperimentNumber). Type help iddata/subsref for details on this.

getinit

Purpose Values of idnlgrey model initial states

```
Syntax getinit(model)
getinit(model,prop)
```

Arguments

Description

See Also
getinit(model) gets the initial-state values in the 'Value' field of the InitialStates model property.
getinit(model, prop) gets the initial-state values of the prop field of the InitialStates model property. prop can be 'Name', 'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

The returned values are an Nx-by-1 cell array of values, where $N x$ is the number of states.
getpar | idnlgrey | setinit | setpar

getoptions

Purpose

Return @PlotOptions handle or plot options property

Syntax

p = getoptions(h)
p = getoptions(h, propertyname)

Description
$\mathrm{p}=$ getoptions(h) returns the plot options handle associated with plot handle h. p contains all the settable options for a given response plot.
p = getoptions(h, propertyname) returns the specified options property, propertyname, for the plot with handle h. You can use this to interrogate a plot handle. For example,
p = getoptions(h,'Grid')
returns 'on' if a grid is visible, and 'off' when it is not.
For a list of the properties and values available for each plot type, see "Properties and Values Reference".

See Also setoptions

Purpose Parameter values and properties of idnlgrey model parameters

```
Syntax getpar(model)
    getpar(model,prop)
model
Name of the idnlgrey model object.
Property
Name of the Parameters model property field, such as 'Name ', 'Unit', 'Value', 'Minimum', 'Maximum', or 'Fixed'.
Default: 'Value'.
```

Arguments

Description

See Also
getpar(model) gets the model parameter values in the 'Value' field of the Parameters model property.
getpar(model, prop) gets the model parameter values in the prop field of the Parameters model property. prop can be 'Name', 'Unit', 'Value', 'Minimum', and 'Maximum'.

The returned values are an Np-by-1 cell array of values, where $N p$ is the number of parameters.
getinit | idnlgrey | setinit | setpar | getpvec
Purpose Model parameters and associated uncertainty data
Syntax

pvec = getpvec(sys)
[pvec, pvec_sd] = getpvec(sys)
[pvec,pvec_sd] = getpvec(sys,'free')
Description
InputArguments
OutputArguments
pvec = getpvec(sys) returns a vector, pvec, containing the values of all the parameters of the identified model sys.
[pvec, pvec_sd] = getpvec(sys) also returns the 1 standard deviation value of the uncertainty associated with the parameters of sys. If the model covariance information for sys is not available, pvec_sd is [].
[pvec, pvec_sd] = getpvec(sys,'free') returns the values and standard deviation data for only the free parameters of sys.

sys

Identified model.

pvec

Values of the parameters of sys.
If sys is an array of models, then pvec is a cell array with parameter value vectors corresponding to each model in sys.

pvec_sd

1 standard deviation value of the parameters of sys.
If the model covariance information for sys is not available, pvec_sd is [].

If sys is an array of models, then pvec_sd is a cell array with standard deviation vectors corresponding to each model in sys.

```
Examples Obtain the parameter values for an estimated transfer function.
load iddata1 z1;
sys = tfest(z1,3);
pvec = getpvec(sys);
```

Obtain the parameter values and associated 1 standard deviation values for an estimated state-space model.
load iddata2 z2;
sys = ssest(z2,3);
[pvec, pvec_sd]=getpvec(sys)

Obtain the free parameter values and associated 1 standard deviation values for an estimated state-space model.

```
load iddata2 z2;
sys = ssest(z2,3);
[pvec, pvec_sd]=getpvec(sys,'free')
```

See Also setpvec | getcov | idssdata | tfdata | zpkdata

Purpose

Regressor expressions and numerical values in nonlinear ARX model
Syntax
Rs = getreg(model)
Rs = getreg(model,subset)
Rm = getreg(model, subset,data)
Rm = getreg(model, subset,data,init)

Description

Input Arguments

Rs = getreg(model) returns expressions for computing regressors in the nonlinear ARX model. Rs is a cell array of strings. model is an idnlarx object.

Rs = getreg(model, subset) returns regressor expressions for a specified subset of regressors. subset is a string.

Rm = getreg(model, subset, data) returns regressor values as a matrix for a specified subset of regressors.

Rm = getreg(model, subset, data,init) returns regressor values as matrices for a specified subset of regressors. The first N rows of each regressor matrix depend on the initial states init, where N is the maximum delay in the regressors (see getDelayInfo). For multiple-output models, Rm is a cell array of cell arrays.
data
iddata object containing measured data.
init
Initial conditions of your data:

- 'z' (default) specifies zero initial state.
- Real column vector containing the initial state values. input and output data values at a time instant before the first sample in data. To create the initial state vector from the input-output data, use the data2state method of the idnlarx class. For multiple-experiment data, this is a matrix where each column specifies the initial state of the model corresponding to that experiment.
- iddata object containing input and output samples at time instants before to the first sample in data. When the iddata object contains more samples than the maximum delay in the model, only the most recent samples are used. The minimum number of samples required is equal to max (getDelayInfo(model)).
model
iddata object representing nonlinear ARX model. subset

String that represents a subset of all regressors:

- (Default) 'all' - All regressors.
- 'custom'-Only custom regressors.
- 'input'-Only standard regressors computed from input data.
- 'linear'-Only regressors not used in the nonlinear block.
- 'nonlinear'-Only regressors used in the nonlinear block.

Note You can use 'nl' as an abbreviation of 'nonlinear'.

- 'output'-Only regressors computed from output data.
- 'standard'-Only standard regressors (excluding any custom regressors).

Output Arguments

Matrix of regressor values for all or a specified subset of regressors. Each matrix in Rm contains as many rows as there are data samples. For a model with ny outputs, Rm is an ny-by- 1 cell array of matrices. When data contains multiple experiments, Rm is a cell array where each element corresponds to a matrix of regressor values for an experiment.

Regressor expressions represented as a cell array of strings. For a model with ny outputs, Rs is an ny-by- 1 cell array of cell arrays of strings. For example, the expression 'u1(t-2)' computes the regressor by delaying the input signal u1 by two time samples. Similarly, the expression 'y2(t-1)' computes the regressor by delaying the output signal y2 by one time sample.

The order of regressors in Rs corresponds to regressor indices in the idnlarx object property model.NonlinearRegressors.

Examples

Get regressor expressions and values, and evaluate the predicted model output:

```
% Load sample data u and y:
    load twotankdata;
    Ts = 0.2; % Sampling interval is 0.2 min
% Create data object:
    z = iddata(y,u,Ts);
% Use first 1000 samples for estimation:
    ze = z(1:1000);
% Estimate nonlinear ARX model
    model = nlarx(ze,[3 2 1]);
% Get regressor expressions:
    Rs = getreg(model)
% Get regressor values:
    Rm = getreg(model,'all',ze)
% Evaluate model output for one-step-prediction:
    Y = evaluate(model.Nonlinearity,Rm)
% The previous result is equivalent to:
    Y_p = predict(model,ze,1,'z')
```

See Also
addreg | customreg | evaluate | polyreg
How To . "Identifying Nonlinear ARX Models"

Purpose Data offset and trend information

Syntax \quad| T | $=\operatorname{getTrend}($ data $)$ |
| ---: | :--- |
| T | $=\operatorname{getTrend}($ data, 0$)$ |
| T | $=\operatorname{get} T r e n d($ data, $)$ |

Description

$\mathrm{T}=$ getTrend(data) constructs a TrendInfo object to store offset, mean, or linear trend information for detrending or retrending data. You can assign specific offset and slope values to T.

T = getTrend(data, 0) computes the means of input and output signals and stores them as InputOffset and OutputOffset properties of T , respectively.
$\mathrm{T}=$ getTrend(data, 1) computes a best-fit straight line for both input and output signals and stores them as properties of T.

Examples Compute input-output signal means, store them, and detrend the data:

```
% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Plot data on a time plot - it has a nonzero mean
plot(data)
% Compute the mean of the data
T = getTrend(data,0)
% Remove the mean from the data
data_d = detrend(data,T)
% Plot detrended data on the same plot
hold on
plot(data_d)
```

Remove a specific offset from input and output data signals:
\% Load SISO data containing vectors u2 and y2
load dryer2
\% Create data object with sampling time of 0.08 sec

```
data=iddata(y2,u2,0.08)
plot(data)
% Create a TrendInfo object for storing offsets and trends
T = getTrend(data)
% Assign offset values to the TrendInfo object
T.InputOffset=5;
T.OutputOffset=5;
% Subtract specific offset from the data
data_d = detrend(data,T)
% Plot detrended data on the same plot
hold on
plot(data_d)
```

See Also
detrend | retrend | TrendInfo
How To . "Handling Offsets and Trends in Data"

Purpose Goodness of fit between test and reference data

```
Syntax fit = goodnessOfFit(x,xref,cost_func)
```

Description
fit = goodnessOfFit(x,xref, cost_func) returns the goodness of fit between the data matrix, x, and the reference, xref using a cost function specified by cost_func.

Input
 x

 ArgumentsTest data.
x is an Ns-by-N matrix, where N s is the number of samples and N is the number of channels.
x can also be a cell array of multiple test data sets.
x must not contain any NaN or Inf values.
xref
Reference data.
xref must be of the same size as x .
xref can also be a cell array of multiple reference sets. In this case, each individual reference set should be of the same size as the corresponding test data set.
xref must not contain any NaN or Inf values.

cost_func

Cost function to determine goodness of fit.
cost_func takes the following strings:

- 'MSE' - Mean square error.

$$
\text { fit }=\frac{|x-x r e f|^{2}}{N s-1}
$$

fit is a scalar value.

- 'NRMSE' - Normalized root mean square error.

$$
f i t(i)=1-\frac{|x(:, i)-\operatorname{xref}(:, i)|}{|x(:, i)-\operatorname{mean}(\operatorname{xref}(:, i))|}
$$

fit is a row vector of length N and $i=1, \ldots, N$, where N is the number of channels.

NRMSE costs vary between - Inf (bad fit) to 1 (perfect fit). If the cost function is equal to zero, then x is no better than a straight line at matching xref.

- 'NMSE' - Normalized mean square error.

$$
f i t(i)=1-\frac{|x(:, i)-\operatorname{xref}(:, i)|}{|x(:, i)-\operatorname{mean}(\operatorname{xref}(:, i))|^{2}}
$$

fit is a row vector of length N and $i=1, \ldots, N$, where N is the number of channels.

NMSE costs vary between - Inf (bad fit) to 1 (perfect fit). If the cost function is equal to zero, then x is no better than a straight line at matching xref.

Output
 Arguments

fit

Goodness of fit between test and reference data.
For a single test data set and reference pair, fit is a :

- scalar if cost_func is MSE.
- row vector of length N , where N is the number of channels, if cost_func is NRMSE or NMSE.

If x and/or xref are cell arrays, then fit is an array containing the goodness of fit values for each test data and reference pair.

```
Examples Calculate the goodness of fit between estimated output and measured output using NRMSE measure.
load iddata1 z1
sys = tfest(z1, 2);
y = sim(sys, z1.u);
yref = z1.y;
Fit = goodnessOfFit(y, yref, 'nrmse')
\% Note: compare function shows the same number (in percentage); try compa
```


See Also

compare | pe | resid | fpe | aic

Purpose	Linear grey box model estimation
Syntax	```sys = greyest(data,init_sys) sys = greyest(data,init_sys,opt)```
Description	sys = greyest(data, init_sys) estimates a linear grey box model, sys, using time or frequency domain data, data. The dimensions of the inputs and outputs of data and init_sys, an idgrey model, must match. sys is an identified idgrey model that has the same structure as init_sys. sys = greyest(data,init_sys,opt) estimates a linear grey box model using the option set, opt, to configure the estimation options.
Input Arguments	data
	Estimation data.
	The dimensions of the inputs and outputs of data and init_sys must match.
	For time domain estimation, data is an iddata object containing the input and output signal values.
	For frequency domain estimation, data can be one of the following: - recorded frequency response data (frd or idfrd) - iddata object with its Domain property set to 'Frequency '
	init_sys
	Identified linear grey box model that configures the initial parameterization of sys.
	init_sys, an idgrey model, must have the same input and output dimensions as data.
	opt
	Estimation options.

opt is an option set that specifies the following:

- estimation objective
- initialization choice
- disturbance model handling
- numerical search method to be used in estimation

Use greyestOptions to create the option set.

Output
 Arguments

Examples

sys
Estimated linear grey box model.
sys is an idgrey model which encapsulates the estimated linear grey box model.

Estimate Grey-Box Model

Estimate the parameters of a DC motor using the linear grey-box framework.

Load the measured data.

```
load(fullfile(matlabroot, 'toolbox', 'ident', ...
    'iddemos', 'data', 'dcmotordata'));
data = iddata(y, u, 0.1, 'Name', 'DC-motor');
set(data, 'InputName', 'Voltage', 'InputUnit', 'V');
set(data, 'OutputName', {'Angular position', 'Angular velocity'});
set(data, 'OutputUnit', {'rad', 'rad/s'});
set(data, 'Tstart', 0, 'TimeUnit', 's');
```

data is an iddata object containing the measured data for the outputs, the angular position and the angular velocity, and the input, the driving voltage.

Create a grey-box model representing the dynamics of the DC motor.

For this example, choose the angular position (rad) and the angular velocity ($\mathrm{rad} / \mathrm{s}$) of the motor as its outputs and the driving voltage (V) as the input. Set up a linear state-space structure of the following form:

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{cc}
0 & 1 \\
0 & -\frac{1}{\tau}
\end{array}\right] x(t)+\left[\begin{array}{c}
0 \\
\frac{G}{\tau}
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] x(t)
\end{aligned}
$$

τ is the time-constant of the motor in seconds and G is the static gain from the input to the angular velocity in $\mathrm{rad} /(\mathrm{V} * \mathrm{~s})$.

```
G = 0.25;
tau = 1;
init_sys = idgrey('motor',tau,'cd',G,0);
```

The governing equations in state-space form are represented in the MATLAB file motor.m. To view the contents of this file, enter edit motor.m at the MATLAB command prompt.
In this example, we treat G as a known quantity that is provided to motor.m as an optional argument. τ is treated as a free estimation parameter.
init_sys is an idgrey model associated with motor.m.
Estimate τ.
sys = greyest(data,init_sys);
sys is an idgrey model containing the estimated value of τ.
To obtain the estimated parameter values associated with sys, use getpvec(sys).

Analyze the result.

```
opt = compareOptions('InitialCondition','zero');
compare(data,sys,Inf,opt)
```


sys provides a 98.35% fit for the angular position and an 84.42% fit for the angular velocity.

See Also

Related Examples

idgrey | greyestOptions | iddata | idfrd | ssest | idnlgrey | pem

- "Estimate Model Using Zero/Pole/Gain Parameters"

Purpose

Syntax

Description

Input
 Arguments

Option set for greyest

```
opt = greyestOptions
```

opt = greyestOptions
opt = greyestOptions(Name,Value)

```
opt = greyestOptions(Name,Value)
```

opt $=$ greyestOptions creates the default options set for greyest.
opt $=$ greyestOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

InitialState

Specify how initial states are handled during estimation.
InitialState takes one of the following strings:

- 'model ' - The initial state is parameterized by the ODE file used by the idgrey model. The ODE file must return 6 or more output arguments.
- 'zero' - The initial state is set to zero. Any values returned by the ODE file are ignored.
- 'estimate' - The initial state is treated as an independent estimation parameter.
- 'backcast' - The initial state is estimated using the best least squares fit.
- 'auto' - The software chooses the method to handle initial states based on the estimation data.
- vector of doubles - Specify a column vector of length $N x$, where $N x$ is the number of states. For multi-experiment data, specify a matrix with $N e$ columns, where $N e$ is the number of experiments. The specified values are treated as fixed values during the estimation process.

Default: 'auto'

DisturbanceModel

Specify how the disturbance component (K) is handled during estimation.

DisturbanceModel takes one of the following strings:

- 'model' - K values are parameterized by the ODE file used by the idgrey model. The ODE file must return 5 or more output arguments.
- 'fixed' - The value of the k property of the idgrey model is considered to be fixed to its original value.
- 'none' $-K$ is fixed to zero. Any values returned by the ODE file are ignored.
- 'estimate' $-K$ is treated as an independent estimation parameter.
- 'auto' - The software chooses the method to handle how the disturbance component is handled during estimation. The software uses the 'model' method if the ODE file returns 5 or more output arguments with a finite value for K. Else, the software uses the 'fixed' method.

Note Noise model cannot be estimated using frequency domain data.

Default: 'auto'

Focus

Defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.
Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus can take the following values:

- 'simulation' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input spectrum has the most power.
This method provides a stable model.
- 'prediction' - Same as 'simulation', except that it does not enforce the stability of the resulting model.
- 'stability' - Same as 'prediction' but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:

```
[wl,wh]
[w1l,w1h;w2l,w2h;w31,w3h;...]
```

where $w l$ and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.

- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The $\{A, B, C, D\}$ format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.

- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

EstCovar

Controls whether parameter covariance data is generated or not.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

Default: true

Display

Specifies whether estimation progress should be displayed.
Display requires one of the following strings:

- 'on' - Information on model structure and estimation results are displayed in a progress viewer window
- 'off' - No progress or results information is displayed

Default: 'off'

InputOffset

Removes offset from time domain input data during estimation.

Specify as a column vector of length $N u$, where $N u$ is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a $N u$-by- $N e$ matrix. $N u$ is the number of inputs, and $N e$ is the number of experiments.
Each entry specified by Input0ffset is subtracted from the corresponding input data.

Default: []

OutputOffset

Removes offset from time domain output data during estimation.
Specify as a column vector of length $N y$, where $N y$ is the number of outputs.

Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a Ny -by- Ne matrix. Ny is the number of outputs, and $N e$ is the number of experiments. Each entry specified by OutputOffset is subtracted from the corresponding output data.

Default: []

OutputWeight

Specifies criterion used during minimization.
OutputWeight can have the following values:

- 'noise' - Minimize $\operatorname{det}\left(E^{\prime *} E\right)$, where E represents the prediction error. This is the optimal choice in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function.
- positive semi-definite symmetric matrix (W) - Minimize the trace of the weighted prediction error matrix trace $\left(E^{\prime} * E^{*} W\right.$), where E is the matrix of prediction errors, with one column for each output, and W is the positive semi-definite symmetric matrix of size equal to the number of outputs. Use W to specify the relative importance of outputs in multiple-input multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-input, multi-output models.

- [] - The software chooses between the 'noise' or using the identity matrix for W.

Default: []

SearchMethod

Search method used for iterative parameter estimation.
SearchMethod is a string that can take the following values:

- gn - The subspace Gauss-Newton direction.
- gna - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [1].
- Im - Uses the Levenberg-Marquardt method.
- lsqnonlin - Uses the trust region reflective algorithm. Requires Optimization Toolbox software.
- grad - The steepest descent gradient search method.
- auto - A choice among the above is made in the algorithm. The descent direction is calculated using gn, gna, lm and grad successively, in that order, at each iteration until a sufficient reduction in error is achieved.

Default: 'auto'

SearchOption

greyestOptions

SearchOption is an options set for the search algorithm with the fields:

SearchMestrodhOption

gn,gna,l 1 , • Tolerance - Minimum percentage difference (divided grad by 100) between the current value of the loss function and auto and its expected improvement after the next iteration. When the percentage of expected improvement is less than Tolerance, the iterations are stopped. The estimate of the expected loss-function improvement at the next iteration is made based on the Gauss-Newton vector computed for the current parameter value.
Default: 0.01

- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter $=0$ returns the result of the startup procedure.
Use sys.Report.Termination.Iterations to get the actual number of iterations during an estimation, where sys is an idtf model.

Default: 20

- Advanced - Search settings:
- GnPinvConst - Singular values of the Jacobian that are smaller than GnPinvConst*max (size(J)*norm(J)*eps are discarded when computing the search direction and SearchMethod is 'gn'.

GnPinvConst must be a positive real value.
Default: 10000

SearchMEthoodhOption

- InitGnaTol - Initial value of gamma when SearchMethod is 'gna'.

Default: . 0001

- LMStartValue - Starting value of search-direction length d in the Levenberg-Marquardt method. Applicable when SearchMethod is ' 1 m '.
Default: . 001
- LMStep - Size of the Levenberg-Marquardt step. The next value of the search-direction length d in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is 'lm'.

Default: 2

- MaxBisections - Maximum number of bisections used by the line search along the search direction.

Default: 25

- MaxFunEvals - Iterations are stopped if the number of calls to the model file exceeds this value.

MaxFunEvals must be a positive integer value.
Default: Inf

- MinParChange - Smallest parameter update allowed per iteration
MinParChange must be a positive, real value.
Default: 0
- RelImprovement - Iterations are stopped if the relative improvement of the criterion function is less than RelImprovement.

SearchMestrodhOption

Relimprovement must be a positive integer value.
Default: 0

- StepReduction - Suggested parameter update is reduced by the factor StepReduction after each try until either MaxBisections tries are completed or a lower value of the criterion function is obtained.

StepReduction must be a positive, real value that is greater than 1.
Default: 2
lsqnonlin TolFun - Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values.
The value of TolFun is the same as that of sys.SearchOption.Advanced.TolFun.

Default: 1e-5

- TolX - Termination tolerance on the estimated parameter values.
The value of TolX is the same as that of sys.SearchOption.Advanced.TolX.
Default: 1e-6
- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as TolFun etc..

The value of MaxIter is the same as that of sys.SearchOption.Advanced.MaxIter.
Default: 20

- Advanced - Options set for lsqnonlin.

SearchMEthoodhOption

For more information, see "Optimization Options".
Use optimset('lsqnonlin') to create an options set for lsqnonlin and then modify it to specify its various options.

Advanced

Advanced is a structure with the following fields:

- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. (See the section about choosing a robust norm in the chapter "Computing the Estimate" of [2].) ErrorThreshold = 0 disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, ErrorThreshold is set to zero.

Default: 0

- MaxSize - Specifies the maximum number of elements in a segment when input-output data is split into segments.

MaxSize must be a positive integer.
Default: 250000

- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s-Specifies the location of the right-most pole to test the stability of continuous-time models. A model is considered stable when its right-most pole is to the left of s.

Default: 0

- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

- AutoInitThreshold - Specifies when to automatically estimate the initial conditions.

When InitialCondition = 'Auto', the initial condition is estimated when the ratio of the prediction-error norm with a zero initial condition to the norm with an estimated initial condition exceeds AutoInitialState.

Default: 1.05

Output opt

Arguments Option set containing the specified options for greyest.

Examples
 Create Default Options Set for Linear Grey Box Estimation

Create a default options set for greyest.
opt = greyestOptions;

Specify Options for Linear Grey Box Estimation

Create an options set for greyest using the 'backcast' algorithm to initialize the state and set the Display to ' on '.

```
opt = greyestOptions('InitialState','backcast','Display','on');
```

Alternatively, use dot notation to set the values of opt.

```
opt = greyestOptions;
opt.InitialState = 'backcast';
opt.Display = 'on';
```


greyestOptions

References [1] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for Multivariable System Estimates" IFAC World Congress, Prague, 2005.
[2] Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999.
See Also greyest | idgrey | idnlgrey | pem | ssest

Purpose True for linear model with time delays

```
Syntax
B = hasdelay(sys)
B = hasdelay(sys,'elem')
```

Description $\quad B=$ hasdelay (sys) returns 1 (true) if the model sys has input delays, output delays, or I/O delays, and 0 (false) otherwise. If sys is a model array, then B is true if least one model in sys has delays.

B = hasdelay(sys,'elem') returns a logical array of the same size as the model array sys. The logical array indicates which models in sys have delays.

See Also
absorbDelay | totaldelay

Purpose
Multiple-output ARX polynomials, impulse response, or step response model

Note idarx will be removed in a future release. Use idpoly instead.

Syntax
 Description

$\mathrm{m}=\operatorname{idarx}(\mathrm{A}, \mathrm{B}, \mathrm{Ts})$
m = idarx(A,B,Ts,'Property1',Value1,..., ,'PropertyN', ValueN)
idarx creates an object containing parameters that describe the general multiple-input, multiple-output model structure of ARX type.

$$
\begin{aligned}
& y(t)+A_{1} y(t-1)+A_{2} y(t-2)+\ldots+A_{n a} y(t-n a)= \\
& B_{0} u(t)+B_{1} u(t-1)+\ldots+B_{n b} u(t-n b)+e(t)
\end{aligned}
$$

Here A_{k} and B_{k} are matrices of dimensions $n y$-by-ny and $n y$-by-nu, respectively. (ny is the number of outputs, that is, the dimension of the vector $y(t)$, and $n u$ is the number of inputs.)
The arguments A and B are 3-D arrays that contain the A matrices and the B matrices of the model in the following way.

A is an ny-by-ny-by-(na+1) array such that:
$A(:,:, k+1)=A k$
$A(:,:, 1)=\operatorname{eye}(n y)$
Similarly B is an ny-by-nu-by-(nb+1) array with:
$B(:,:, k+1)=B k$
Note that A always starts with the identity matrix, and that delays in the model are defined by setting the corresponding leading entries in B to zero. For a multivariate time series, take B = [].

The optional property NoiseVariance sets the covariance matrix of the driving noise source $e(t)$ in the model above. The default value is the identity matrix.

The argument Ts is the sampling interval. Note that continuous-time models ($\mathrm{Ts}=0$) are not supported.

The use of idarx is twofold. You can use it to create models that are simulated (using sim) or analyzed (using bode, pzmap, etc.). You can also use it to define initial value models that are further adjusted to data (using arx). The free parameters in the structure are consistent with the structure of A and B; that is, leading zeros in the rows of B are regarded as fixed delays, and trailing zeros in A and B are regarded as a definition of lower-order polynomials. These zeros are fixed, while all other parameters are free.

For a model with one output, ARX models can be described both as idarx and idpoly models. The internal representation is different, however.

idarx Properties

- A, B: The A and B polynomials as 3-D arrays, described above.
- dA, dB: The standard deviations of A and B. Same format as A and B. Cannot be set.
- na, nb, nk: The orders and delays of the model. na is an ny-by-ny matrix whose i-j entry is the order of the polynomial corresponding to the i - j entry of A. Similarly nb is an ny-by-nu matrix with the orders of B . nk is also an ny-by-nu matrix, whose i-j entry is the delay from input j to output i, that is, the number of leading zeros in the i - j entry of B.
- InitialState: This describes how the initial state (initial values in filtering, etc.) should be handled. For time-domain applications, this is typically handled by starting the filtering when all data are available. For frequency-domain data, you must estimate initial states. The possible values of InitialState are 'zero', 'estimate', and 'auto' (which makes a data-dependent choice between zero and estimate).

You can set and retrieve all properties either with the set and get commands or by subscripts. Autofill applies to all properties and values, and they are case insensitive.

For a complete list of property values, use get (m). To see possible value assignments, use set(m). See also idprops idarx.
idarx Definition of States

The states of an idarx model are defined as those corresponding to the model obtained by converting them to the state-space format using the idss command. For example, if you have an idarx model defined by $m 1=i d a r x(A, B, 1)$, then the initial states of this model correspond to those of $\mathrm{m} 2=$ idss $(\mathrm{m} 1)$. The concept of states is useful for functions such as sim, predict, compare and findstates.

Examples Simulate a second-order ARX model with one input and two outputs, and then estimate a model using the simulated data.

```
A = zeros(2,2,3);
B = zeros(2,1,3)
A(:,:,1) =eye(2);
A(:,:,2) = [-1.5 0.1;-0.2 1.5];
A(:,:,3) = [0.7 -0.3;0.1 0.7];
B(:,:,2) = [1;-1];
B(:,:,3) = [0.5;1.2];
m0 = idarx(A,B,1);
u = iddata([],idinput(300));
e = iddata([],randn(300,2));
y = sim(m0,[u e]);
m = arx([y u],[[2 2;2 2],[2;2],[1;1]]);
arx | arxdata | | idpoly
```

How To

- "Using Linear Model for Nonlinear ARX Estimation"

Purpose Time- or frequency-domain data
Syntax data $=$ iddata $(y,[], T s)$
data $=$ iddata($\mathrm{y}, \mathrm{u}, \mathrm{Ts}$)
data = iddata(y,u,Ts,'Frequency', W)
data = iddata(y,u,Ts,'P1',V1,...,'PN',VN)
data $=$ iddata(idfrd_object)
Description
data $=$ iddata($\mathrm{y},[\mathrm{l}, \mathrm{Ts}$) creates an iddata object for time-series data, containing a time-domain output signal y and an empty input signal [], respectively. Ts specifies the sampling interval of the experimental data.
data $=$ iddata($y, u, T s)$ creates an iddata object containing a time-domain output signal y and input signal u, respectively. Ts specifies the sampling interval of the experimental data.
data $=$ iddata(y, $u, T s,{ }^{\prime}$ Frequency $\left.{ }^{\prime}, W\right)$ creates an iddata object containing a frequency-domain output signal y and input signal u, respectively.Ts specifies the sampling interval of the experimental data. W specifies the iddata property 'frequency' as a vector of frequencies.
 object containing a time-domain or frequency-domain output signal y and input signal u, respectively. Ts specifies the sampling interval of the experimental data. 'P1', V1, ..., 'PN' , VN are property-value pairs, as described in "Properties" on page 2-295.
data $=$ iddata(idfrd_object) transforms an idfrd object to a frequency-domain iddata object.

y

Name of MATLAB variable that represents the output signal from a system. Sets the OutputData iddata property. For a single-output system, this is a column vector. For a multiple-output system with N_{y} output channels and N_{T} time samples, this is an N_{T}-by $-N_{y}$ matrix.

iddata

Note Output data must be in the same domain as input data.

Name of MATLAB variable that represents the input signal to a system. Sets the InputData iddata property. For a single-input system, this is a column vector. For a multiple-output system with N_{u} output channels and N_{T} time samples, this is an N_{T}-by- N_{u} matrix.

Note Input data must be in the same domain as output data.

Ts
Time interval between successive data samples in seconds. Default value is 1 . For continuous-time data in the frequency domain, set Ts to 0 .
'P1', V1,...,'PN', VN
Pairs of iddata property names and property values.
idfrd_object
Name of idfrd data object.

Constructor Requirements for Constructing an iddata Object

To construct an iddata object, you must have already imported data into the MATLAB workspace, as described in "Time-Domain Data Representation".

Constructing an iddata Object for Time-Domain Data

Use the following syntax to create a time-domain iddata object data:

```
data = iddata(y,u,Ts)
```

You can also specify additional properties, as follows:

```
data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)
```

For more information about accessing object properties, see "Properties" on page 2-295.

Here, Ts is the sampling time, or the time interval, between successive data samples:

- For uniformly sampled data, Ts is a scalar value equal to the sampling interval of your experiment.
- For nonuniformly sampled data, Ts is [], and the value of the SamplingInstants property is a column vector containing individual time values. For example:

```
data = iddata(y,u,[],'SamplingInstants',TimeVector)
```

where TimeVector represents a vector of time values.

Note You can modify the property SamplingInstants by setting it to a new vector with the length equal to the number of data samples.

The default time unit is seconds, but you can specify any unit string using the TimeUnit property. For more information about iddata time properties, see "Modifying Time and Frequency Vectors".

iddata

To represent time-series data, use the following syntax:

```
ts_data = iddata(y,[],Ts)
```

where y is the output data, [] indicates empty input data, and Ts is the sampling interval.

The following example shows how to create an iddata object using single-input/single-output (SISO) data from dryer2.mat. The input and output each contain 1000 samples with the sampling interval of 0.08 second.

```
load dryer2 % Load input u2 and output y2.
data = iddata(y2,u2,0.08) % Create iddata object.
```

MATLAB returns the following output:

```
Time domain data set with 1000 samples.
Sampling interval: 0.08
Outputs Unit (if specified)
    y1
Inputs Unit (if specified)
    u1
```

The default channel name ' y 1 ' is assigned to the first and only output channel. When y2 contains several channels, the channels are assigned default names 'y1','y2','y2',...,'yn'. Similarly, the default channel name 'u1' is assigned to the first and only input channel. For more information about naming channels, see "Naming, Adding, and Removing Data Channels".

Constructing an iddata Object for Frequency-Domain Data

Frequency-domain data is the Fourier transform of the input and output signals at specific frequency values. To represent frequency-domain data, use the following syntax to create the iddata object:

```
data = iddata(y,u,Ts,'Frequency',w)
```

'Frequency' is an iddata property that specifies the frequency values w , where w is the frequency column vector that defines the frequencies at which the Fourier transform values of y and u are computed. Ts is the time interval between successive data samples in seconds for the original time-domain data. w, y, and u have the same number of rows.

Note You must specify the frequency vector for frequency-domain data.

For more information about iddata time and frequency properties, see "Modifying Time and Frequency Vectors".

To specify a continuous-time system, set Ts to 0 .
You can specify additional properties when you create the iddata object, as follows:

```
data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)
```

For more information about accessing object properties, see "Properties" on page 2-295.

Properties

After creating the object, you can use get or dot notation to access the object property values.

Use set or dot notation to set a property of an existing object.
The following table describes iddata object properties and their values. These properties are specified as property-value arguments 'P1', V1, ..., 'PN', VN' in the iddata constructor, or you can set them using the set command or dot notation. In the list below, N denotes

iddata

the number of data samples in the input and output signals, ny is the number of output channels, nu is the number of input channels, and Ne is the number of experiments.

Tip Property names are not case sensitive. You do not need to type the entire property name. However, the portion you enter must by enough to uniquely identify the property.

Property Name	Description	Value
Domain	Specifies whether the data is in the time domain or frequency domain.	• 'Frequency' - Frequency-domain data. - 'Time' (Default) - Time-domain data.
ExperimentName	Name of each data set contained in the iddata object.	For Ne experiments, a 1-by-Ne cell array of strings. Each cell contains the name of the corresponding experiment. Default names are \{'Exp1', 'Exp2' , . .\}.
Frequency	(Frequency-domain data only) Frequency values for defining the Fourier Transforms of the signals.	For a single experiment, this is an N-by-1 vector. For Ne experiments, a 1-by-Ne cell array and each cell contains the frequencies of the corresponding experiment.
InputData	Name of MATLAB variable that stores the input signal to a system.	For nu input channels and N data samples, this is an N-by-nu matrix.

Property Name	Description	Value
InputName	Specifies the names of individual input channels.	Cell array of length nu-by-1 contains the name string of each input channel. Default names are \{'u1';'u2';...\}.
InputUnit	Specifies the units of each input channel.	Cell array of length nu-by-1. Each cell contains a string that specifies the units of each input channel.
InterSample	Specifies the behavior of the input signals between samples for transformations between discrete-time and continuous-time.	For a single experiment: - zoh- (Default) Zero-order hold maintains a piecewise-contant input signal between samples. - foh- First-order hold maintains a piecewise-linear input signal between samples. - bl- Band-limited behavior specifies that the continuous-time input signal has zero power above the Nyquist frequency. For Ne experiments, InterSample is an nu-by-Ne cell array. Each cell contains one of these values corresponding to each experiment.

$\left.\begin{array}{l|l|l}\hline \text { Property Name } & \text { Description } & \text { Value } \\ \hline \text { Name } & \text { Name of the data set. } & \text { Text string. } \\ \hline \text { Notes } & \begin{array}{l}\text { Comments about the data } \\ \text { set. }\end{array} & \text { Text string. } \\ \hline \text { OutputData } & \begin{array}{l}\text { Name of MATLAB variable } \\ \text { that stores the output signal } \\ \text { from a system. }\end{array} & \begin{array}{l}\text { For ny output channels and } \\ \text { N samples, this is an N-by-ny } \\ \text { matrix. }\end{array} \\ \hline \text { OutputName } & \begin{array}{l}\text { For a multiple-output } \\ \text { system, specifies the } \\ \text { names of individual output } \\ \text { channels. }\end{array} & \begin{array}{l}\text { Cell array of length } \\ \text { ny-by-1 contains the name } \\ \text { string of each output } \\ \text { channel. Default names are } \\ \text { \{'y1'; 'y2' ; . . \}. }\end{array} \\ \hline \text { OutputUnit } & \begin{array}{l}\text { Specifies the units of each } \\ \text { output channel. }\end{array} & \begin{array}{l}\text { For ny output channels, a } \\ \text { cell array of length ny-by-1. } \\ \text { Each cell contains a string } \\ \text { that specifies the units of } \\ \text { the corresponding output } \\ \text { channel. }\end{array} \\ \hline \text { Period } & \text { Period of the input signal. } & \begin{array}{l}\text { (Default) For a nonperiodic } \\ \text { signal, set to inf. For a } \\ \text { multiple-input signal, this }\end{array} \\ \text { is an nu-by-1 vector and } \\ \text { the kth entry contains the } \\ \text { period of the kth input. } \\ \text { For Ne experiments, this } \\ \text { is a 1-by-Ne cell array and } \\ \text { each cell contains a scalar } \\ \text { or vector of periods for the } \\ \text { corresponding experiment. }\end{array}\right]$
\(\left.$$
\begin{array}{l|l|l}\hline \text { Property Name } & \text { Description } & \text { Value } \\
\hline \text { SamplingInstants } & \begin{array}{l}\text { (Time-domain data only) } \\
\text { The time values in the time } \\
\text { vector calculated from the } \\
\text { properties Tstart and Ts. }\end{array} & \begin{array}{l}\text { For a single experiment, } \\
\text { this is an N-by-1 vector. } \\
\text { For Ne experiments, this } \\
\text { is a 1-by-Ne cell array } \\
\text { and each cell contains the } \\
\text { sampling instants of the } \\
\text { corresponding experiment. }\end{array} \\
\hline \text { TimeUnit } & \begin{array}{l}\text { (Time-domain data only) } \\
\text { Time unit. }\end{array} & \begin{array}{l}\text { A string that specifies the } \\
\text { time unit for the time } \\
\text { vector. Specify TimeUnit } \\
\text { as one of the following: } \\
\text { 'nanoseconds ', 'microseconds ', 'milli } \\
\text { (default), }\end{array}
$$

\hline Ts ' hours ',\end{array}\right\}\)| 'minutes ', |
| :--- |
| 'days ', 'weeks ', 'months ' |
| or 'years'. |

iddata

$\left.\begin{array}{l|l|l}\hline \text { Property Name } & \text { Description } & \text { Value } \\ \hline & & \begin{array}{l}\text { and each cell contains the } \\ \text { sampling interval of the } \\ \text { corresponding experiment. }\end{array} \\ \hline \text { Tstart } & \begin{array}{l}\text { (Time-domain data only) } \\ \text { Specifies the start time of } \\ \text { the time vector. }\end{array} & \begin{array}{l}\text { For a single experiment, } \\ \text { this is a scalar. For Ne } \\ \text { experiments, Tstart is a } \\ \text { 1-by-Ne cell array and each } \\ \text { cell contains the starting } \\ \text { time of the corresponding } \\ \text { experiment. }\end{array} \\ \hline \text { FrequencyUnit } & \text { only) Frequency unit. } & \begin{array}{l}\text { Specifies the units of the } \\ \text { frequency vector (see } \\ \text { frequency). Specify }\end{array} \\ \text { (Frequency-domain data } \\ \text { as one of the following: } \\ \text { 'rad/TimeUnit', } \\ \text { 'cycles/TimeUnit', }\end{array}\right\}$

To view the properties, use the get command. For example:

```
load dryer2 % Load input u2 and output y2
```

```
data = iddata(y2,u2,0.08); % Create iddata object
get(data) % Get property values of data
```

You can specify properties when you create an iddata object using the constructor syntax:

```
data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)
```

To change property values for an existing iddata object, use the set command or dot notation. For example, to change the sampling interval to 0.05 , type the following at the prompt:
set(data, 'Ts', 0.05)
or equivalently:
data.ts $=0.05$
Property names are not case sensitive. You do not need to type the entire property name if the first few letters uniquely identify the property.

Tip You can use data.y as an alternative to data. OutputData to access the output values, or use data.u as an alternative to data. InputData to access the input values.

An iddata object containing frequency-domain data includes frequency-specific properties, such as Frequency for the frequency vector and Units for frequency units (instead of Tstart and SamplingIntervals). For example:
\% Load input u2 and output y2 load dryer2;
\% Create iddata object data = iddata(y2,u2,0.08);
\% Take the Fourier transform of the data

iddata

```
% transforming it to frequency domain
        data = fft(data)
% Get property values of data
    get(data)
```

See Also
advice | detrend | fcat | getexp | idfilt | idfrd | plot | resample | size
Purpose Open System Identification Tool GUI
Syntax
ident
ident(session, path)
Description
Input
Arguments
Examples Open a saved session iddata1:

ident('iddata1.sid')

Open a saved session mydata in a specified folder:

```
ident('mydata.sid','\matlab\data\cdplayer\')
```

See Also

ident

How To . "Working with the System Identification Tool GUI"

Purpose Set System Identification Toolbox preferences

Syntax identpref

Description identpref opens a Graphical User Interface (GUI) which allows you to change the System Identification Toolbox preferences. Preferences set in this GUI affect future plots only (existing plots are not altered).

Your preferences are stored to disk (in a system-dependent location) and will be automatically reloaded in future MATLAB sessions using the System Identification Toolbox software.

idfilt

Purpose

Syntax
Zf = idfilt(Z,filter)
Zf = idfilt(Z,filter, causality)
Zf = idfilt(Z,filter,'FilterOrder',NF)
Filter data using user-defined passbands, general filters, or Butterworth filters

Z is the data, defined as an iddata object. Zf contains the filtered data as an iddata object. The filter can be defined in three ways:

- As an explicit system that defines the filter,

```
filter = idm or filter = {num,den} or filter = {A,B,C,D}
```

idm can be any SISO idmodel or LTI model object. Alternatively the filter can be defined as a cell array $\{A, B, C, D\}$ of SISO state-space matrices or as a cell array \{num, den\} of numerator/denominator filter coefficients.

- As a vector or matrix that defines one or several passbands,

```
filter=[[wp1l,wp1h];[ wp2l,wp2h]; ....;[wpnl,wpnh]]
```

The matrix is n -by-2, where each row defines a passband in rad/s. A filter is constructed that gives the union of these passbands. For time-domain data, it is computed as cascaded Butterworth filters or order NF. The default value of NF is 5 .

For example, to define a stopband between ws1 and ws2, use
filter = [0 ws1; ws2,Nyqf]
where Nyqf is the Nyquist frequency.

- For frequency-domain data, only the frequency response of the filter can be specified:

```
filter = Wf
```

Here Wf is a vector of possibly complex values that define the filter's frequency response, so that the inputs and outputs at frequency Z. Frequency (kf) are multiplied by Wf (kf). Wf is a column vector of length $=$ number of frequencies in Z. If the data object has several experiments, Wf is a cell array of length $=\#$ of experiments in Z.
For time-domain data, the filtering is carried out in the time domain as causal filtering as default. This corresponds to a last argument causality = 'causal'. With causality = 'noncausal', a noncausal, zero-phase filter is used for the filtering (corresponding to filtfilt in the Signal Processing Toolbox product).

For frequency-domain data, the signals are multiplied by the frequency response of the filter. With the filters defined as passband, this gives ideal, zero-phase filtering ("brickwall filters"). Frequencies that have been assigned zero weight by the filter (outside the passband, or via the frequency response) are removed from the iddata object Zf .

It is common practice in identification to select a frequency band where the fit between model and data is concentrated. Often this corresponds to bandpass filtering with a passband over the interesting breakpoints in a Bode diagram. For identification where a disturbance model is also estimated, it is better to achieve the desired estimation result by using the property 'Focus' than just to prefilter the data. The proper values for 'Focus' are the same as the argument filter in idfilt.

Algorithms
References Ljung (1999), Chapter 14.
See Also iddata | resample

Purpose Frequency-response data or model
Syntax $\quad h=i d f r d($ Response, Freq, Ts $)$
h = idfrd(Response,Freq,Ts,...
'CovarianceData', Covariance, 'SpectrumData', Spec, ... 'NoiseCovariance', Speccov)
h = idfrd(Response,Freq,Ts,...
'P1',V1,'PN',VN)
$\mathrm{h}=\mathrm{idfrd}(\mathrm{mod})$
h = idfrd(mod,Freqs)

Description

h = idfrd(Response,Freq,Ts) constructs an idfrd object that stores the frequency response Response of a linear system at frequency values Freq. Ts is the sampling time interval. For a continuous-time system, set Ts=0.

```
h = idfrd(Response,Freq,Ts,...
'CovarianceData', Covariance, 'SpectrumData',Spec,...
``` ' NoiseCovariance' , Speccov) also stores the uncertainty of the response Covariance, the spectrum of the additive disturbance (noise) Spec, and the covariance of the noise Speccov.
h = idfrd(Response,Freq,Ts,...
'P1', V1, 'PN', VN) constructs an idfrd object that stores a frequency-response model with properties specified by the idfrd model property-value pairs.
h = idfrd(mod) converts a System Identification Toolbox or Control System Toolbox \({ }^{\text {TM }}\) linear model to frequency-response data at default frequencies, including the output noise spectra and their covariance.
h = idfrd(mod, Freqs) converts a System Identification Toolbox or Control System Toolbox linear model to frequency-response data at frequencies Freqs.
For a model
\[
y(t)=G(q) u(t)+H(q) e(t)
\]
stores the transfer function estimate \(G\left(e^{i \omega}\right)\), as well as the spectrum of the additive noise \(\left(\Phi_{v}\right)\) at the output
\[
\Phi_{v}(\omega)=\lambda T\left|H\left(e^{i \omega T}\right)\right|^{2}
\]
where \(\lambda\) is the estimated variance of \(e(t)\), and \(T\) is the sampling interval.

\section*{Creating idfrd from Given Responses}

Response is a 3-D array of dimension ny-by-nu-by-Nf, with ny being the number of outputs, nu the number of inputs, and Nf the number of frequencies (that is, the length of Freqs). Response (ky, ku, kf) is thus the complex-valued frequency response from input ku to output ky at frequency \(\omega=\) Freqs (kf). When defining the response of a SISO system, Response can be given as a vector.
Freqs is a column vector of length Nf containing the frequencies of the response.

Ts is the sampling interval. Ts = 0 means a continuous-time model.
Covariance is a 5-D array containing the covariance of the frequency response. It has dimension ny-by-nu-by-Nf-by-2-by-2. The structure is such that Covariance (\(\mathrm{ky}, \mathrm{ku}, \mathrm{kf},:,:\)) is the 2 -by- 2 covariance matrix of the response Response (ky, ku, kf). The 1-1 element is the variance of the real part, the 2-2 element is the variance of the imaginary part, and the 1-2 and 2-1 elements are the covariance between the real and imaginary parts. squeeze(Covariance(ky, ku, kf,:,:)) thus gives the covariance matrix of the corresponding response.

The format for spectrum information is as follows:
spec is a 3-D array of dimension ny-by-ny-by-Nf, such that \(\operatorname{spec}(\mathrm{ky} 1, \mathrm{ky} 2, \mathrm{kf})\) is the cross spectrum between the noise at output ky1 and the noise at output ky2, at frequency Freqs (kf). When ky1 = ky2 the (power) spectrum of the noise at output ky1 is thus obtained. For a single-output model, spec can be given as a vector.
speccov is a 3-D array of dimension ny-by-ny-by-Nf, such that speccov(ky1,ky1,kf) is the variance of the corresponding power spectrum.
If only SpectrumData is to be packaged in the idfrd object, set Response = [].

\section*{Creating idfrd from a Given Model}
idfrd can also be computed from a given linear identified model, mod.
If the frequencies Freqs are not specified, a default choice is made based on the dynamics of the model mod.

The estimated covariances are computed using the Gauss approximation formula from the uncertainty information in mod. For grey-box models (idgrey), numerical differentiation is applied. The step sizes for the numerical derivatives are determined by nuderst.
Intersample behavior: For discrete-time frequency response data (\(T s>0\)), you can also specify the intersample behavior of the input signal that was in effect when the samples were collected originally from an experiment. To specify the intersample behavior, use:
```

mf = idfrd(Response,Freq,Ts,'InterSample','zoh');

```

For multi-input systems, specify the intersample behavior using an \(N u\)-by- 1 cell array, where \(N u\) is the number of inputs. The InterSample property is irrelevant for continuous-time data.
Frequency responses for submodels can be obtained by the standard subreferencing, \(h=i d f r d(m(2,3)) . h=i d f r d(m(:,[]))\) gives an \(h\) that just contains SpectrumData.

The idfrd models can be graphed with bode, spectrum, and nyquist, which all accept mixtures of parametric models, such as idtf and idfrd models as arguments. Note that spa, spafdr, and etfe return their estimation results as idfrd objects.

Constructor
The idfrd represents complex frequency-response data. Before you can create an idfrd object, you must import your data as described in "Frequency-Response Data Representation".

Note The idfrd object can only encapsulate one frequency-response data set. It does not support the iddata equivalent of multiexperiment data.

Use the following syntax to create the data object fr_data:
```

fr_data = idfrd(response,f,Ts)

```

Suppose that ny is the number of output channels, nu is the number of input channels, and \(n f\) is a vector of frequency values. response is an ny-by-nu-by-nf 3-D array. f is the frequency vector that contains the frequencies of the response.Ts is the sampling time, which is used when measuring or computing the frequency response. If you are working with a continuous-time system, set Ts to 0 .
response(ky,ku,kf), where ky, ku, and kf reference the kth output, input, and frequency value, respectively, is interpreted as the complex-valued frequency response from input ku to output ky at frequency \(f(k f)\).
You can specify object properties when you create the idfrd object using the constructor syntax:
```

fr_data = idfrd(response,f,Ts,
'Property1',Value1,...,'PropertyN',ValueN)

```

\section*{Properties}

After creating the object, you can use get or dot notation to access the object property values.

Use set or dot notation to set a property of an existing object.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline ResponseData & \begin{tabular}{l}
3-D array of the complex-valued \\
frequency response as described \\
above. For SISO systems use \\
Response (1,1, :) to obtain a \\
vector of the response data.
\end{tabular} \\
\hline Frequency & \begin{tabular}{l}
Column vector containing \\
the frequencies at which the \\
responses are defined.
\end{tabular} \\
\hline CovarianceData & \begin{tabular}{l}
5-D array of the covariance \\
matrices of the response data as \\
described above.
\end{tabular} \\
\hline SpectrumData & \begin{tabular}{l}
3-D array containing power \\
spectra and cross spectra of the \\
output disturbances (noise) of the \\
system.
\end{tabular} \\
\hline NoiseCovariance & \begin{tabular}{l}
3-D array containing the \\
variances of the power spectra, as \\
explained above.
\end{tabular} \\
\hline FrequencyUnit & \begin{tabular}{l}
Unit of the frequency \\
vector. Specify as one of the \\
following: 'rad/TimeUnit', \\
'cycles/TimeUnit ', \\
'rad/s', 'Hz', 'kHz', \\
'MHz', 'GHz', or 'rpm'. The \\
units 'rad/TimeUnit' and \\
'cycles/TimeUnit ' are relative \\
to the time units specified \\
in TimeUnit. Changing \\
this property changes the \\
overall system behavior. \\
Use chgFreqUnit to convert \\
between frequency units without \\
modifying system behavior.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Ts & \begin{tabular}{l}
Scalar denoting the sampling \\
interval of the model whose \\
frequency response is \\
stored. 'Ts ' \(=0\) means a \\
continuous-time model.
\end{tabular} \\
\hline Name & An optional name for the object. \\
\hline InputName & \begin{tabular}{l}
String or cell array containing the \\
names of the input channels. It \\
has as many entries as there are \\
input channels.
\end{tabular} \\
\hline OutputName & \begin{tabular}{l}
Correspondingly for the output \\
channels.
\end{tabular} \\
\hline InputUnit & \begin{tabular}{l}
Units in which the input channels \\
are measured. It has the same \\
format as ' InputName '.
\end{tabular} \\
\hline OutputUnit & \begin{tabular}{l}
Correspondingly for the output \\
channels.
\end{tabular} \\
\hline InputDelay & \begin{tabular}{l}
Row vector of length equal to \\
the number of input channels.
\end{tabular} \\
Contains the delays from the \\
input channels. These should \\
thus be appended as phase lags \\
when the response is calculated. \\
This is done automatically by \\
freqresp, bode, and nyquist.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline InterSample & \begin{tabular}{l}
Intersample behavior of inputs. Specifies the behavior of the input signals between samples for transformations between discrete-time and continuous-time. This property is meaningful for discrete-time idfrd models only.Specify InterSample as one of the following: \\
- 'zoh' - The input signal used for construction/estimation of the frequency response data was subject to a zero-order-hold filter. \\
- 'foh' - The input signal was subject to a first-order-hold filter. \\
- 'bl' - The input signal has no power above the Nyquist frequency (pi/sys.Ts rad/s). This is typically the case when the input signal is measured experimentally using an anti-aliasing filter and a sampler. Ideally, treat the data as continuous-time. That is, if the signals used for the estimation of the frequency response were subject to anti-aliasing filters, set sys.Ts to zero.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & \multicolumn{1}{|l}{ Description } \\
\hline \multicolumn{1}{l}{\(\begin{array}{l}\text { For multi-input data, specify } \\
\text { InterSample as an } N u \text {-by-1 cell } \\
\text { array, where } N u \text { is the number of } \\
\text { inputs. }\end{array}\)} \\
\hline Notes & \(\begin{array}{l}\text { An arbitrary field to store extra } \\
\text { information and notes about the } \\
\text { object. }\end{array}\) \\
\hline UserData & \(\begin{array}{l}\text { An arbitrary field for any possible } \\
\text { use. }\end{array}\) \\
\hline Report & \(\begin{array}{l}\text { Information about the estimation } \\
\text { process that is behind the } \\
\text { frequency data. It contains the }\end{array}\) \\
following fields: \\
- Status: Specifies whether the \\
model was created directly, \\
transformed or estimated.
\end{tabular}\(\}\)

To view the properties of the idfrd object, you can use the get command. The following example shows how to create an idfrd object
that contains 100 frequency-response values with a sampling time interval of 0.08 s and get its properties:
```

% Create the idfrd data object
fr_data = idfrd(response,f,0.08)
% Get property values of data
get(fr_data)

```
response and f are variables in the MATLAB Workspace browser, representing the frequency-response data and frequency values, respectively.

To change property values for an existing idfrd object, use the set command or dot notation. For example, to change the name of the idfrd object, type the following command sequence at the prompt:
```

% Set the name of the f_data object
set(fr_data,'name','DC_Converter')
% Get fr_data properties and values
get(fr_data)

```

Property names are not case sensitive. You do not need to type the entire property name if the first few letters uniquely identify the property.
If you import fr_data into the System Identification Tool GUI, this data has the name DC_Converter in the GUI, and not the variable name fr_data.

Subreferencing The different channels of the idfrd are retrieved by subreferencing.

\section*{h(outputs, inputs)}
\(\mathrm{h}(2,3)\) thus contains the response data from input channel 3 to output channel 2, and, if applicable, the output spectrum data for output channel 2 . The channels can also be referred to by their names, as in h('power',\{'voltage', 'speed'\}).

creates an idfrd model h , with ResponseData containing all the input channels in h1, ..., hN. The output channels of hk must be the same, as well as the frequency vectors. SpectrumData is ignored.

\section*{Vertical Concatenation \\ Adding output channels, \\ h = [h1;h2;... ;hN]}
creates an idfrd model \(h\) with ResponseData containing all the output channels in h1, h2,...,hN. The input channels of hk must all be the same, as well as the frequency vectors. SpectrumData is also appended for the new outputs. The cross spectrum between output channels of \(\mathrm{h} 1, \mathrm{~h} 2, \ldots, \mathrm{hN}\) is then set to zero.

\section*{Converting \\ You can convert an idfrd object to a frequency-domain iddata object by} to iddata

Data \(=\) iddata(Idfrdmodel)
See iddata.

\section*{Examples Compare the results from spectral analysis and an ARMAX model.}
```

load iddata1 z1;
m = armax(z1,[2 2 2 1]);
g = spa(z1)
g = spafdr(z1,[],{1e-3,10})
bode(g,m)

```

See Also bode | etfe | freqresp | nyquist | spa | spafdr | tfest

Purpose
Linear ODE (grey-box model) with identifiable parameters
Syntax
```

sys = idgrey(odefun,parameters,fcn_type)
sys = idgrey(odefun,parameters,fcn_type,optional_args)
sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts)
sys =
idgrey(odefun, parameters,fcn_type,optional_args,Ts,Name,
Value)

```

\section*{Description}

\section*{Object Description}
sys = idgrey(odefun, parameters,fcn_type) creates a linear grey-box model with identifiable parameters, sys. odefun specifies the user-defined function that relates the model parameters, parameters, to its state-space representation.
sys = idgrey(odefun, parameters,fcn_type,optional_args) creates a linear grey-box model with identifiable parameters using the optional arguments required by odefun.
sys = idgrey(odefun, parameters,fcn_type,optional_args,Ts) creates a linear grey-box model with identifiable parameters with the specified sample time, Ts.
sys =
idgrey (odefun, parameters,fcn_type,optional_args,Ts, Name, Value) creates a linear grey-box model with identifiable parameters with additional options specified by one or more Name, Value pair arguments.

An idgrey model represents a system as a continuous-time or discrete-time state-space model with identifiable (estimable) coefficients.

A state-space model of a system with input vector, \(u\), output vector, \(y\), and disturbance, \(e\), takes the following form in continuous time:
\[
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t)+K e(t) \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
\]

In discrete time, the state-space model takes the form:
\[
\begin{aligned}
& x[k+1]=A x[k]+B u[k]+K e[k] \\
& y[k]=C x[k]+D u[k]+e[k]
\end{aligned}
\]

For idgrey models, the state-space matrices \(A, B, C\), and \(D\) are expressed as a function of user-defined parameters using a MATLAB function. You access estimated parameters using sys.Structures.Parameters, where sys is an idgrey model.

Use an idgrey model when you know the system of equations governing the system dynamics explicitly, in the form of ordinary differential or difference equations. You can also use idgrey models to prescribe complex relationships and constraints among the parameters that are not achievable by using structured state-space models (idss).

You can create an idgrey model using the idgrey command. You must write a MATLAB function that returns the \(A, B, C\), and \(D\) matrices for given values of the estimable parameters and sampling time. The MATLAB function can also return the \(K\) matrix and accept optional input arguments. The matrices returned may represent a continuous-time or discrete-time model, as indicated by the sampling time.

Use the estimating functions pem or greyest to obtain estimated values for the unknown parameters of an idgrey model.

You can convert an idgrey model into other dynamic systems, such as idpoly, idss, tf, ss etc. You cannot convert a dynamic system into an idgrey model.

\section*{Examples}

\section*{Create Grey-Box Model with Identifiable Parameters}

Create an idgrey model to represent a DC motor. Specify the motor time-constant as an estimable parameter, and that the ODE function can return continuous- or discrete-time state-space matrices.

Create the idgrey model.
```

odefun = 'motor';

```
```

parameters = 1;
fcn_type = 'cd';
optional_args = 0.25;
Ts = 0;
sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts);

```
sys is an idgrey model that is configured to use the shipped file motor.m to return the \(A, B, C, D\), and \(K\) matrices. motor.m also returns the initial conditions, \(X 0\). The motor constant, \(\tau\), is defined in motor.m as an estimable parameter, and parameters \(=1\) specifies its initial value as 1 .

You can use pem or greyest to refine the estimate for \(\tau\).

\section*{Configure Identifiable Parameters of Grey-Box Model}

Specify minimum constraints for the estimable parameters of an idgrey model.

Create an idgrey model.
```

odefun = 'ModalFormODE';

```
sigma1=0.1;
sigma2=0.1;
w1=1;
w2=1;
B = [10 00001 ';
C = [11 1 1 1 1];
parameters = \{'sigma1',sigma1;...
 'w1',w1;...
 'sigma2', sigma2;...
 'w2', w2;...
 'B', B; ...
 'C', C \(\}\);
fcn_type = 'c';
sys = idgrey(odefun,parameters,fcn_type);
sys is an idgrey model that is configured to use the function ModalFormODE to return the \(A, B, C\), and \(D\) matrices. The code for the function ModalFormODE is:
```

function [A,B,C,D] = ModalFormODE(sigma1,w1,sigma2,w2,Bpar,Cpar,varar
%MODALFORMODE Function that parameterizes a 4th order state-space mode
%modal form.
%
% Parameters:
sigma1: The absolute value of the real part of the first
complex-conjugate pair of poles. Positive scalar.
w1: The absolute value of the imaginary part of the first
complex-conjugate pair of poles. Positive scalar.
sigma2: Similar to sigma1. Positive scalar.
w2: Similar to w1. Positive scalar.
BPar: A 4-by-1 real vector. No constraints on coefficients.
CPar: A 1-by-4 real vector. No constraints on coefficients.
%
% This file parameterizes the state-space model in continuous-time on
A1 = [-sigma1, w1; -w1, -sigma1];
A2 = [-sigma2, w2; -w2, -sigma2];
A = blkdiag(A1,A2);
B = Bpar;
C = Cpar;
D = 0;
end

```

The function defines sigma1, w1, sigma2, w2, Bpar, and Cpar as estimable parameters.

Specify minimum constraints for some of the estimable parameters.
```

sys.Structure.Parameters(1).Minimum = 0;
sys.Structure.Parameters(2).Minimum = 0;
sys.Structure.Parameters(3).Minimum = 0;
sys.Structure.Parameters(4).Minimum = 0;

```

The first four parameters in sys.Structure. Parameters are sigma1, w 1 , sigma2, and w2. This code specifies 0 as the minimum value for these parameters.

You can use pem or greyest to estimate the estimable parameters of sys. When you do so, the software enforces the constraints specified in sys.Structure in estimating the parameters.

\section*{Specify Additional Attributes of Grey-Box Model}

Create a grey-box model with identifiable parameters. Name the input and output channels of the model, and specify seconds for the model time units.

You can use Name, Value pair arguments to specify additional model properties on model creation.
```

odefun = 'motor';
parameters = 1;
fcn_type = 'cd';
optional_args = 0.25;
Ts = 0;
sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts,'InputName','Vol
'OutputName',{'Angular Position','Angular Velocity'});

```

To change or specify more attributes of an existing model, you can use dot notation. For example:
```

sys.TimeUnit = 'seconds';

```

\section*{Array of Grey-Box Models}

Create an array of grey-box models.
Use the stack command to create an array of linear grey-box models.
```

odefun1 = @motor;
parameters1 = [1 2];
fcn_type = 'cd';
optional_args1 = 1;
sys1 = idgrey(odefun1,parameters1,fcn_type,optional_args1);

```
```

odefun2 = 'motor';
parameters2 = {[1 2]};
optional_args2 = 0.5;
sys2 = idgrey(odefun2,parameters2,fcn_type,optional_args2);
sysarr = stack(1,sys1,sys2);

```
stack creates a 2-by-1 array of idgrey models, sysarr.

\section*{Input Arguments}

\section*{odefun}

MATLAB function that relates the model parameters to its state-space representation.
odefun specifies, as a string, the name of a MATLAB function (.m, .p, a function handle or .mex* file). This function establishes the relationship between the model parameters, parameters, and its state-space representation. The function may optionally relate the model parameters to the disturbance matrix and initial states.
If the function is not on the MATLAB path, then specify the full file name, including the path.
The syntax for odefun must be as follows:
```

[A,B,C,D] = odefun(par1,par2,...,parN,Ts,optional_arg1,optional_arg2,

```

Here, the function outputs describe the model in the following linear state-space innovations form:
\[
\begin{aligned}
x n(t) & =A x(t)+B u(t)+K e(t) ; x(0)=x_{0} \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
\]

In discrete time \(x n(t)=x(t+T s)\) and in continuous time, \(x n(t)=\dot{x}(t)\). par1, par2, ..., parN are model parameters. Each entry may be a scalar, vector or matrix.

Ts is the sample time.
optional_arg1,optional_arg2,... are the optional inputs that odefun may require. The values of the optional input arguments are unchanged through the estimation process. However, the values of par1, par2, . . , parN are updated during estimation to fit the data. Use optional input arguments to vary the constants and coefficients used by your model without editing odefun.

The disturbance matrix, \(K\), and the initial state values, \(x 0\), are not parametrized and are determined separately, using the DisturbanceModel and InitialState estimation options, respectively. For more information regarding the estimation options, see greyestOptions.

A good choice for achieving the best simulation results is to set the DisturbanceModel option to 'none ', which fixes \(K\) to zero.
(Optional) Parameterizing Disturbance: odefun can also return the disturbance component, \(K\), using the syntax:
```

[A,B,C,D,K] = odefun(par1,par2,...,parN,Ts,optional_arg1,optional_arg2,..

```

If odefun returns a value for \(K\) that contains NaN values, then the estimating function assumes that \(K\) is not parameterized. In this case, the value of the DisturbanceModel estimation option determines how \(K\) is handled.
(Optional) Parameterizing Initial State Values: To make the model initial states, \(X 0\), dependent on the model parameters, use the following syntax for odefun:
```

[A,B,C,D,K,X0] = odefun(par1,par2,...,parN,Ts,optional_arg1,optional_arg2

```

If odefun returns a value for \(X 0\) that contains \(N a N\) values, then the estimating function assumes that \(X 0\) is not parameterized. In this case, \(X 0\) may be fixed to zero or estimated separately, using the InitialStates estimation option.

\section*{parameters}

Initial values of the parameters required by odefun.

Specify parameters as a cell array containing the parameter initial values. If your model requires only one parameter, which may itself be a vector or a matrix, you may specify parameters as a matrix.

You may also specify parameter names using an \(N\)-by- 2 cell array, where \(N\) is the number of parameters. The first column specifies the names, and the second column specifies the values of the parameters.

For example:
```

parameters = {'mass',par1;'stiffness',par2;'damping',par3}

```

\section*{fcn_type}

Indicates whether the model is parameterized in continuous-time, discrete-time, or both.
fcn_type takes one of the following strings:
- 'c' - odefun returns matrices corresponding to a continuous-time system, regardless of the value of Ts.
- 'd' - odefun returns matrices corresponding to a discrete-time system, whose values may or may not depend on the value of Ts.
- 'cd' - odefun returns matrices corresponding to a continuous-time system, if Ts=0.

Else, if Ts>0, odefun returns matrices corresponding to a discrete-time system. Select this option to sample your model using the values returned by odefun, rather than using the software's internal sample time conversion routines.

\section*{optional_args}

Optional input arguments required by odefun.
Specify optional_args as a cell array.
If odefun does not require optional input arguments, specify optional_args as \{\}.

\section*{Ts}

Model sampling time.
If Ts is unspecified, it is assumed to be:
- - 1 - If fcn_type is ' \(d\) ' or 'cd'.

Ts = - 1 indicates a discrete-time model with unknown sampling time.
- 0 - If fcn_type is 'c'.

Ts = 0 indicates a continuous-time model.

\section*{Name,Value}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Use Name, Value arguments to specify additional properties of idgrey models during model creation. For example, idgrey (odefun, parameters,fcn_type, 'InputName', 'Voltage') creates an idgrey model with the InputName property set to Voltage.

\section*{Properties idgrey object properties include:}

\section*{\(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\)}

Values of state-space matrices.
- a - State matrix \(A\), an \(N x\)-by- \(N x\) matrix, as returned by the ODE function associated with the idgrey model. \(N x\) is the number of states.
- b - Input-to-state matrix \(B\), an \(N x\)-by- \(N u\) matrix, as returned by the ODE function associated with the idgrey model. \(N u\) is the number of inputs and \(N x\) is the number of states.
- c - State-to-output matrix \(C\), an \(N y\)-by- \(N x\) matrix, as returned by the ODE function associated with the idgrey model. \(N x\) is the number of states and \(N y\) is the number of outputs.
- d-Feedthrough matrix \(D\), an \(N y\)-by- \(N u\) matrix, as returned by the ODE function associated with the idgrey model. \(N y\) is the number of outputs and \(N u\) is the number of inputs.

As a,b,c,d are returned by the ODE function associated with the idgrey model, you can only read these matrices; you cannot set their values.

\section*{k}

Value of state disturbance matrix, \(K\)
k is \(N x\)-by- \(N y\) matrix, where \(N x\) is the number of states and \(N y\) is the number of outputs.
- If odefun parameterizes the \(K\) matrix, then k has the value returned by odefun. odefun parameterizes the \(K\) matrix if it returns at least 5 outputs and the value of the fifth output does not contain NaN values.
- If odefun does not parameterize the \(K\) matrix, then k is a zero matrix of size \(N x\)-by- \(N y . N x\) is the number of states and \(N y\) is the number of outputs. The value is treated as a fixed value of the \(K\) matrix during estimation, unless it is designated to be estimable using the DisturbanceModel estimation option.
- Regardless of whether the \(K\) matrix is parameterized by odefun or not, you can set the value of the k property explicitly as an \(N x\)-by- \(N y\) matrix. \(N x\) is the number of states and \(N y\) is the number of outputs. The specified value is treated as a fixed value of the \(K\) matrix during estimation, unless it is designated to be estimable using the DisturbanceModel estimation option.

To create an estimation option set for idgrey models, use greyestOptions.

\section*{StateName}

State names. Set StateName to a string for first-order models, or to a cell array of strings for models with two or more states. Use an empty string ' ' for unnamed states.

Default: Empty string ' ' for all states

\section*{StateUnit}

State units. Use StateUnit to keep track of the units each state is expressed in. Set StateUnit to a string for first-order models, or to a cell array of strings for models with two or more states. StateUnit has no effect on system behavior.

Default: Empty string ' ' for all states

\section*{Structure}

Information about the estimable parameters of the idgrey model.
Structure stores information regarding the MATLAB function that parameterizes the idgrey model.
- Strucutre. Function - Name or function handle of the MATLAB function used to create the idgrey model.
- Structure.FcnType - Indicates whether the model is parameterized in continuous-time, discrete-time, or both.
- Structure.Parameters - Information about the estimated parameters. Structure. Parameters contains the following fields:
- Value - Parameter values. For example, sys.Structure.Parameters(2).Value contains the initial or estimated values of the second parameter.

NaN represents unknown parameter values.
- Minimum - Minimum value that the parameter can assume during estimation. For example, sys.Structure.Parameters(1).Minimum = 0 constrains the first parameter to be greater than or equal to zero.
- Maximum - Maximum value that the parameter can assume during estimation.
- Free - Boolean specifying whether the parameter is a free estimation variable. If you want to fix the value of a parameter during estimation, set the Free \(=\) false for the corresponding entry.
- Scale - Scale of the parameter's value. Scale is not used in estimation.
- Info - Structure array for storing parameter units and labels. The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe parameter units and labels.
- Structure.ExtraArgs - Optional input arguments required by the ODE function.
- Structure.StateName - Names of the model states.
- Structure.StateUnit - Units of the model states.

\section*{NoiseVariance}

The variance (covariance matrix) of the model innovations \(e\).
An identified model includes a white, Gaussian noise component \(e(t)\). NoiseVariance is the variance of this noise component. Typically, the model estimation function (such as greyest or pem) determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models, NoiseVariance is a \(N y\)-by- \(N y\) matrix, where \(N y\) is the number of outputs in the system.

\section*{Report}

Information about the estimation process.
Report contains the following fields:
- Status - Whether model was obtained by construction, estimated, or modified after estimation.
- Method - Name of estimation method used.
- InitialState - Initial state handling during model estimation.
- DisturbanceModel - Disturbance component (the \(K\) matrix) handling of the model during estimation.
- Fit - Quantitative quality assessment of estimation, including percent fit to data and final prediction error.
- Parameters - Estimated values of model parameters and their covariance
- OptionsUsed - Options used during estimation (see greyestOptions).
- RandState - Random number stream state at the start of estimation.
- DataUsed - Attributes of the data used for estimation, such as name and sampling time.
- Termination - Termination conditions for the iterative search scheme used for prediction error minimization, such as final cost value and stopping criterion.

\section*{InputDelay}

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay \(=3\) means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

\section*{OutputDelay}

Output delays.
For identified systems, like idgrey, OutputDelay is fixed to zero.

\section*{Ts}

Sampling time.
For continuous-time models, \(\mathrm{Ts}=0\). For discrete-time models, Ts is a positive scalar representing the sampling period expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set Ts \(=-1\).

Changing this property does not discretize or resample the model.
For idgrey models, there is no unique default value for Ts. Ts depends on the value of fon_type.

\section*{TimeUnit}

String representing the unit of the time variable, any time delays in the model (for continuous-time models), and the sampling time Ts (for discrete-time models). TimeUnit can take the following values:
- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

\section*{InputName}

Input channel names. Set InputName to a string for single-input model. For a multi-input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:
sys.InputName = 'controls';
The software automatically expands the input names to \{'controls(1)';'controls(2)'\}.

You can use the shorthand notation \(u\) to refer to the InputName property. For example, sys.u is equivalent to sys. InputName.

Input channel names have several uses, including:
- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

\section*{InputUnit}

Input channel units. Use InputUnit to keep track of input signal units. Set InputUnit to a string for single-input model, or to a cell array of strings for a multi-input model. InputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

\section*{InputGroup}

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure whose field names are the group names and whose field values are the input channels belong to each group. For example:
```

sys.InputGroup.controls = [1 2];

```
sys.InputGroup.noise = [3 5];
creates input groups named controls and noise that include input channels 1,2 and 3,5 , respectively. You can then extract the subsystem from the controls inputs to all outputs using:
```

sys(:,'controls')

```

Default: Struct with no fields

\section*{OutputName}

Output channel names. Set OutputName to a string for single-output model. For a multi-output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:
```

sys.OutputName = 'measurements';

```

The software automatically expands the output names to \{'measurements(1)';'measurements(2)'\}.

You can use the shorthand notation \(y\) to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:
- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

\section*{OutputUnit}

Output channel units. Use OutputUnit to keep track of output signal units. Set OutputUnit to a string for single-input model, or to a cell array of strings for a multi-input model. OutputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

\section*{OutputGroup}

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure whose field names are the group names and whose field values are the output channels belong to each group. For example:
sys.OutputGroup.temperature = [1]; sys.InputGroup.measurement = [3 5];
creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:
sys('measurement',:)
Default: Struct with no fields

\section*{Name}

System name. Set Name to a string to label the system.
Default: ''

\section*{Notes}

Any text that you wish to associate with the system. Set Notes to a string or a cell array of strings.

Default: \{\}

\section*{UserData}

Any type of data you wish to associate with system. Set UserData to any MATLAB data type.

Default: []

\section*{See Also}
```

greyest | greyestOptions | pem | idnlgrey | idss | ssest |
getpvec | setpvec

```

\section*{idinput}

\section*{Purpose Generate input signals}
```

Syntax u = idinput(N)
u = idinput(N,type,band,levels)
[u,freqs] = idinput(N,'sine',band,levels,sinedata)

```

\section*{Description}
idinput generates input signals of different kinds, which are typically used for identification purposes. \(u\) is returned as a matrix or column vector.

For further use in the toolbox, we recommend that you create an iddata object from \(u\), indicating sampling time, input names, periodicity, and so on:
u = iddata([],u);
N determines the number of generated input data. If N is a scalar, u is a column vector with this number of rows.
\(N=[N \mathrm{nu}]\) gives an input with nu input channels each of length \(N\).
\(N=[P\) nu M] gives a periodic input with nu channels, each of length \(M * P\) and periodic with period \(P\).

Default is nu \(=1\) and \(M=1\).
type defines the type of input signal to be generated. This argument takes one of the following values:
- type \(=\) 'rgs': Gives a random, Gaussian signal.
- type = 'rbs': Gives a random, binary signal. This is the default.
- type = 'prbs': Gives a pseudorandom, binary signal.
- type = 'sine': Gives a signal that is a sum of sinusoids.

The frequency contents of the signal is determined by the argument band. For the choices type = 'rs', 'rbs', and 'sine', this argument is a row vector with two entries
band = [wlow, whigh]
that determine the lower and upper bound of the passband. The frequencies wlow and whigh are expressed in fractions of the Nyquist frequency. A white noise character input is thus obtained for band \(=\) [\(\left.\begin{array}{ll}0 & 1\end{array}\right]\), which is also the default value.
For the choice type = 'prbs',
band \(=[0, B]\)
where \(B\) is such that the signal is constant over intervals of length \(1 / B\) (the clock period). In this case the default is band \(=\left[\begin{array}{ll}0 & 1\end{array}\right]\).

The argument levels defines the input level. It is a row vector
```

levels = [minu, maxu]

```
such that the signal \(u\) will always be between the values minu and maxu for the choices type \(=\) 'rbs', 'prbs', and 'sine'. For type = 'rgs', the signal level is such that minu is the mean value of the signal, minus one standard deviation, while maxu is the mean value plus one standard deviation. Gaussian white noise with zero mean and variance one is thus obtained for levels = [-1, 1], which is also the default value.

\section*{Some PRBS Aspects}

If more than one period is demanded (that is, \(M>1\)), the length of the data sequence and the period of the PRBS signal are adjusted so that an integer number of maximum length PRBS periods is always obtained. If \(M=1\), the period of the PRBS signal is chosen to that it is longer than \(P=N\). In the multiple-input case, the signals are maximally shifted. This means P/nu is an upper bound for the model orders that can be estimated with such a signal.

\section*{Some Sine Aspects}

In the 'sine' case, the sinusoids are chosen from the frequency grid
```

freq = 2*pi*[1:Grid_Skip:fix(P/2)]/P

```
intersected with pi*[band(1) band(2)]. For Grid_Skip, see below. For multiple-input signals, the different inputs use different frequencies from this grid. An integer number of full periods is always delivered. The selected frequencies are obtained as the second output argument, freqs, where row ku of freqs contains the frequencies of input number ku . The resulting signal is affected by a fifth input argument, sinedata
```

sinedata = [No_of_Sinusoids, No_of_Trials, Grid_Skip]

```
meaning that No_of_Sinusoids is equally spread over the indicated band. No_of_Trials (different, random, relative phases) are tried until the lowest amplitude signal is found.
```

Default: sinedata = [10,10,1];

```

Grid_Skip can be useful for controlling odd and even frequency multiples, for example, to detect nonlinearities of various kinds.
\begin{tabular}{ll}
Algorithms & \begin{tabular}{l}
Very simple algorithms are used. The frequency contents are achieved \\
for 'rgs' by an eighth-order Butterworth, noncausal filter, using \\
idfilt. The same filter is used for the 'rbs ' case, before making \\
the signal binary. This means that the frequency contents are not \\
guaranteed to be precise in this case.
\end{tabular} \\
For the 'sine' case, the frequencies are selected to be equally spread \\
over the chosen grid, and each sinusoid is given a random phase. A \\
number of trials are made, and the phases that give the smallest signal \\
amplitude are selected. The amplitude is then scaled so as to satisfy \\
the specifications of levels.
\end{tabular}
```

u = idinput([100 1 20],'sine',[],[],[5 10 1]);
u = iddata([],u,1,'per',100);
u2 = u.u.^2;
u2 = iddata([],u2,1,'per',100);
spectrum(etfe(u),'r*',etfe(u2),'+')

```

\section*{idmodel}

Purpose Superclass for linear models

> Note idmodel has been removed. See idgrey, idpoly, idproc, idss or idtf instead.

\section*{Purpose Nonlinear ARX model}
```

Syntax $\quad m=$ idnlarx ([na nb nk])
$m$ = idnlarx([na nb nk],Nonlinearity)
m = idnlarx([na nb nk],Nonlinearity,'PropertyName',
PropertyValue)
$m$ = idnlarx(LinModel)
$m=$ idnlarx(LinModel,Nonlinearity)
$m=$ idnlarx(LinModel,Nonlinearity,'PropertyName',
PropertyValue)

```

\section*{Description}

Represents nonlinear ARX model. The nonlinear ARX structure is an extension of the linear ARX structure and contains linear and nonlinear functions. For more information, see "Nonlinear ARX Model Extends the Linear ARX Structure".

Typically, you use the nlarx command to both construct the idnlarx object and estimate the model parameters. You can configure the model properties directly in the nlarx syntax.

You can also use the idnlarx constructor to create the nonlinear ARX model structure and then estimate the parameters of this model using nlarx or pem.

For idnlarx object properties, see:
- "idnlarx Model Properties" on page 2-343
- "idnlarx Algorithm Properties" on page 2-346
- "idnlarx Advanced Algorithm Properties" on page 2-350
- "idnlarx EstimationInfo Properties" on page 2-351

\section*{Construction}
\(m=\) idnlarx ([na nb nk]) creates an idnlarx object using a default wavelet network as its nonlinearity estimator. na, nb, and nk are positive integers that specify model orders and delays.

\section*{idnlarx}

\section*{Input Arguments}
\(m\) = idnlarx([na nb nk],Nonlinearity) specifies a nonlinearity estimator Nonlinearity, as a nonlinearity estimator object or string representing the nonlinearity estimator type.
\(m=\) idnlarx([na nb
nk],Nonlinearity, 'PropertyName', PropertyValue) creates the object using options specified as idnlarx property name and value pairs. Specify PropertyName inside single quotes.
\(m=\) idnlarx(LinModel) creates an idnlarx object using a linear model (in place of [na \(n b n k\)]), and a wavelet network as its nonlinearity estimator. LinModel is a discrete time input-output polynomial model of ARX structure (idpoly) for single-output systems and idarx object for multi-output systems. LinModel sets the model orders, input delay, input-output channel names and units, sample time, and time unit of \(m\), and the polynomials initialize the linear function of the nonlinearity estimator.
\(m\) = idnlarx(LinModel,Nonlinearity) specifies a nonlinearity estimator Nonlinearity.
\(m=\)
idnlarx(LinModel,Nonlinearity, 'PropertyName',PropertyValue) creates the object using options specified as idnlarx property name and value pairs.
na nb nk
Positive integers that specify the model orders and delays.
For ny output channels and nu input channels, na is an ny-by-ny matrix whose \(i\)-jth entry gives the number of delayed \(j\) th outputs used to compute the \(i\) th output. nb and nk are ny-by-nu matrices, where each row defines the orders for the corresponding output.

\section*{Nonlinearity}

Nonlinearity estimator, specified as a nonlinearity estimator object or string representing the nonlinearity estimator type.
\begin{tabular}{ll}
\begin{tabular}{l}
'wavenet ' or wavenet object \\
(default)
\end{tabular} & Wavelet network \\
'sigmoidnet ' or sigmoidnet object & Sigmoid network \\
'treepartition ' or treepartition object & Binary-tree \\
'linear' or [] or linear object & Linear function \\
neuralnet object & Neural network \\
customnet object & Custom network
\end{tabular}

Specifying a string creates a nonlinearity estimator object with default settings. Use object representation to configure the properties of a nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators individually for each output channel by setting Nonlinearity to an ny-by- 1 cell array or object array of nonlinearity estimators. To specify the same nonlinearity for all outputs, specify Nonlinearity as a single nonlinearity estimator.

\section*{LinModel}

Discrete time input-output polynomial model of ARX structure, typically estimated using the arx command:
- idpoly object for single-output systems
- idarx object for multi-output systems

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% Get the model time unit
get(m,'TimeUnit')
%Get value of Nonlinearity property
m.Nonlinearity

```

You can specify property name-value pairs in the model estimator or constructor to configure the model structure and estimation algorithm.

\section*{idnlarx}

Use set or dot notation to set a property of an existing object.
The following table summarizes idnlarx model properties. The general idnlmodel properties also apply to this nonlinear model object (see the corresponding reference page).
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline Algorithm & A structure that specifies the estimation algorithm options, as described in "idnlarx Algorithm Properties" on page 2-346. \\
\hline CustomRegressors & \begin{tabular}{l}
Custom expression in terms of standard regressors. Assignable values: \\
- Cell array of strings. For example:
\[
\left\{' y 1(t-3) \wedge 3 ', ' y 2(t-1) * u 1(t-3) ', ' \sin (u 3(t-2))^{\prime}\right\} .
\] \\
- Object array of customreg objects. Create these objects using commands such as customreg and polyreg. For more information, see the corresponding reference pages.
\end{tabular} \\
\hline EstimationInfo & A read-only structure that stores estimation settings and results, as described in "idnlarx EstimationInfo Properties" on page 2-351. \\
\hline Focus & \begin{tabular}{l}
Specifies 'Prediction' or 'Simulation'. \\
Assignable values: \\
- 'Prediction' (default) - The estimation algorithm minimizes \(\|y-\hat{y}\|\), where \(\hat{y}\) is the 1 -step ahead predicted output. This algorithm does not necessarily minimize the simulation error. \\
- 'Simulation' - The estimation algorithm minimizes the simulation error and optimizes the results of compare(data, model, Inf). That is, when computing \(\hat{y}\), \(y\) in the regressors in \(F\) are replaced by values simulated from the input only. 'Simulation' requires that the model include only differentiable nonlinearities.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
Note If your model includes the treepartition or neuralnet \\
nonlinearity, the algorithm always uses 'prediction', \\
regardless of the Focus value. If your model includes the \\
wavenet nonlinearity, the first estimation of this model uses \\
'prediction '.
\end{tabular} \\
\hline NonlinearRegressors & \begin{tabular}{l}
Specifies which standard or custom regressors enter the \\
nonlinear block. For multiple-output models, use cell array of \\
\(n_{y}\) elements (ny \(=\) number of model outputs). For each output, \\
assignable values are:
\end{tabular} \\
\hline - 'all' - All regressors enter the nonlinear block. \\
- 'search' - Specifies that the estimation algorithm \\
searches for the best regressor combination. This is useful \\
when you want to reduce a large number of regressors \\
entering the nonlinear function block or the nonlinearity \\
estimator.
\end{tabular}

\section*{idnlarx}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Nonlinearity & \begin{tabular}{l}
Nonlinearity estimator object. Assignable values include \\
wavenet (default), sigmoidnet, treepartition, customnet, \\
neuralnet, and linear. If the model contains only one \\
regressor, you can also use saturation, deadzone, pwlinear, \\
or poly 1d. \\
For ny outputs, Nonlinearity is an ny-by-1 array. For \\
example, [sigmoidnet; wavenet for a two-output model. \\
When you specify a scalar object, this nonlinearity applies to \\
all outputs.
\end{tabular} \\
\hline \begin{tabular}{l}
na \\
nb \\
nk
\end{tabular} & \begin{tabular}{l}
Nonlinear ARX model orders and input delays, where na is the \\
number of output terms, nb is the number of input terms, and \\
nk is the delay from input to output in terms of the number \\
of samples.
\end{tabular} \\
\begin{tabular}{l}
For ny outputs and nu inputs, na is an ny-by-ny matrix whose \\
i-jth entry gives the number of delayed jth outputs used to \\
compute the ith output. nb and nk are ny-by-nu matrices.
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlarx Algorithm Properties}

The following table summarizes the fields of the Algorithm idnlarx model properties. Algorithm is a structure that specifies the estimation-algorithm options.
\begin{tabular}{|l|l}
\hline Property Name & Description \\
\hline Advanced & \begin{tabular}{l}
A structure that specifies additional estimation algorithm \\
options, as described in "idnlarx Advanced Algorithm \\
Properties" on page 2-350.
\end{tabular} \\
\hline Criterion & \begin{tabular}{l}
The search method of 1sqnonlin supports the Trace criterion \\
only.
\end{tabular} \\
\begin{tabular}{l}
Use for multiple-output models only. Criterion can have the \\
following values: \\
- 'Det ' : Minimize det (E' \(* E)\)), where E represents the \\
prediction error. This is the optimal choice in a statistical
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Property Name & Description \\
\hline
\end{tabular}
sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function. This is the default criterion used for all models, except idnlgrey which uses 'Trace' by default.
- 'Trace': Minimize the trace of the weighted prediction error matrix trace (\(E^{\prime} * E^{*} W\)), where \(E\) is the matrix of prediction errors, with one column for each output, and W is a positive semi-definite symmetric matrix of size equal to the number of outputs. By default, W is an identity matrix of size equal to the number of model outputs (so the minimization criterion becomes trace (\(E^{\prime} * E\)), or the traditional least-squares criterion). You can specify the relative weighting of prediction errors for each output using the Weighting field of the Algorithm property. If the model contains neuralnet or treepartition as one of its nonlinearity estimators, weighting is not applied because estimations are independent for each output.

Both the Det and Trace criteria are derived from a general requirement of minimizing a weighted sum of least squares of prediction errors. Det can be interpreted as estimating the covariance matrix of the noise source and using the inverse of that matrix as the weighting. You should specify the weighting when using the Trace criterion.

If you want to achieve better accuracy for a particular channel in MIMO models, use Trace with weighting that favors that channel. Otherwise, use Det. If you use Det, check cond (model. NoiseVariance) after estimation. If the matrix is ill-conditioned, try using the Trace criterion. You can also use compare on validation data to check whether the relative error for different channels corresponds to your needs or expectations. Use the Trace criterion if you need to modify the relative errors, and check model. NoiseVariance to determine what weighting modifications to specify.

\section*{idnlarx}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline IterWavenet & \begin{tabular}{l}
(For wavenet nonlinear estimator only) \\
Toggles performing iterative or noniterative estimation. \\
Default: ' auto ' . \\
Assignable values: \\
- 'auto ' - First estimation is noniterative and subsequent \\
estimation are iterative. \\
- 'On ' - Perform iterative estimation only. \\
- 'Off' - Perform noniterative estimation only.
\end{tabular} \\
\hline LimitError & \begin{tabular}{l}
Robustification criterion that limits the influence of large \\
residuals, specified as a positive real value. Residual values \\
that are larger than 'LimitEror ' times the estimated \\
residual standard deviation have a linear cost instead of the \\
usual quadratic cost. \\
Default: 0 (no robustification).
\end{tabular} \\
\hline MaxIter & \begin{tabular}{l}
Maximum number of iterations for the estimation algorithm, \\
specified as a positive integer. \\
Default: 20.
\end{tabular} \\
\hline MaxSize & \begin{tabular}{l}
The number of elements (size) of the largest matrix to be \\
formed by the algorithm. Computational loops are used \\
for larger matrices. Use this value for memory/speed \\
trade-off. \\
DaxSize can be any positive integer.
\end{tabular} \\
\hline & \begin{tabular}{l}
Default: 250000.
\end{tabular} \\
\begin{tabular}{l}
Note The original data matrix of \(u\) and \(y\) must be smaller \\
than MaxSize.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline SearchMethod & \begin{tabular}{l}
Method used by the iterative search algorithm. \\
Assignable values:
\end{tabular} \\
& \begin{tabular}{l}
- 'Auto' — Automatically chooses from the following \\
methods.
\end{tabular} \\
& \begin{tabular}{l}
- 'gn' — Subspace Gauss-Newton method. \\
- 'gna' — Adaptive Gauss-Newton method.
\end{tabular} \\
& \begin{tabular}{l}
- 'grad' — A gradient method.
\end{tabular} \\
& - 'lm' — Leqnonlin' — Nonlinear least-squares method (requires \\
the Optimization Toolbox product). This method only \\
handles the 'Trace' criterion.
\end{tabular}

\section*{idnlarx}
idnlarx Advanced Algorithm Properties

The following table summarizes the fields of the Algorithm. Advanced model properties. The fields in the Algorithm. Advanced structure specify additional estimation-algorithm options.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline GnPinvConst & \begin{tabular}{l}
When the search direction is computed, the algorithm \\
discards the singular values of the Jacobian that are smaller \\
than GnPinvConst*max(size (J) *norm (J) *eps. Singular \\
values that are closer to 0 are included when GnPinvConst is \\
decreased. \\
Default: 1e4. \\
Assign a positive, real value.
\end{tabular} \\
\hline LMStartValue & \begin{tabular}{l}
(For Levenberg-Marquardt search algorithm) The starting \\
level of regularization when using the Levenberg-Marquardt \\
search method (Algorithm. SearchMethod= 'lm'). \\
Default: 0.001. \\
Assign a positive real value.
\end{tabular} \\
\hline LMStep & \begin{tabular}{l}
(For Levenberg-Marquardt search algorithm) Try this next \\
level of regularization to get a lower value of the criterion \\
function. The level of regularization is LMStep times the \\
previous level. At the start of a new iteration, the level of \\
regularization is computed as 1/LMStep times the value from \\
the previous iteration. \\
Default: 10.
\end{tabular} \\
Assign a real value >1.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline MaxFunEvals & \begin{tabular}{l}
The iterations are stopped if the number of calls to the model \\
file exceeds this value. \\
Default: Inf. \\
Assign a positive integer value.
\end{tabular} \\
\hline MinParChange & \begin{tabular}{l}
The smallest parameter update allowed per iteration. \\
Default: 1e-16. \\
Assign a positive, real value.
\end{tabular} \\
\hline RelImprovement & \begin{tabular}{l}
The iterations are stopped if the relative improvement of the \\
criterion function is less than RelImprovement. \\
Default: 0. \\
Assign a positive real value.
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l}
Note Does not apply to \\
Algorithm. SearchMethod= ' lsqnonlin' ' \\
\hline StepReduction \\
\end{tabular} \begin{tabular}{l}
(For line search algorithm) The suggested parameter update \\
is reduced by the factor 'StepReduction' after each try until \\
either 'MaxBisections' tries are completed or a lower value \\
of the criterion function is obtained. \\
Default: 2. \\
Assign a positive, real value >1.
\end{tabular} \\
\hline & \begin{tabular}{l}
Note Does not apply to \\
Algorithm. SearchMethod= 'lsqnonlin'
\end{tabular} \\
\hline
\end{tabular}
properties. The read-only fields of the EstimationInfo structure store estimation settings and results.

\section*{idnlarx}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Status & Shows whether the model parameters were estimated. \\
\hline Method & Shows the estimation method. \\
\hline LossFcn & \begin{tabular}{l}
Value of the loss function, equal to det (E' *E/N), where E is \\
the residual error matrix (one column for each output) and N is \\
the total number of samples.
\end{tabular} \\
\hline FPE & Value of Akaike's Final Prediction Error (see fpe). \\
\hline DataName & Name of the data from which the model is estimated. \\
\hline DataLength & Length of the estimation data. \\
\hline DataTs & Sampling interval of the estimation data. \\
\hline DataDomain & \begin{tabular}{l}
'Time' means time domain data. 'Frequency' is not \\
supported.
\end{tabular} \\
\hline DataInterSample & \begin{tabular}{l}
Intersample behavior of the input estimation data used for \\
interpolation:
\end{tabular} \\
\hline • 'zoh' means zero-order-hold, or piecewise constant. \\
\hline EstimationTime 'foh' means first-order-hold, or piecewise linear.
\end{tabular}

\section*{Definitions}

\section*{Nonlinear ARX Model Structure}

This block diagram represents the structure of a nonlinear ARX model in a simulation scenario:

The nonlinear ARX model computes the output \(y\) in two stages:
1 Computes regressors from the current and past input values and past output data.

In the simplest case, regressors are delayed inputs and outputs, such as \(u(t-1)\) and \(y(t-3)\)-called standard regressors. You can also specify custom regressors, which are nonlinear functions of delayed inputs and outputs. For example, \(\tan (u(t-1))\) or \(u(t-1)^{*} y(t-3)\).

By default, all regressors are inputs to both the linear and the nonlinear function blocks of the nonlinearity estimator. You can choose a subset of regressors as inputs to the nonlinear function block.

2 The nonlinearity estimator block maps the regressors to the model output using a combination of nonlinear and linear functions. You can select from available nonlinearity estimators, such as tree-partition networks, wavelet networks, and multi-layer neural networks. You can also exclude either the linear or the nonlinear function block from the nonlinearity estimator.

The nonlinearity estimator block can include linear and nonlinear blocks in parallel. For example:

\section*{idnlarx}
\[
F(x)=L^{T}(x-r)+d+g(Q(x-r))
\]
\(x\) is a vector of the regressors. \(L^{T}(x)+d\) is the output of the linear function block and is affine when \(\mathrm{d} \neq 0\). \(d\) is a scalar offset. \(g(Q(x-r))\) represents the output of the nonlinear function block. \(r\) is the mean of the regressors \(x . Q\) is a projection matrix that makes the calculations well conditioned. The exact form of \(F(x)\) depends on your choice of the nonlinearity estimator.

Estimating a nonlinear ARX model computes the model parameter values, such as \(L, r, d, Q\), and other parameters specifying \(g\). Resulting models are idnlarx objects that store all model data, including model regressors and parameters of the nonlinearity estimator. See the idnlarx reference page for more information.

\section*{Definition of idnlarx States}

The states of an idnlarx object are delayed input and output variables that define the structure of the model. This toolbox requires states for simulation and prediction using sim(idnlarx), predict, and compare. States are also necessary for linearization of nonlinear ARX models using linearize(idnlarx).

This toolbox provides a number of options to facilitate how you specify the initial states. For example, you can use findstates and data2state to automatically search for state values in simulation and prediction applications. For linearization, use findop. You can also specify the states manually.

The states of an idnlarx model are defined by the maximum delay in each input and output variable used by the regressors. If a variable \(p\) has a maximum delay of \(D\) samples, then it contributes \(D\) elements to the state vector at time \(t: p(t-1), p(t-2), \ldots, p(t-D)\).

For example, if you have a single-input, single-output idnlarx model:
```

m = idnlarx([2 3 0],'wavenet', ...
'CustomRegressors', ...
{'y1(t-10)*u1(t-1)'});

```

This model has these regressors:
```

getreg(m)

```

Regressors:
y1(t-1)
y1(t-2)
u1(t)
u1(t-1)
u1(t-2)
\(y 1(t-10) * u 1(t-1)\)
The regressors show that the maximum delay in the output variable y 1 is 10 samples and the maximum delay in the input u 1 is 2 samples. Thus, this model has a total of 12 states:
\[
x(t)=[y 1(t-1), y 2(t-2),, y 1(t-10), u 1(t-1), u 1(t-2)]
\]

Note The state vector includes the output variables first, followed by input variables.

As another example, consider the 2 -output and 3 -input model:
```

m = idnlarx([2 0 2 2 1 1 0 0; 1 0 1 5 0 1 1 0], ...
[wavenet; linear])

```
getreg lists these regressors:
getreg(m)
Regressors:
For output 1:
y1(t-1)

\section*{idnlarx}
```

    y1(t-2)
    u1(t-1)
    u1(t-2)
    u2(t)
    u2(t-1)
    u3(t)
    For output 2:
y1(t-1)
u1(t-1)
u2(t-1)
u2(t-2)
u2(t-3)
u2(t-4)
u2(t-5)

```

The maximum delay in output variable y1 is 2 samples, which occurs in regressor set for output 1. The maximum delays in the three input variables are 2,5 , and 0 , respectively. Thus, the state vector is:
```

X(t) = [y1(t-1), y1(t-2), u1(t-1), u1(t-2), u2(t-1),
u2(t-2), u2(t-3), u2(t-4), u2(t-5)]

```

Variables y2 and u3 do not contribute to the state vector because the maximum delay in these variables is zero.

A simpler way to determine states by inspecting regressors is to use getDelay Info, which returns the maximum delays in all I/O variables across all model outputs. For the multiple-input multiple-output model m, getDelayInfo returns:
maxDel = getDelayInfo(m)
\(\operatorname{maxDel}=\)
\(\begin{array}{lllll}2 & 0 & 2 & 5 & 0\end{array}\)
maxDel contains the maximum delays for all input and output variables in the order (\(\mathrm{y} 1, \mathrm{y} 2, \mathrm{u} 1, \mathrm{u} 2, \mathrm{u} 3\)). The total number of model states is sum(maxDel) \(=9\).

The set of states for an idnlarx model are not required to be minimal.
```

Examples

```

Create nonlinear ARX model structure with no nonlinear function in nonlinearity estimator:
```

m=idnlarx([2 2 1],[])

```

Construct a nonlinear ARX model using a linear ARX model:
\% Construct a linear ARX model.
A = [1 -1.2 0.5];
B = [0.8 1];
LinearModel = idpoly(A, B, 'Ts', 0.1);
\% Construct nonlinear ARX model using the linear ARX model. m1 = idnlarx(LinearModel)

\section*{See Also \\ addreg | customnet | customreg | findop(idnlarx) | getreg | idnlmodel | linear | linearize(idnlarx) | nlarx | pem | polyreg | sigmoidnet | wavenet}

\section*{Tułorials \\ - "Example - Using nlarx to Estimate Nonlinear ARX Models"}
- "Estimate Nonlinear ARX Models Using Linear ARX Models"

\section*{idnlarx}

\author{
How To \\ - "Identifying Nonlinear ARX Models" \\ - "Using Linear Model for Nonlinear ARX Estimation"
}

\section*{Purpose}

Nonlinear ODE (grey-box model) with unknown parameters
```

Syntax m = idnlgrey('filename',Order,Parameters)
m = idnlgrey('filename',Order,Parameters,InitialStates)
m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)
m = idnlgrey('filename',Order, Parameters,InitialStates,
Ts, P1, V1, ..., PN, VN)

```

Description
idnlgrey Constructor
idnlgrey is an object that represents the nonlinear grey-box model.
For information about the nonlinear grey-box models, see "Estimating Nonlinear Grey-Box Models".

The information in these reference pages summarizes the idnlgrey model constructor and properties. It discusses the following topics:
- "idnlgrey Constructor" on page 2-359
- "idnlgrey Properties" on page 2-360
- "idnlgrey Algorithm Properties" on page 2-364
- "idnlgrey Advanced Algorithm Properties" on page 2-367
- "idnlgrey Simulation Options" on page 2-369
- "idnlgrey Gradient Options" on page 2-372
- "idnlgrey EstimationInfo Properties" on page 2-373

After you create the function or MEX-file with your model structure, you must define an idnlgrey object.

Use the following syntax to define the idnlgrey model object:
```

m = idnlgrey('filename',Order,Parameters)
m = idnlgrey('filename',Order,Parameters,InitialStates)
m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)
m =
idnlgrey('filename',Order,Parameters,InitialStates,Ts,P1,V1,..., PN,VN)

```

\section*{idnlgrey}

The idnlgrey arguments are defined as follows:
- 'filename ' - Name of the function or MEX-file storing the model structure (ODE file).
- Order - Vector with three entries [Ny Nu Nx], specifying the number of model outputs Ny , the number of inputs Nu , and the number of states \(N x\).
- Parameters - Parameters, specified as struct arrays, cell arrays, or double arrays.
- InitialStates - Specified in a same way as parameters. Must be fourth input to the idnlgrey constructor.
- The command
\[
\begin{aligned}
\mathrm{m}= & \text { idnlgrey('filename',Order, Parameters, ... } \\
& \text { InitialStates,Ts, P1,V1, ...,PN,VN) }
\end{aligned}
\]
specifies idnlgrey property-value pairs. See information on properties of idnlgrey objects below.

Estimate the unknown parameters and initial states of this object using pem. The input-output dimensions of the data must be compatible with the input and output orders you specified for the idnlgrey model. You can pass additional property-value pairs to pem to specify the properties of the model or estimation algorithm, such as MaxIter and Tolerance.

After creating the object, you can use get or dot notation to access the object property values.

You can include property-value pairs in the model estimator or constructor to specify the model structure and estimation algorithm properties.

Use set or dot notation to set a property of an existing object.
After creating the object, you can use get or dot notation to access the object property values. For example:
```

% Get the model time unit

```
get(m,'TimeUnit')
m.TimeUnit

The following table summarizes idnlgrey model properties. The general idnlmodel properties also apply to this nonlinear model object (see the corresponding reference pages).
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Algorithm & \begin{tabular}{l}
A structure that specifies the estimation algorithm options, as \\
described in "idnlgrey Algorithm Properties" on page 2-364.
\end{tabular} \\
\hline CovarianceMatrix & \begin{tabular}{l}
Covariance matrix of the estimated Parameters. \\
Assignable values: \\
- 'None' to omit computing uncertainties and save time \\
during parameter estimation.
\end{tabular} \\
- 'Estimate' to estimation covariance. Symmetric and \\
positive \(N_{p}\)-by- \(N_{p}\) matrix (or []) where \(N_{p}\) is the number of \\
free model parameters.
\end{tabular}

\section*{idnlgrey}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline InitialStates & \begin{tabular}{l}
An Nx-by-1 structure array with fields as follows. Here, Nx is the number of states of the model. \\
- Name: Name of the state (a string). Default value is 'x\#i', where \#i is an integer in [1, Nx]. \\
- Unit: Unit of the state (a string). Default value is ' ' . \\
- Value: Initial value of the initial state(s). Assignable values are: \\
- A finite real scalar \\
- A finite real 1-by-Ne vector, where Ne is the number of experiments in the data set to be used for estimation \\
- Minimum: Minimum value of the initial state(s). Must be a real scalar/1-by-Ne vector of the same size as Value and such that Minimum <= Value for all components. Default value: -Inf(size(Value)). \\
- Maximum: Maximum value of the initial state(s). Must be a real scalar/1-by-Ne vector of the same size as Value and such that Value <= Maximum for all components. Default value: \(\operatorname{Inf}(\) size (Value)). \\
- Fixed: Specifies which component(s) of the initial state(s) are fixed to their known values. Must be a Boolean scalar/1-by-Ne vector of the same size as Value. Default value: true(size(Value)) (that is, do not estimate the initial states). \\
For an idnlgrey model M, the ith initial state is accessed through M.InitialStates(i) and its subfields as M.InitialStates(i).FIELDNAME.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline Order & \begin{tabular}{l}
Structure with following fields: \\
- ny - Number of outputs of the model structure. \\
- nu - Number of inputs of the model structure. \\
- \(n x\) - Number of states of the model structure. \\
For time series, nu is 0 . For static model structures, \(n x\) is 0 .
\end{tabular} \\
\hline Parameters & \begin{tabular}{l}
Np-by- 1 structure array with information about the model parameters containing the following fields: \\
- Name: Name of the parameter (a string). Default value is 'p\#i', where \#i is an integer in [1, Np]. \\
- Unit: Unit of the parameter (a string). Default value is ' ' . \\
- Value: Initial value of the parameter(s). Assignable values are: \\
- A finite real scalar \\
- A finite real column vector \\
- A 2 -dimensional real matrix \\
- Minimum: Minimum value of the parameter(s). Must be a real scalar/column vector/matrix of the same size as Value and such that Minimum <= Value for all components. Default value: - Inf(size(Value)). \\
- Maximum: Maximum value of the parameter(s). Must be a real scalar/column vector/matrix of the same size as Value and such that Value <= Maximum for all components. Default value: Inf(size(Value)). \\
- Fixed: Specifies which component(s) of the parameter(s) are fixed to their known values. Must be a Boolean scalar/column vector/matrix of the same size as Value.
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}

Default value: false(size(Value)), (estimate all parameter components).
For an idnlgrey model \(M\), the ith parameter is accessed through M.Parameters(i) and its subfields as M. Parameters(i). FIELDNAME.

\section*{idnlgrey Algorithm Properties}

The following table summarizes the fields of the Algorithm idnlgrey model properties. Algorithm is a structure that specifies the estimation-algorithm options.
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline Advanced & A structure that specifies additional estimation algorithm options, as described in "idnlgrey Advanced Algorithm Properties" on page 2-367. \\
\hline Criterion & \begin{tabular}{l}
Specifies criterion used during minimization. Criterion can have the following values: \\
- 'Det': Minimize \(\operatorname{det}\left(E^{\prime *} E\right)\) where E represents the prediction error. This is the optimal choice in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function. This is the default criterion used for all models, except idnlgrey which uses 'Trace' by default. \\
- 'Trace': Minimize the trace of the weighted prediction error matrix trace (\(E^{\prime} * E^{*} W\)), where \(E\) is the matrix of prediction errors, with one column for each output, and \(W\) is a positive semi-definite symmetric matrix of size equal to the number of outputs. By default, W is an identity matrix of size equal to the number of model outputs (so the minimization criterion becomes trace (\(E^{\prime *} \mathrm{E}\)), or the traditional least-sum-of-squared-errors criterion. You can
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
specify the relative weighting of prediction errors for each \\
output using the Weighting field of the Algorithm property.
\end{tabular} \\
\hline LimitError & \begin{tabular}{l}
Robustification criterion that limits the influence of large \\
residuals, specified as a positive real value. Residual values \\
that are larger than 'LimitError' times the estimated \\
residual standard deviation have a linear cost instead of the \\
usual quadratic cost. \\
Default: 0 (no robustification).
\end{tabular} \\
\hline MaxIter & \begin{tabular}{l}
Maximum number of iterations for the estimation algorithm, \\
specified as a positive integer. \\
Default: 20.
\end{tabular} \\
\hline SearchMethod & \begin{tabular}{l}
Method used by the iterative search algorithm. \\
Assignable values:
\end{tabular} \\
& \begin{tabular}{l}
- 'Auto' — Automatically chooses from the following \\
methods.
\end{tabular} \\
- 'gn' — Gauss-Newton method. \\
- 'gna' — Adaptive Gauss-Newton method. \\
- 'grad' — A gradient method. \\
- 'lm' — Levenberg-Marquardt method.
\end{tabular}

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline SimulationOptions & \begin{tabular}{l}
A structure that specifies the simulation method and related \\
options, as described in "idnlgrey Simulation Options" on page \\
\(2-369\).
\end{tabular} \\
\hline Display & \begin{tabular}{l}
Toggles displaying or hiding estimation progress information \\
in the MATLAB Command Window. \\
Default: 'Off'. \\
Assignable values:
\end{tabular} \\
\hline - 'Off' — Hide estimation information. \\
- 'On' — Display estimation information.
\end{tabular}

\section*{idnlgrey}

Note The Criterion property setting is meaningful in multiple-output cases only. In single-output models, the two criteria are equivalent. Both the Det and Trace criteria are derived from a general requirement of minimizing a weighted sum of least squares of prediction errors. The Det criterion can be interpreted as estimating the covariance matrix of the noise source and using the inverse of that matrix as the weighting. You should specify the weighting when using the Trace criterion.

If you want to achieve better accuracy for a particular channel in multiple-input multiple-output models, you should use Trace with weighting that favors that channel. Otherwise it is natural to use Det. When using Det you can check cond(model.NoiseVariance) after estimation. If the matrix is ill-conditioned, it may be more robust to use the Trace criterion. You can also use compare on validation data to check whether the relative error for different channels corresponds to your needs or expectations. Use the Trace criterion if you need to modify the relative errors, and check model. NoiseVariance to determine what weighting modifications to specify.

The search method of lsqnonlin supports the Trace criterion only.
idnlgrey
Advanced
Algorithm
Properties
The following table summarizes the fields of the Algorithm.Advanced model properties. The fields in the Algorithm. Advanced structure specify additional estimation-algorithm options.

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline GnPinvConst & \begin{tabular}{l}
When the search direction is computed, the algorithm \\
discards the singular values of the Jacobian that are smaller \\
than GnPinvConst*max (size (J)) *norm (J) *eps. Singular \\
values that are closer to 0 are included when GnPinvConst is \\
decreased. \\
Default: 1e4. \\
Assign a positive, real value.
\end{tabular} \\
\hline LMStartValue & \begin{tabular}{l}
(For Levenberg-Marquardt search algorithm) The starting \\
level of regularization when using the Levenberg-Marquardt \\
search method (Algorithm. SearchMethod= 'lm'). \\
Default: 0.001. \\
Assign a positive real value.
\end{tabular} \\
\hline LMStep & \begin{tabular}{l}
(For Levenberg-Marquardt search algorithm) Try this next \\
level of regularization to get a lower value of the criterion \\
function. The level of regularization is LMStep times the \\
previous level. At the start of a new iteration, the level of \\
regularization is computed as 1/LMStep times the value from \\
the previous iteration. \\
Default: 10.
\end{tabular} \\
Assign a real value >1.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline MinParChange & \begin{tabular}{l}
The smallest parameter update allowed per iteration. \\
Default: 1e-16. \\
Assign a positive, real value.
\end{tabular} \\
\hline RelImprovement & \begin{tabular}{l}
The iterations are stopped if the relative improvement of the \\
criterion function is less than RelImprovement. \\
Default: 0. \\
Assign a positive real value.
\end{tabular} \\
\hline StepReduction & \begin{tabular}{l}
Note Does not apply to \\
Algorithm. SearchMethod= 'lsqnonlin' '
\end{tabular} \\
\hline & \begin{tabular}{l}
(For line search algorithm) The suggested parameter update \\
is reduced by the factor 'StepReduction' after each try until \\
either 'MaxBisections' tries are completed or a lower value \\
of the criterion function is obtained. \\
Default: 2. \\
Assign a positive, real value >1.
\end{tabular} \\
\hline & \begin{tabular}{l}
Note Does not apply to \\
Algorithm. SearchMethod= 'lsqnonlin' ' \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
idnlgrey Simulation Options

The following table summarizes the fields of Algorithm.SimulationOptions model properties.
}

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline AbsTol & \begin{tabular}{l}
Absolute error tolerance. This scalar applies to all components \\
of the state vector. AbsTol applies only to the variable step \\
solvers. \\
Default: 1 - -6.
\end{tabular} \\
Assignable value: A positive real value.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline MinStep & \begin{tabular}{l}
(For variable-step time-continuous solvers) Specifies the \\
smallest time step of the ODE solver. \\
Default: 'Auto'. \\
Assignable values:
\end{tabular} \\
& - 'Auto' — Automatically chooses the time step. \\
& - A positive real value < MaxStep.
\end{tabular}

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline & - 'ode4' — Fourth-order Runge-Kutta solver. \\
& - 'ode3' — Bogacki-Shampine solver. \\
& - 'ode2' - Heun or improved Euler solver. \\
& - 'ode1' - Euler solver. \\
& \begin{tabular}{l}
C. Fixed-step solvers for time-discrete idnlgrey models: \\
'FixedStepDiscrete' \\
D. General: 'Auto' - Automatically chooses one of the \\
previous solvers (default).
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlgrey Gradient Options}

The following table summarizes the fields of the Algorithm.GradientOptions model properties. Algorithm is a structure that specifies the estimation-algorithm options.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline DiffMaxChange & \begin{tabular}{l}
Largest allowed parameter perturbation when computing \\
numerical derivatives. \\
Default: Inf. \\
Assignable value: A positive real value > 'DiffMinChange ' .
\end{tabular} \\
\hline DiffMinChange & \begin{tabular}{l}
Smallest allowed parameter perturbation when computing \\
numerical derivatives. \\
Default: 0.01*sqrt(eps). \\
Assignable value: A positive real value < 'DiffMaxChange ' . \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline DiffScheme & \begin{tabular}{l}
Method for computing numerical derivatives with respect to the components of the parameters and/or the initial state(s) to form the Jacobian. \\
Default: 'Auto' \\
Assignable values: \\
- 'Auto ' - Automatically chooses from the following methods. \\
- 'Central approximation' \\
- 'Forward approximation' \\
- 'Backward approximation'
\end{tabular} \\
\hline GradientType & \begin{tabular}{l}
Method used when computing derivatives (Jacobian) of the parameters or the initial states to be estimated. \\
Default: 'Auto'. \\
Assignable values: \\
- 'Auto' - Automatically chooses from the following methods. \\
- 'Basic' - Individually computes all numerical derivatives required to form each column of the Jacobian. \\
- 'Refined ' - Simultaneously computes all numerical derivatives required to form each column of the Jacobian.
\end{tabular} \\
\hline
\end{tabular}
idnlgrey
The following table summarizes the fields of the EstimationInfo model EstimationInfo Properties
properties. The read-only fields of the EstimationInfo structure store estimation settings and results.

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Status & Shows whether the model parameters were estimated. \\
\hline Method & Names of the solver and the optimizer used during estimation. \\
\hline LossFcn & \begin{tabular}{l}
Value of the loss function, equal to det (E' *E/N), where E is \\
the residual error matrix (one column for each output) and \\
N is the total number of samples. Provides a quantitative \\
description of the model quality.
\end{tabular} \\
\hline FPE & Value of Akaike's Final Prediction Error (see fpe). \\
\hline DataName & Name of the data from which the model is estimated. \\
\hline DataLength & Length of the estimation data. \\
\hline DataTs & \begin{tabular}{l}
Sampling interval of the estimation data. \\
\hline DataDomain \\
supported.
\end{tabular} \\
\hline DataInterSample & \begin{tabular}{l}
Intersample behavior of the input estimation data used for \\
interpolation:
\end{tabular} \\
\hline - 'zoh' means zero-order-hold, or piecewise constant. \\
- 'foh' means first-order-hold, or piecewise linear.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline UpdateNorm & \begin{tabular}{l}
Norm of the search vector (Gauss-Newton vector) at the last \\
iteration. Empty when 'lsqnonlin' is the search method.
\end{tabular} \\
\hline Warning & Any warnings encountered during parameter estimation. \\
\hline WhyStop & Reason for terminating parameter estimation iterations. \\
\hline
\end{tabular}

\section*{Definition \\ of idnlgrey States}

The states of an idnlgrey model are defined explicitly by the user in the function or MEX-file (as specified in the FileName property of the model) storing the model structure. The concept of states is useful for functions such as sim, predict, compare, and findstates.

Note The initial values of the states are configured by the InitialStates property of the idnlgrey model.

\footnotetext{
See Also
pem \| get \| set \| getinit \| setinit \| getpar \| idnlmodel \| setpar
}

\section*{idnlhw}

\section*{Purpose Hammerstein-Wiener model}
```

Syntax $\quad m=i d n l h w\left(\left[\begin{array}{lll}n b & n f & n k\end{array}\right]\right)$
$m=i d n l h w([n b$ nf nk],InputNL,OutputNL)
m = idnlhw([nb nf nk],InputNL,OutputNL,'PropertyName',
PropertyValue)
$m$ = idnlhw(LinModel)
m = idnlhw(LinModel,InputNL,OutputNL)
m = idnlhw(LinModel,InputNL,OutputNL,'PropertyName',
PropertyValue)

```

\section*{Description}

Represents Hammerstein-Wiener models. The Hammerstein-Wiener structure represents a linear model with input-output nonlinearities.

Typically, you use the nlhw command to both construct the idnlhw object and estimate the model parameters. You can configure the model properties directly in the nlhw syntax. For information about the Hammerstein-Wiener model structure, see "Structure of Hammerstein-Wiener Models".

You can also use the idnlhw constructor to create the Hammerstein-Wiener model structure and then estimate the parameters of this model using pem.

For idnlhw object properties, see:
- "idnlhw Model Properties" on page 2-379
- "idnlhw Algorithm Properties" on page 2-380
- "idnlhw Advanced Algorithm Properties" on page 2-384
- "idnlhw EstimationInfo Properties" on page 2-386

\section*{Construction}
\(m=\) idnlhw([nb nf nk]) creates an idnlhw object using default piecewise linear functions for the input and output nonlinearity estimators. \(n b, n f\), and \(n k\) are positive integers that specify model orders and delays. \(n b\) is the number of zeros plus \(1, n f\) is the number of poles, and \(n k\) is the input delay.
\(m\) = idnlhw([nb nf nk],InputNL,OutputNL) specifies input nonlinearity InputNL and output nonlinearity OutputNL, as a nonlinearity estimator object or string representing the nonlinearity estimator type.
\(m=\) idnlhw([nb nf
nk],InputNL,OutputNL, 'PropertyName', PropertyValue) creates the object using options specified as idnlhw property name and value pairs. Specify PropertyName inside single quotes.
\(m=\) idnlhw(LinModel) uses a linear model (in place of [nb nf nk]) and default piecewise linear functions for the input and output nonlinearity estimators. LinModel is a discrete time input-output polynomial model of Output-Error (OE) structure (idpoly) or state-space model with no disturbance component (idss with \(K=0\)) for single-output systems, and idss model with \(K=0\) for multi-output systems. LinModel sets the model orders, input delay, \(B\) and \(F\) polynomial values, input-output names and units, sampling time, and time units of \(m\).
\(m=\) idnlhw(LinModel,InputNL,OutputNL) specifies input nonlinearity InputNL and output nonlinearity OutputNL.
\(m=\)
idnlhw(LinModel, InputNL, OutputNL, 'PropertyName', PropertyValue) creates the object using options specified as idnlhw property name and value pairs.

\section*{Input Arguments}

\section*{nb, nf, nk}

Model orders and input delay, where \(n b\) is the number of zeros plus 1, \(n f\) is the number of poles, and \(n k\) is the input delay.
For nu inputs and ny outputs, nb, nf, and, nk are ny-by-nu matrices whose \(i\)-jth entry specifies the orders and delay of the transfer function from the \(j\) th input to the \(i\) th output.

\section*{InputNL, OutputNL}

\section*{idnlhw}

Input and output nonlinearity estimators, respectively, specified as a nonlinearity estimator object or string representing the nonlinearity estimator type.
\begin{tabular}{ll}
'pwlinear' or pwlinear object (default) & \begin{tabular}{l}
Piecewise linear \\
function
\end{tabular} \\
'sigmoidnet' or sigmoidnet object & Sigmoid network \\
'wavenet' or wavenet object & Wavelet network \\
'saturation' or saturation object & Saturation \\
'deadzone ' or deadzone object & Dead zone \\
'poly1d' or poly1d object & \begin{tabular}{l}
One-dimensional \\
polynomial
\end{tabular} \\
'unitgain' or unitgain object & Unit gain \\
customnet object & Custom network
\end{tabular}

Specifying a string creates a nonlinearity estimator object with default settings. Use object representation to configure the properties of a nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators individually for each output channel by setting InputNL or OutputNL to an ny-by- 1 cell array or object array of nonlinearity estimators. To specify the same nonlinearity for all outputs, specify a single input and output nonlinearity estimator.

\section*{LinModel}

Discrete time linear model, typically estimated using the oe or n4sid command:
- Input-output polynomial model of Output-Error (OE) structure (idpoly) or state-space model with no disturbance component (idss with \(K=0\)), for single-output systems
- State-space model with no disturbance component (idss model with \(K=0\)), for multi-output systems

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% Get the model B parameters
get(m,'b')
% Get value of InputNonlinearity property
m.InputNonlinearity

```

You can specify property name-value pairs in the model estimator or constructor to specify the model structure and estimation algorithm.

Use set or dot notation to set a property of an existing object.
The following table summarizes idnlhw model properties. The general idnlmodel properties also apply to this nonlinear model object (see the corresponding reference page).
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Algorithm & \begin{tabular}{l}
A structure that specifies the estimation algorithm options, as \\
described in "idnlhw Algorithm Properties" on page 2-380.
\end{tabular} \\
\hline b & \begin{tabular}{l}
B polynomial as a cell array of Ny-by-Nu elements, where Ny \\
is the number of outputs and Nu is the number of inputs. An \\
element b\{i, j\} is a row vector representing the numerator \\
polynomial for the jth input to ith output transfer function. It \\
contains as many leading zeros as there are input delays.
\end{tabular} \\
\hline f & \begin{tabular}{l}
F polynomial as a cell array of Ny-by-Nu elements, where Ny is \\
the number of outputs and Nu is the number of inputs. An \\
element f\{i, j\} is a row vector representing the denominator \\
polynomial for the j:th input to ith output transfer function.
\end{tabular} \\
\hline LinearModel & \begin{tabular}{l}
(Read only) The linear model in the linear block. For single \\
output, represented as an idpoly object. For multiple output, \\
represented as an idss object.
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlhw}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline EstimationInfo & \begin{tabular}{l}
(Read-only) Structure that stores estimation settings and \\
results, as described in "idnlhw EstimationInfo Properties" \\
on page 2-386.
\end{tabular} \\
\hline InputNonlinearity & \begin{tabular}{l}
Nonlinearity estimator object. Assignable values include \\
pwlinear (default), deadzone, wavenet, saturation, \\
customnet, sigmoidnet, poly1d, and unitgain. For more \\
information, see the corresponding reference pages.
\end{tabular} \\
& \begin{tabular}{l}
For ny outputs, Nonlinearity is an ny-by-1 array, such as \\
[sigmoidnet; wavenet]. However, if you specify a scalar \\
object, this nonlinearity object applies to all outputs.
\end{tabular} \\
\hline \begin{tabular}{l}
OutputNonlinearity
\end{tabular} & \begin{tabular}{l}
Same as InputNonlinearity.
\end{tabular} \\
\hline \begin{tabular}{l}
nb \\
nf \\
nk
\end{tabular} & \begin{tabular}{l}
Model orders and input delays, where nb is the number of \\
zeros plus 1, nf is the number of poles, and nk is the delay \\
from input to output in terms of the number of samples.
\end{tabular} \\
\begin{tabular}{l}
For nu inputs and ny outputs, nb, nf and, nk are ny-by-nu \\
matrices whose \(i\) i-jth entry specifies the orders and delay of the \\
transfer function from the jth input to the ith output.
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlhw Algorithm Properties}

The following table summarizes the fields of the Algorithm idnlhw model properties. Algorithm is a structure that specifies the estimation-algorithm options.
\begin{tabular}{|l|l}
\hline Property Name & Description \\
\hline Advanced & \begin{tabular}{l}
A structure that specifies additional estimation algorithm \\
options, as described in "idnlhw Advanced Algorithm \\
Properties" on page 2-384.
\end{tabular} \\
\hline Criterion & \begin{tabular}{l}
The search method of lsqnonlin supports the Trace criterion \\
only. \\
Use for multiple-output models only. Criterion can have the \\
following values: \\
- 'Det': Minimize det (E' *E), where E represents the \\
prediction error. This is the optimal choice in a statistical \\
sense and leads to the maximum likelinood estimates in \\
case nothing is known about the variance of the noise. It \\
uses the inverse of the estimated noise variance as the \\
weighting function. This is the default criterion used for all \\
models, except idnlgrey which uses 'Trace ' by default.
\end{tabular} \\
& \begin{tabular}{l}
'Trace ': Minimize the trace of the weighted prediction \\
error matrix trace (E' *E*W), where E is the matrix of \\
prediction errors, with one column for each output, and \(W\) \\
is a positive semi-definite symmetric matrix of size equal \\
to the number of outputs. By default, \(W\) is an identity \\
matrix of size equal to the number of model outputs (so \\
the minimization criterion becomes trace (E' *E), or the \\
traditional least-squares criterion). You can specify the \\
relative weighting of prediction errors for each output using \\
the Weighting field of the Algorithm property. If the \\
model contains neuralnet or treepartition as one of its
\end{tabular} \\
nonlinearity estimators, weighting is not applied because \\
estimations are independent for each output.
\end{tabular}

\section*{idnlhw}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
If you want to achieve better accuracy for a particular channel \\
in MIMO models, use Trace with weighting that favors \\
that channel. Otherwise, use Det. If you use Det, check \\
cond (model. NoiseVariance) after estimation. If the matrix \\
is ill-conditioned, try using the Trace criterion. You can also \\
use compare on validation data to check whether the relative \\
error for different channels corresponds to your needs or \\
expectations. Use the Trace criterion if you need to modify the \\
relative errors, and check model. NoiseVariance to determine \\
what weighting modifications to specify.
\end{tabular} \\
\hline IterWavenet & \begin{tabular}{l}
(For wavenet nonlinear estimator only) \\
Implicitly set to perform iterative estimation. Changing this \\
setting does not impact the algorithm. \\
Default: 'On'.
\end{tabular} \\
\hline LimitError & \begin{tabular}{l}
Robustification criterion that limits the influence of large \\
residuals, specified as a positive real value. Residual values \\
that are larger than 'LimitError ' times the estimated \\
residual standard deviation have a linear cost instead of the \\
usual quadratic cost. \\
Default: 0 (no robustification).
\end{tabular} \\
\hline MaxIter & \begin{tabular}{l}
Maximum number of iterations for the estimation algorithm, \\
specified as a positive integer. \\
Default: 20.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline MaxSize & \begin{tabular}{l}
The number of elements (size) of the largest matrix to be \\
formed by the algorithm. Computational loops are used for \\
larger matrices. Use this value for memory/speed trade-off. \\
MaxSize can be any positive integer. Default: 250000.
\end{tabular} \\
& \begin{tabular}{l}
Note The original data matrix of \(u\) and \(y\) must be smaller \\
than MaxSize.
\end{tabular} \\
\hline SearchMethod & \begin{tabular}{l}
Method used by the iterative search algorithm. \\
Assignable values:
\end{tabular} \\
- 'Auto' - Automatically chooses from the following \\
methods. \\
- 'gn' — Gauss-Newton method. \\
- 'gna' — Adaptive Gauss-Newton method. \\
- 'grad' — A gradient method. \\
- 'lm' — Levenberg-Marquardt method. \\
- 'lsqnonlin' — Nonlinear least-squares method (requires \\
the Optimization Toolbox product). This method handles \\
only the 'Trace ' criterion.
\end{tabular}

\section*{idnlhw}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline Display & \begin{tabular}{l}
Toggles displaying or hiding estimation progress information in the MATLAB Command Window. \\
Default: 'Off'. \\
Assignable values: \\
- 'Off' - Hide estimation information. \\
- 'On' - Display estimation information.
\end{tabular} \\
\hline Weighting & Positive semi-definite matrix W used for weighted trace minimization. When Criterion = 'Trace', trace (E'*E*W) is minimized. Weighting can be used to specify relative importance of outputs in multiple-input multiple-output models (or reliability of corresponding data) when W is a diagonal matrix of nonnegative values. Weighting is not useful in single-output models. By default, Weighting is an identity matrix of size equal to the number of outputs. \\
\hline
\end{tabular}

\section*{idnlhw Advanced Algorithm Properties}

The following table summarizes the fields of the Algorithm. Advanced model properties. The fields in the Algorithm. Advanced structure specify additional estimation-algorithm options.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline GnPinvConst & \begin{tabular}{l}
When the search direction is computed, the algorithm \\
discards the singular values of the Jacobian that are smaller \\
than GnPinvConst*max \((\text { size }(J))^{*}\) norm \((J) * e p s . ~ S i n g u l a r ~\)
\end{tabular} \\
values that are closer to 0 are included when GnPinvConst is \\
decreased. \\
Default: 1e4. \\
Assign a positive, real value.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
Default: 0.001. \\
Assign a positive real value.
\end{tabular} \\
\hline LMStep & \begin{tabular}{l}
(For Levenberg-Marquardt search algorithm) Try this next \\
level of regularization to get a lower value of the criterion \\
function. The level of regularization is LMStep times the \\
previous level. At the start of a new iteration, the level of \\
regularization is computed as 1/LMStep times the value from \\
the previous iteration. \\
Default: 10. \\
Assign a real value >1.
\end{tabular} \\
\hline MaxBisections & \begin{tabular}{l}
Maximum number of bisections performed by the line search \\
algorithm along the search direction (number of rotations of \\
search vector for ' lm '). Used by 'gn', ' lm', 'gna' and 'grad' \\
search methods (Algorithm. SearchMethod property). \\
Default: 10. \\
Assign a positive integer value.
\end{tabular} \\
\hline MaxFunEvals & \begin{tabular}{l}
The iterations are stopped if the number of calls to the model \\
file exceeds this value. \\
Default: Inf. \\
Assign a positive integer value.
\end{tabular} \\
\hline MinParChange & \begin{tabular}{l}
The smallest parameter update allowed per iteration. \\
Default: 1e-16.
\end{tabular} \\
Assign a positive, real value.
\end{tabular}

\section*{idnlhw}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Rel Improvement & \begin{tabular}{l}
The iterations are stopped if the relative improvement of the \\
criterion function is less than Rel Improvement. \\
Default: 0. \\
Assign a positive real value. \\
\hline StepReduction \\
\\
\begin{tabular}{l}
Note This does not apply when \\
Algorithm. SearchMethod= ' lsqnonlin '.
\end{tabular} \\
\hline \begin{tabular}{l}
(For line search algorithm) The suggested parameter update \\
is reduced by the factor 'StepReduction' after each try until \\
either 'MaxBisections' tries are completed or a lower value \\
of the criterion function is obtained. \\
Default: 2. \\
Assign a positive, real value >1.
\end{tabular} \\
\hline \begin{tabular}{l}
Note This does not apply when \\
Algorithm. SearchMethod= ' lsqnonlin '.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
idnlhw EstimationInfo Properties

The following table summarizes the fields of the EstimationInfo model properties. The read-only fields of the EstimationInfo structure store estimation settings and results.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Status & Shows whether the model parameters were estimated. \\
\hline Method & Shows the estimation method. \\
\hline LossFcn & \begin{tabular}{l}
Value of the loss function, equal to \(\operatorname{det}\left(E^{\prime} * E / N\right)\), where \(E\) is \\
the residual error matrix (one column for each output) and \(N\) is \\
the total number of samples.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline FPE & Value of Akaike's Final Prediction Error (see fpe). \\
\hline DataName & Name of the data from which the model is estimated. \\
\hline DataLength & Length of the estimation data. \\
\hline DataTs & Sampling interval of the estimation data. \\
\hline DataDomain & \begin{tabular}{l}
'Time' means time domain data. 'Frequency ' is not \\
supported.
\end{tabular} \\
\hline DataInterSample & \begin{tabular}{l}
Intersample behavior of the input estimation data used for \\
interpolation:
\end{tabular} \\
\hline - 'zoh' means zero-order-hold, or piecewise constant. \\
- 'foh' means first-order-hold, or piecewise linear.
\end{tabular}

\section*{Definitions Hammerstein-Wiener Model Structure}

This block diagram represents the structure of a Hammerstein-Wiener model:

\section*{idnlhw}

where:
- \(w(t)=f(u(t))\) is a nonlinear function transforming input data \(u(t) . w(t)\) has the same dimension as \(u(t)\).
- \(x(t)=(B / F) w(t)\) is a linear transfer function. \(x(t)\) has the same dimension as \(y(t)\).
where \(B\) and \(F\) are similar to polynomials in the linear Output-Error model, as described in "What Are Polynomial Models?".
For \(n y\) outputs and \(n u\) inputs, the linear block is a transfer function matrix containing entries:
\[
\frac{B_{j, i}(q)}{F_{j, i}(q)}
\]
where \(j=1,2, \ldots, n y\) and \(i=1,2, \ldots, n u\).
- \(y(t)=h(x(t))\) is a nonlinear function that maps the output of the linear block to the system output.
\(w(t)\) and \(x(t)\) are internal variables that define the input and output of the linear block, respectively.

Because \(f\) acts on the input port of the linear block, this function is called the input nonlinearity. Similarly, because \(h\) acts on the output port of the linear block, this function is called the output nonlinearity. If system contains several inputs and outputs, you must define the functions \(f\) and \(h\) for each input and output signal.

You do not have to include both the input and the output nonlinearity in the model structure. When a model contains only the input nonlinearity \(f\), it is called a Hammerstein model. Similarly, when the model contains only the output nonlinearity \(h\)), it is called a Wiener model.

The nonlinearities \(f\) and \(h\) are scalar functions, one nonlinear function for each input and output channel.
The Hammerstein-Wiener model computes the output \(y\) in three stages:
1 Computes \(w(t)=f(u(t))\) from the input data.
\(w(t)\) is an input to the linear transfer function \(B / F\).
The input nonlinearity is a static (memoryless) function, where the value of the output a given time \(t\) depends only on the input value at time \(t\).

You can configure the input nonlinearity as a sigmoid network, wavelet network, saturation, dead zone, piecewise linear function, one-dimensional polynomial, or a custom network. You can also remove the input nonlinearity.

2 Computes the output of the linear block using \(w(t)\) and initial conditions: \(x(t)=(B / F) w(t)\).

You can configure the linear block by specifying the numerator \(B\) and denominator \(F\) orders.

3 Compute the model output by transforming the output of the linear block \(x(t)\) using the nonlinear function \(h: y(t)=h(x(t))\).

Similar to the input nonlinearity, the output nonlinearity is a static function. Configure the output nonlinearity in the same way as the input nonlinearity. You can also remove the output nonlinearity, such that \(y(t)=x(t)\).

Resulting models are idnlhw objects that store all model data, including model parameters and nonlinearity estimator. See the idnlhw reference page for more information.

\section*{idnlhw States}

This toolbox requires states for simulation and prediction using sim(idnlhw), predict, and compare. States are also necessary for

\section*{idnlhw}
linearization of nonlinear ARX models using linearize(idnlhw). This toolbox provides a number of options to facilitate how you specify the initial states. For example, you can use findstates and data2state to automatically search for state values in simulation and prediction applications. For linearization, use findop. You can also specify the states manually.

The states of the Hammerstein-Wiener model correspond to the states of the linear block in the Hammerstein-Wiener model structure:

The linear block contains all the dynamic elements of the model. If this linear model is not a state-space structure, the states are defined as those of model Mss, where Mss = idss(Model.LinearModel) and Model is the idnlhw object.

\section*{Examples}

Create default Hammerstein-Wiener model structure:
```

    m = idnlhw([2 2 1]) % na=nb=2 and nk=1
    % m has piecewise linear input and output nonlinearity

```

Create nonlinear ARX model structure with sigmoid network nonlinearity:
```

m=idnlarx([2 3 1],sigmoidnet('Num',15))
% number of units is 15

```

Create Hammerstein-Wiener model with specific input-output nonlinearities:
```

    m=idnlhw([2 2 1],'sigmoidnet','deadzone')
    % Equivalent to m=idnlhw([2 2 1],'sig','dead')
% Nonlinearities have default configuration

```

Create Hammerstein-Wiener model and configure the nonlinearity objects:
```

m=idnlhw([2 2 1],sigmoidnet('num',5),deadzone([-1,2]))

```

Create a Hammerstein model (no output nonlinearity):
```

m=idnlhw([2 2 1],'saturation',[])
% [] specifies unitgain output nonlinearity

```

Configure the Hammerstein-Wiener model and estimate models parameters:
```

m0 = idnlhw([nb,nf,nk],[sigmoidnet;pwlinear],[]);
m = pem(data,mO); % equivalent to m=nlhw(data,mO)

```

Construct default Hammerstein-Wiener model using an input-output polynomial model of Output-Error structure:
```

% Construct an input-output polynomial model of OE structure.
B = [0.8 1];
F = [1 -1.2 0.5];
LinearModel = idpoly(1, B, 1,1, F, 'Ts', 0.1);
% Construct Hammerstein-Wiener model using OE model
% as its linear component.
m1 = idnlhw(LinearModel, 'saturation', [])

```

See Also customnet \| idnlmodel | linear | linearize(idnlhw) | nlhw | pem | poly1d | saturation | sigmoidnet | wavenet | saturation

\section*{idnlhw}

Tutorials

How To
- "Example - Using nlhw to Estimate Hammerstein-Wiener Models"
- "Estimate Hammerstein-Wiener Models Using Linear OE Models"
- "Identifying Hammerstein-Wiener Models"
- "Using Linear Model for Hammerstein-Wiener Estimation"

\section*{Purpose \\ Description}

Superclass for nonlinear models

You do not use the idnlmodel class directly. Instead, idnlmodel defines the common properties and methods inherited by its subclasses, idnlarx, idnlgrey, and idnlhw.
idnlmodel Properties

The following table lists the properties shared by the idnlarx, idnlgrey, and idnlhw, defined in terms of Ny outputs and Nu inputs.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline InputName & \begin{tabular}{l}
Specifies the names of individual input channels. \\
Default: \{'u1' ; 'u2' ; . . ; ' uNu' \}.
\end{tabular} \\
& \begin{tabular}{l}
Assignable values: \\
- For single-output models, a string. For example, 'torque '. \\
- For multiple-output models, an nu-by-1 cell array. For \\
example: \\
\{'thrust '; 'aileron deflection' \}
\end{tabular} \\
\hline InputUnit & \begin{tabular}{l}
Specifies the units of each input channel. \\
Default: ' '.
\end{tabular} \\
& \begin{tabular}{l}
Assignable values: \\
- For single-output models, a string. For example, 'm/s '. \\
- For multiple-output models, an nu-by-1 cell array.
\end{tabular} \\
\hline Name & Name of the model, specified as a string.
\end{tabular}

\section*{idnImodel}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline OutputName & \begin{tabular}{l}
Specifies the names of individual output channels. \\
Default: \{'y1';'y2';...;'yNy'\}. \\
Assignable values: \\
- For single-output models, a string. For example, 'torque'. \\
- For multiple-output models, an ny-by-1 cell array. For example: \\
\{'thrust'; 'aileron deflection'\}
\end{tabular} \\
\hline OutputUnit & \begin{tabular}{l}
Specifies the units of each output channel. \\
Default: ' ' \\
Assignable values: \\
- For single-output models, a string. For example, 'm/s'. \\
- For multiple-output models, an ny-by-1 cell array.
\end{tabular} \\
\hline TimeUnit & \begin{tabular}{l}
Unit of the sampling interval and time vector, specified as one of the following: \\
- 'nanoseconds' \\
- 'microseconds' \\
- 'milliseconds' \\
- 'seconds' \\
- 'minutes' \\
- 'hours' \\
- 'days' \\
- 'weeks' \\
- 'months' \\
- 'years' \\
Default: 'seconds'.
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlmodel}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline TimeVariable & \begin{tabular}{l}
Independent variable for the inputs, outputs, and-when \\
available-internal states, specified as a string. \\
Default: 't ' (time).
\end{tabular} \\
\hline Ts & \begin{tabular}{l}
Sampling interval with the unit specified by TimeUnit. \\
Default: 1. \\
Assignable values:
\end{tabular} \\
& \begin{tabular}{l}
- For discrete-time models, positive scalar value of the \\
sampling interval. \\
- For continuous-time models, O(idnlgrey models only).
\end{tabular} \\
\hline
\end{tabular}

\author{
See Also \\ idnlarx \\ idnlgrey \\ idnlhw
}

\section*{idpar}

Purpose Create parameter for initial states and input level estimation
Syntax \(\quad\)\begin{tabular}{l}
\(p=\) idpar (paramvalue) \\
\(p=\) idpar (paramname, paramvalue)
\end{tabular}

Description

Tips

\section*{Input Arguments}
\(p=i d p a r(p a r a m v a l u e)\) creates an estimable parameter with initial value paramvalue. The parameter, \(p\), is either scalar or array-valued, with the same dimensions as paramvalue. You can configure attributes of the parameter, such as which elements are fixed and which are estimated, and lower and upper bounds.
\(p\) = idpar(paramname, paramvalue) sets the Name property of \(p\) to the string paramname.

Use idpar to create estimable parameters for:
- Initial state estimation for state-space model estimation (ssest), prediction (predict), and forecasting (forecast)
- Explicit initial state estimation with findstates
- Input level estimation for process model estimation with pem

Specifying estimable state values or input levels gives you explicit control over the behavior of individual state values during estimation.

\section*{paramvalue}

Initial parameter value.
paramvalue is a numeric scalar or array that determines both the dimensions and initial values of the estimable parameter p. For example, \(\mathrm{p}=\) idpar(eye(3)) creates a 3-by-3 parameter whose initial value is the identity matrix.
paramvalue should be:
- A column vector of length \(N_{x}\), the number of states to estimate, if you are using p for initial state estimation.
- An \(N_{x}\)-by- \(N_{e}\) array, if you are using p for initial state estimation with multi-experiment data. \(N_{e}\) is the number of experiments.
- A column vector of length \(N_{u}\), the number of inputs to estimate, if you are using p for input level estimation.
- An \(N_{u}\)-by- \(N_{e}\) array, if you are using p for input level estimation with multi-experiment data.

If the initial value of a parameter is unknown, use NaN .

\section*{paramname}

String specifying the Name property of \(p\).
The Name property is not used in state estimation or input level estimation. You can optionally assign a name for convenience. For example, you can assign \(x 0\) as the name of a parameter created for initial state estimation.

> Default: 'par'

\section*{Output \\ Arguments}

\section*{p}

Estimable parameter, specified as a param. Continuous object.
\(p\) can be either scalar- or array-valued. \(p\) takes its dimensions and initial value from paramvalue.
p contains the following fields:
- Value - Scalar or array value of the parameter.

The dimension and initial value of \(p\). Value are taken from paramvalue when \(p\) is created.
- Minimum - Lower bound for the parameter value. When you use p in state estimation or input value estimation, the estimated value of the parameter does not drop below p.Minimum.

The dimensions of \(p\).Minimum must match the dimensions of \(p\).Value.
For array-valued parameters, you can:

\section*{idpar}
- Specify lower bounds on individual array elements. For example, p.Minimum ([14]) = -5.
- Use scalar expansion to set the lower bound for all array elements. For example, p.Minimum = -5
Default: - Inf
- Maximum - Upper bound for the parameter value. When you use p in state estimation or input value estimation, the estimated value of the parameter does not exceed p.Maximum.

The dimensions of \(p\).Maximum must match the dimensions of \(p\).Value.
For array-valued parameters, you can:
- Specify upper bounds on individual array elements. For example, p.Maximum ([14]) =5.
- Use scalar expansion to set the upper bound for all array elements. For example, p.Maximum = 5

Default: Inf
- Free - Boolean specifying whether the parameter is a free estimation variable.

The dimensions of \(p\). Free must match the dimensions of \(p\). Value. By default, all values are free (p . Free \(=\) true).
If you want to estimate p .Value(k), set \(\mathrm{p} . \mathrm{Free}(\mathrm{k})=\) true. To fix \(p . \operatorname{Value}(k)\), set \(p . F r e e(k)=\) false. Doing so allows you to control which states or input values are estimated and which are not.

For array-valued parameters, you can:
- Fix individual array elements. For example, p.Free([1 4]) = false; p.Free = [1 0; 0 1].
- Use scalar expansion to fix all array elements. For example, p.Free = false.

Default: true (1)
- Scale - Scaling factor for normalizing the parameter value.
p.Scale is not used in initial state estimation or input value estimation.

Default: 1
- Info - Structure array for storing parameter units and labels. The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe parameter units and labels. For example, p.Info(1,1).Unit = 'rad/m'; p.Info(1,1).Label = 'engine speed'.

The dimensions of \(p\). Info must match the dimensions of \(p\).Value.
Default: ' ' for both Label and Unit fields
- Name - Parameter name.

This property is read-only. It is set to the paramname input argument when you create the parameter.

Default: ''

\section*{Examples Create and Configure Parameter for State Estimation}

Create and configure a parameter for estimating the initial state values of a 4 -state system. Fix the first state value to 1 . Limit the second and third states to values between 0 and 1 .
```

paramvalue = [1; nan(3,1)];
p = idpar('x0',paramvalue);
p.Free(1) = 0;
p.Minimum([2 3]) = 0;
p.Maximum([2 3]) = 1;

```

The column vector paramvalue specifies an initial value of 1 for the first state. paramvalue further specifies unknown values for the remaining 3 states.

Setting p.Free(1) to false fixes p.Value(1) to 1. Estimation using p does not alter that value.

\section*{idpar}

Setting p.Minimum and p.Maximum for the second and third entries in \(p\) limits the range that those values can take when \(p\) is used in estimation.

You can now use \(p\) in initial state estimation, such as with the findstates command. For example, use opt = findstatesOptions('InitialState', p) to create a findstates options set that uses \(p\). Then, call findstates with that options set.

\section*{See Also}
```

predict | findstates(idParametric) | findstatesOptions |
forecast | ssest | pem

```

\section*{Purpose}

Syntax

Description

Polynomial model with identifiable parameters
```

sys = idpoly(A,B,C,D,F,NoiseVariance,Ts)
sys = idpoly(A,B,C,D,F,NoiseVariance,Ts,Name,Value)
sys = idpoly(A)
sys = idpoly(A,[],C,D,[],NoiseVariance,Ts)
sys = idpoly(A,[],C,D,[],NoiseVariance,Ts,Name,Value)
sys = idpoly(sys0)
sys = idpoly(sysO,'split')

```
sys \(=\) idpoly (A, B, C, D, F, NoiseVariance, Ts) creates a polynomial model with identifiable coefficients. A, B, C, D, and F specify the initial values of the coefficients. NoiseVariance specifies the initial value of the variance of the white noise source. Ts is the model sampling time.
sys = idpoly(A, B, C, D, F,NoiseVariance,Ts,Name, Value) creates a polynomial model using additional options specified by one or more Name, Value pair arguments.
sys \(=\) idpoly (A) creates a time series model with only an autoregressive term. In this case, sys represents the AR model given by \(A\left(q^{-1}\right) y(t)=e(t)\). The noise \(e(t)\) has variance 1 . A specifies the initial values of the estimable coefficients.
sys = idpoly(A,[],C,D,[],NoiseVariance,Ts) creates a time series model with an autoregressive and a moving average term. The inputs A, C, and D, specify the initial values of the estimable coefficients. NoiseVariance specifies the initial value of the noise \(e(t)\). Ts is the model sampling time. (Omit NoiseVariance and Ts to use their default values.)

If \(D=[]\), then sys represents the ARMA model given by:

\section*{idpoly}
\[
A\left(q^{-1}\right) y(t)=C\left(q^{-1}\right) e(t)
\]
sys = idpoly(A,[], C, D, [], NoiseVariance, Ts, Name, Value) creates a time series model using additional options specified by one or more Name, Value pair arguments.
sys \(=\) idpoly (sys0) converts any dynamic system model, sys0, to idpoly model form.
sys = idpoly(sys0,'split') converts sys0 to idpoly model form, and treats the last \(N_{y}\) input channels of sys0 as noise channels in the returned model. sys0 must be a numeric (non-identified) tf, zpk, or ss model object. Also, sys0 must have at least as many inputs as outputs.

\section*{Object Description}

An idpoly model represents a system as a continuous-time or discrete-time polynomial model with identifiable (estimable) coefficients.
A polynomial model of a system with input vector \(u\), output vector \(y\), and disturbance \(e\) takes the following form in discrete time:
\[
A(q) y(t)=\frac{B(q)}{F(q)} u(t)+\frac{C(q)}{D(q)} e(t)
\]

In continuous time, a polynomial model takes the following form:
\[
A(s) Y(s)=\frac{B(s)}{F(s)} U(s)+\frac{C(s)}{D(s)} E(s)
\]
\(U(s)\) are the Laplace transformed inputs to sys. \(Y(s)\) are the Laplace transformed outputs. \(E(s)\) is the Laplace transform of the disturbance.

For idpoly models, the coefficients of the polynomials \(A, B, C, D\), and \(F\) can be estimable parameters. The idpoly model stores the values of these matrix elements in the \(a, b, c, d\), and \(f\) properties of the model.

Time series models are special cases of polynomial models for systems without measured inputs. For AR models, b and \(f\) are empty, and c and \(d\) are 1 for all outputs. For ARMA models, b and f are empty, while d is 1 .

There are three ways to obtain an idpoly model:
- Estimate the idpoly model based on output or input-output measurements of a system, using such commands as polyest, arx, armax, oe, bj, iv4, or ivar. These estimation commands estimate the values of the free polynomial coefficients. The estimated values are stored in the \(a, b, c, d\), and f properties of the resulting idpoly model. The Report property of the resulting model stores information about the estimation, such as handling of initial conditions and options used in estimation.

When you obtain an idpoly model by estimation, you can extract estimated coefficients and their uncertainties from the model using commands such as polydata, getpar, or getcov.
- Create an idpoly model using the idpoly command.

You can create an idpoly model to configure an initial parameterization for estimation of a polynomial model to fit measured response data. When you do so, you can specify constraints on the polynomial coefficients. For example, you can fix the values of some coefficients, or specify minimum or maximum values for the free coefficients. You can then use the configured model as an input argument to polyest to estimate parameter values with those constraints.
- Convert an existing dynamic system model to an idpoly model using the idpoly command.

\section*{Examples Multi-Output ARMAX Model}

Create an idpoly model representing the one-input, two-output ARMAX model described by the following equations:

\section*{idpoly}
\[
\begin{aligned}
& y_{1}(t)+0.5 y_{1}(t-1)+0.9 y_{2}(t-1)+0.1 y_{2}(t-2)= \\
& u(t)+5 u(t-1)+2 u(t-2)+e_{1}(t)+0.01 e_{1}(t-1) \\
& y_{2}(t)+0.05 y_{2}(t-1)+0.3 y_{2}(t-2)= \\
& 10 u(t-2)+e_{2}(t)+0.1 e_{2}(t-1)+0.02 e_{2}(t-2)
\end{aligned}
\]
\(y_{1}\) and \(y_{2}\) are the two outputs, and \(u\) is the input. \(e_{1}\) and \(e_{2}\) are the white noise disturbances on the outputs \(y_{1}\) and \(y_{2}\) respectively.
To create the idpoly model, define the A, B, and C polynomials that describe the relationships between the outputs, inputs, and noise values. (Because there are no denominator terms in the system equations, \(B\) and \(F\) are 1.)

Define the cell array containing the coefficients of the A polynomials.
```

A = cell(2,2);
A{1,1} = [1 0.5];
A{1,2} = [0 0.9 0.1];
A{2,1} = [0];
A{2,2} = [1 0.05 0.3];

```

You can read the values of each entry in the A cell array from the left side of the equations describing the system. For example, A\{1, 1\} describes the polynomial that gives the dependence of \(y_{1}\) on itself. This polynomial is \(A_{11}=1+0.5 q^{-1}\), because each factor of \(q^{-1}\) corresponds to a unit time decrement. Therefore, \(A\{1,1\}=[10.5]\), giving the coefficients of \(A_{11}\) in increasing exponents of \(q^{-1}\).

Similarly, \(\mathrm{A}\{1,2\}\) describes the polynomial that gives the dependence of \(y_{1}\) on \(y_{2}\). From the equations, \(A_{12}=0+0.9 q^{-1}+0.1 q^{-2}\). Thus, A \(\{1,2\}\) \(=\left[\begin{array}{lll}0 & 0.9 & 0.1\end{array}\right]\).
The remaining entries in A are similarly constructed.
Define the cell array containing the coefficients of the B polynomials.
```

B = cell(2,1);
B{1,1} = [1 5 2];

```
\(B\{2,1\}=[0010] ;\)
B describes the polynomials that give the dependence of the outputs \(y_{1}\) and \(y_{2}\) on the input \(u\). From the equations, \(B_{11}=1+5 q^{-1}+2 q^{-2}\). Therefore, \(\mathrm{B}\{1,1\}=\left[\begin{array}{ll}1 & 5\end{array}\right]\).
Similarly, from the equations, \(B_{21}=0+0 q^{-1}+10 q^{-2}\). Therefore, \(\mathrm{B}\{2,1\}\) = \(\left.\begin{array}{lll}0 & 0 & 10\end{array}\right]\).

Define the cell array containing the coefficients of the C polynomials.
```

C = cell(2,1);
C{1,1} = [1 0.01];
C{2,1} = [1 0.1 0.02];

```

C describes the polynomials that give the dependence of the outputs \(y_{1}\) and \(y_{2}\) on the noise terms \(e_{1}\) and \(e_{2}\). The entries of C can be read from the equations similarly to those of \(A\) and \(B\).

Create an idpoly model with the specified coefficients.
```

sys $=$ idpoly (A,B,C)
sys =
Discrete-time ARMAX model:
Model for output number 1: $A(z) y \_1(t)=-A \_i(z) y \_i(t)+B(z) u(t)$
$\mathrm{A}(\mathrm{z})=1+0.5 \mathrm{z}^{\wedge}-1$
A_2(z) $=0.9 z^{\wedge}-1+0.1 z^{\wedge}-2$
$B(z)=1+5 z^{\wedge}-1+2 z^{\wedge}-2$
$C(z)=1+0.01 z^{\wedge}-1$
Model for output number 2: $\mathrm{A}(\mathrm{z}) \mathrm{y}$ _2(t) $=\mathrm{B}(\mathrm{z}) \mathrm{u}(\mathrm{t})+\mathrm{C}(\mathrm{z}) \mathrm{e}$ _2(t)
$A(z)=1+0.05 z^{\wedge}-1+0.3 z^{\wedge}-2$
$B(z)=10 z^{\wedge}-2$

```

\section*{idpoly}
\(C(z)=1+0.1 z^{\wedge}-1+0.02 z^{\wedge}-2\)

Sample time: unspecified
Parameterization:
Polynomial orders: \(n a=[12 ; 02] \quad n b=[3 ; 1] \quad n c=[1 ; 2] \quad n k=[0 ; 2]\)
Number of free coefficients: 12
Use "polydata", "getpvec", "getcov" for parameters and their uncertair

Status:
Created by direct construction or transformation. Not estimated.

The display shows all the polynomials and allows you to verify them. The display also states that there are 12 free coefficients. Leading terms of diagonal entries in A are always fixed to 1 . Leading terms of all other entries in A are always fixed to 0 .

You can use sys to specify an initial parametrization for estimation with such commands as polyest or armax.

Tips

\section*{Input}

Arguments
- Although idpoly supports continuous-time models, idtf and idproc allow more choices for estimation of continuous-time models. Therefore, for some continuous-time applications, these model types are preferable.

\section*{A,B,C,D,F}

Initial values of polynomial coefficients.
For SISO models, specify the initial values of the polynomial coefficients as row vectors. Specify the coefficients in order of:
- Ascending powers of \(z^{-1}\) or \(q^{-1}\) (for discrete-time polynomial models).
- Descending powers of \(s\) or \(p\) (for continuous-time polynomial models).

The leading coefficients of A, C, D, and F must be 1 . Use NaN for any coefficient whose initial value is not known.

For MIMO models with \(N_{y}\) outputs and \(N_{u}\) inputs, A, B, C, D, and F are cell arrays of row vectors. Each entry in the cell array contains the coefficients of a particular polynomial that relates input, output, and noise values.
\begin{tabular}{l|l|l}
\hline Polynombitnension & Relation Described \\
\hline A & \(N_{y}\)-by- \(N_{y}\) array of row vectors & \begin{tabular}{l}
\(\mathrm{A}\{\mathrm{i}, \mathrm{j}\}\) contains coefficients \\
of relation between output \(y_{i}\) \\
and output \(y_{j}\)
\end{tabular} \\
\hline \(\mathrm{~B}, \mathrm{~F}\) & \(N_{y}\)-by- \(N_{u}\) array of row vectors & \begin{tabular}{l}
\(\mathrm{B}\{\mathrm{i}, \mathrm{j}\}\) and \(\mathrm{F}\{\mathrm{i}, \mathrm{j}\}\) contain \\
coefficients of relations \\
between output \(y_{i}\) and input \\
\(u_{j}\)
\end{tabular} \\
\hline \(\mathrm{C}, \mathrm{D}\) & \(N_{y}\)-by-1 array of row vectors & \begin{tabular}{l}
\(\mathrm{C}\{\mathrm{i}\}\) and \(\mathrm{D}\{\mathrm{i}\}\) contain \\
coefficients of relations \\
between output \(y_{i}\) and noise \\
\(e_{i}\)
\end{tabular} \\
\hline
\end{tabular}

The leading coefficients of the diagonal entries of \(A(A\{i, i\}, i=1: N y)\) must be 1 . The leading coefficients of the off-diagonal entries of A must be zero, for causality. The leading coefficients of all entries of C, D, and F , must be 1 .

Use [] for any polynomial that is not present in the desired model structure. For example, to create an ARX model, use [] for C, D, and F. For an ARMA time series, use [] for B and F.
```

Default: B = [ ]; C = 1 for all outputs; D = 1 for all outputs;
F = []

```

\section*{Ts}

Sampling time. For continuous-time models, Ts \(=0\). For discrete-time models, Ts is a positive scalar representing the sampling period expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set Ts = -1 .

\section*{idpoly}

Default: -1 (discrete-time model with unspecified sampling time)

\section*{NoiseVariance}

The variance (covariance matrix) of the model innovations \(e\).
An identified model includes a white, Gaussian noise component \(e(t)\). NoiseVariance is the variance of this noise component. Typically, a model estimation function (such as polyest) determines this variance. Use this input to specify an initial value for the noise variance when you create an idpoly model.

For SISO models, NoiseVariance is a scalar. For MIMO models, NoiseVariance is a \(N_{y}\)-by- \(N_{y}\) matrix, where \(N_{y}\) is the number of outputs in the system.

Default: \(N_{y}\)-by- \(N_{y}\) identity matrix

\section*{sys0}

Dynamic system.
Any dynamic system, such as idss, idtf, or tf to be converted into an idpoly object.

For the syntax sys = idpoly(sys0, 'split'), sys0 must be a numeric (non-identified) tf, zpk, or ss model object. Also, sys0 must have at least as many inputs as outputs. Finally, the subsystem sys0(:, \(\mathrm{Ny}+1: \mathrm{Nu})\) must be biproper.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Use Name, Value arguments to specify additional properties of idpoly models during model creation. For example,
idpoly (A, B, C, D, F, 1, 0, 'InputName', 'Voltage') creates an idpoly model with the InputName property set to Voltage.

\section*{Properties}
idpoly object properties include:

\section*{\(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{f}\)}

Values of polynomial coefficients.
If you create an idpoly model sys using the idpoly command, sys.a, sys.b, sys.c, sys.d, and sys.f contain the initial coefficient values that you specify with the A, B, C, D, and F input arguments, respectively.

If you obtain an idpoly model by identification, then sys.a, sys.b, sys.c, sys.d, and sys.f contain the estimated values of the coefficients.
For an idpoly model sys, each property sys.a, sys.b, sys.c, sys.d, and sys.f is an alias to the corresponding Value entry in the Structure property of sys. For example, sys.a is an alias to the value of the property sys.Structure.a.Value.

For SISO polynomial models, the values of the numerator coefficients are stored as a row vector in order of:
- Ascending powers of \(z^{-1}\) or \(q^{-1}\) (for discrete-time transfer functions).
- Descending powers of \(s\) or \(p\) (for continuous-time transfer functions).

The leading coefficients of A, C, and D are fixed to 1 . Any coefficient whose initial value is not known is stored as NaN .

For MIMO models with \(N_{y}\) outputs and \(N_{u}\) inputs, A, B, C, D, and F are cell arrays of row vectors. Each entry in the cell array contains the coefficients of a particular polynomial that relates input, output, and noise values.

\section*{idpoly}
\begin{tabular}{l|l|l}
\hline Polynombitnension & Relation Described \\
\hline A & \(N_{y}\)-by- \(N_{y}\) array of row vectors & \begin{tabular}{l}
\(\mathrm{A}\{\mathrm{i}, \mathrm{j}\}\) contains coefficients \\
of relation between output \(y_{i}\) \\
and output \(y_{j}\)
\end{tabular} \\
\hline \(\mathrm{~B}, \mathrm{~F}\) & \(N_{y}\)-by- \(N_{u}\) array of row vectors & \begin{tabular}{l}
\(\mathrm{B}\{\mathrm{i}, \mathrm{j}\}\) and \(\mathrm{F}\{\mathrm{i}, \mathrm{j}\}\) contain \\
coefficients of relations \\
between output \(y_{i}\) and input \\
\(u_{j}\)
\end{tabular} \\
\hline \(\mathrm{C}, \mathrm{D}\) & \(N_{y}\)-by-1 array of row vectors & \begin{tabular}{l}
\(\mathrm{C}\{\mathrm{i}\}\) and \(\mathrm{D}\{\mathrm{i}\}\) contain \\
coefficients of relations \\
between output \(y_{i}\) and noise \\
\(e_{i}\)
\end{tabular} \\
\hline
\end{tabular}

The leading coefficients of the diagonal entries of \(\mathrm{A}(\mathrm{A}\{\mathrm{i}, \mathrm{i}\}, \mathrm{i}=1: \mathrm{Ny})\) are fixed to 1 . The leading coefficients of the off-diagonal entries of \(A\) are fixed to zero. The leading coefficients of all entries of C, D, and F , are fixed to 1 .

For a time series (a model with no measured inputs), \(B=[]\) and \(F\) = [].

Default: B = []; C = 1 for all outputs; D = 1 for all outputs; F = []

\section*{Variable}

String specifying the polynomial model display variable. Variable can take the following values:
- 'z^-1' - Default for discrete-time models
- ' \(q^{\wedge}-1^{\prime}\) — Equivalent to \({ }^{\prime} z^{\wedge}-1^{\prime}\)
- 's' — Default for continuous-time models
- 'p' - Equivalent to 's'

The value of Variable is reflected in the display, and also affects the interpretation of the A, B, C, D, and F coefficient vectors for discrete-time
models. For Variable \(=\) ' \(z^{\wedge}-1\) ' or ' \(q^{\wedge}-1\) ', the coefficient vectors are ordered as ascending powers of the variable.

\section*{ioDelay}

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

If you create an idpoly model sys using the idpoly command, sys.ioDelay contains the initial values of the transport delay that you specify with a Name, Value argument pair.

If you obtain an idpoly model sys by identification, then sys.ioDelay contains the estimated values of the transport delay.
For an idpoly model sys, the property sys.ioDelay is an alias to the value of the property sys.Structure.ioDelay.Value.

For continuous-time systems, transport delays are expressed in the time unit stored in the TimeUnit property. For discrete-time systems, specify transport are expressed as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay is a Ny-by-Nu array, where each entry is a numerical value representing the transport delay for the corresponding input/output pair. You can set ioDelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

\section*{IntegrateNoise}

Logical vector, denoting presence or absence of integration on noise channels.

Specify IntegrateNoise as a logical vector of length equal to the number of outputs.

IntegrateNoise(i) = true indicates that the noise channel for the \(i\) th output contains an integrator. In this case, the corresponding

\section*{idpoly}
\(D\) polynomial contains an additional term which is not represented in the property sys.d. This integrator term is equal to [10] for continuous-time systems, and equal to [1-1] for discrete-time systems.

Default: 0 for all output channels

\section*{Structure}

Information about the estimable parameters of the idpoly model. sys.Structure.a, sys.Structure.b, sys.Structure.c, sys.Structure.d, and sys.Structure.f contain information about the polynomial coefficients. sys.Structure.ioDelay contains information about the transport delay. sys.Structure. IntegrateNoise contain information about the integration terms on the noise. Each contains the following fields:
- Value - Parameter values. For example, sys.Structure.a.Value contains the initial or estimated values of the \(A\) coefficients.

NaN represents unknown parameter values.
For SISO models, each property sys.a, sys.b, sys.c, sys.d, sys.f, and sys.ioDelay is an alias to the corresponding Value entry in the Structure property of sys. For example, sys.a is an alias to the value of the property sys.Structure.a.Value

For MIMO models, sys.a\{i,j\} is an alias to sys.Structure.a(i,j).Value, and similarly for the other identifiable coefficient values.
- Minimum - Minimum value that the parameter can assume during estimation. For example, sys.Structure.ioDelay.Minimum = 0.1 constrains the transport delay to values greater than or equal to 0.1.
sys.Structure.ioDelay.Minimum must be greater than or equal to zero.
- Maximum - Maximum value that the parameter can assume during estimation.
- Free - Logical value specifying whether the parameter is a free estimation variable. If you want to fix the value of a parameter during estimation, set the corresponding Free \(=\) false. For example, if \(B\) is a 3 -by- 3 matrix, sys.Structure.a.Free \(=\) eyes (3) fixes all of the off-diagonal entries in \(B\) to the values specified in sys.Structure.b. Value. In this case, only the diagonal entries in \(B\) are estimable.

For fixed values, such as the leading coefficients in sys.Structure.a.Value, the corresponding value of Free is always false.
- Scale - Scale of the parameter's value. Scale is not used in estimation.
- Info - Structure array for storing parameter units and labels. The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe parameter units and labels.

For a MIMO model with Ny outputs and Nu inputs, the dimensions of the Structure elements are as follows:
- sys.Structure.a - Ny-by-Ny
- sys.Structure.b - Ny-by-Nu
- sys.Structure.c - Ny-by-1
- sys.Structure.d - Ny-by-1
- sys.Structure.f - Ny-by-Nu

An inactive polynomial, such as the B polynomial in a time series model, is not available as a parameter in the Structure property. For example, sys = idpoly ([1-0.2 0.5]) creates an AR model. sys. Structure contains the fields sys.Structure.a, sys.Structure.ioDelay, and sys.Structure.IntegrateNoise. However, there is no field in sys. Structure corresponding to \(\mathrm{b}, \mathrm{c}, \mathrm{d}\), or f .

NoiseVariance

\section*{idpoly}

The variance (covariance matrix) of the model innovations \(e\).
An identified model includes a white, Gaussian noise component \(e(t)\). NoiseVariance is the variance of this noise component. Typically, the model estimation function (such as arx) determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models, NoiseVariance is a \(N_{y}\)-by- \(N_{y}\) matrix, where \(N_{y}\) is the number of outputs in the system.

\section*{Report}

Information about the estimation process.
Report contains the following fields:
- InitialCondition - Whether estimation estimated initial conditions or fixed them at zero.
- Fit - Quantitative quality assessment of estimation, including percent fit to data and final prediction error.
- Parameters - Estimated values of model parameters and their covariance.
- OptionsUsed - Options used during estimation (see ssestOptions or n4sidOptions).
- RandState - Random number stream state at start of estimation.
- Status - Whether model was obtained by construction, estimated, or modified after estimation.
- Method - Name of estimation method used.
- DataUsed - Attributes of data used for estimation, such as name and sampling time.
- Termination - Termination conditions for the iterative search scheme used for prediction error minimization, such as final cost value or stopping criterion. Not available when the model is estimated using arx or instrument variable approaches.

\section*{InputDelay}

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay = 3 means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

\section*{OutputDelay}

Output delays.
For identified systems, like idpoly, OutputDelay is fixed to zero.

\section*{Ts}

Sampling time. For continuous-time models, Ts \(=0\). For discrete-time models, Ts is a positive scalar representing the sampling period expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set Ts \(=-1\).

Changing this property does not discretize or resample the model. Use c2d and d2c to convert between continuous- and discrete-time representations. Use d2d to change the sampling time of a discrete-time system.

Default: - 1 (discrete-time model with unspecified sampling time)

\section*{TimeUnit}

\section*{idpoly}

String representing the unit of the time variable, any time delays in the model (for continuous-time models), and the sampling time Ts (for discrete-time models). TimeUnit can take the following values:
- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

\section*{InputName}

Input channel names. Set InputName to a string for single-input model. For a multi-input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:
sys.InputName = 'controls';
The software automatically expands the input names to \{'controls(1)';'controls(2)'\}.

You can use the shorthand notation \(u\) to refer to the InputName property. For example, sys.u is equivalent to sys. InputName.
Input channel names have several uses, including:
- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

\section*{InputUnit}

Input channel units. Use InputUnit to keep track of input signal units. Set InputUnit to a string for single-input model, or to a cell array of strings for a multi-input model. InputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

\section*{InputGroup}

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure whose field names are the group names and whose field values are the input channels belong to each group. For example:
```

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

```
creates input groups named controls and noise that include input channels 1,2 and 3,5 , respectively. You can then extract the subsystem from the controls inputs to all outputs using:
sys(:,'controls')
Default: Struct with no fields

\section*{idpoly}

\section*{OutputName}

Output channel names. Set OutputName to a string for single-output model. For a multi-output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:
sys.OutputName = 'measurements';
The software automatically expands the output names to \{'measurements(1)';'measurements(2)'\}.

You can use the shorthand notation \(y\) to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.
Output channel names have several uses, including:
- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

\section*{OutputUnit}

Output channel units. Use OutputUnit to keep track of output signal units. Set OutputUnit to a string for single-input model, or to a cell array of strings for a multi-input model. OutputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

\section*{OutputGroup}

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure whose field names are
the group names and whose field values are the output channels belong to each group. For example:
sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];
creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:
```

sys('measurement',:)

```

Default: Struct with no fields

\section*{Name}

System name. Set Name to a string to label the system.

\section*{Default: ''}

\section*{Notes}

Any text that you wish to associate with the system. Set Notes to a string or a cell array of strings.

Default: \{\}

\section*{UserData}

Any type of data you wish to associate with system. Set UserData to any MATLAB data type.

Default: []

\section*{See Also \\ ```
polydata | arx | armax | bj | oe | ar | polyest |
``` \\ setPolyFormat | idss | idproc | idtf | iv4 | ivar}

\section*{idpoly}

\author{
Related \\ Examples \\ - "How to Estimate Polynomial Models in the GUI" \\ - "How to Estimate Polynomial Models at the Command Line" \\ - "Polynomial Sizes and Orders of Multi-Output Polynomial Models" \\ Concepts \\ - "What Are Polynomial Models?" \\ - "Dynamic System Models"
}

\section*{Purpose}

Continuous-time process model with identifiable parameters

\section*{Syntax}
```

sys = idproc(type)
sys = idproc(type,Name,Value)

```
sys \(=\) idproc (type) creates a continuous-time process model with identifiable parameters. type is a string that specifies aspects of the model structures, such as the number of poles in the model, whether the model includes an integrator, and whether the model includes a time delay.
sys \(=\) idproc(type, Name, Value) creates a process model with additional attributes specified by one or more Name, Value pair arguments.

\section*{Object Description}

An idproc model represents a system as a continuous-time process model with identifiable (estimable) coefficients.

A simple SISO process model has a gain, a time constant, and a delay:
\[
s y s=\frac{K_{p}}{1+T_{p 1} s} e^{-T_{d} s} .
\]
\(K_{p}\) is a proportional gain. \(K_{p 1}\) is the time constant of the real pole, and \(T_{d}\) is the transport delay (dead time).

More generally, idproc can represent process models with up to three poles and a zero:
\[
\text { sys }=K_{p} \frac{1+T_{z} s}{\left(1+T_{p 1} s\right)\left(1+T_{p 2} s\right)\left(1+T_{p 3} s\right)} e^{-T_{d} s} .
\]

Two of the poles can be a complex conjugate (underdamped) pair. In that case, the general form of the process model is:

\section*{idproc}
\[
\text { sys }=K_{p} \frac{1+T_{z} s}{\left(1+2 \zeta T_{\omega} s+\left(T_{\omega} s\right)^{2}\right)\left(1+T_{p 3} s\right)} e^{-T_{d} s}
\]
\(T_{\omega}\) is the time constant of the complex pair of poles, and \(\zeta\) is the associated damping constant.
In addition, any idproc model can have an integrator. For example, the following is a process model that you can represent with idproc:
\[
\text { sys }=K_{p} \frac{1}{s\left(1+2 \zeta T_{\omega} s+\left(T_{\omega} s\right)^{2}\right)} e^{-T_{d} s} .
\]

This model has no zero ( \(T_{z}=0\) ). The model has a complex pair of poles. The model also has an integrator, represented by the \(1 / s\) term.
For idproc models, all the time constants, the delay, the proportional gain, and the damping coefficient can be estimable parameters. The idproc model stores the values of these parameters in properties of the model such as Kp, Tp1, and Zeta. (See "Properties" on page 2-428 for more information.)

A MIMO process model contains a SISO process model corresponding to each input-output pair in the system. For idproc models, the form of each input-output pair can be independently specified. For example, a two-input, one-output process can have one channel with two poles and no zero, and another channel with a zero, a pole, and an integrator. All the coefficients are independently estimable parameters.
There are two ways to obtain an idproc model:
- Estimate the idproc model based on output or input-output measurements of a system, using the procest command. procest estimates the values of the free parameters such as gain, time constants, and time delay. The estimated values are stored as properties of the resulting idproc model. For example, the properties sys.Tz and sys.Kp of an idproc model sys store the zero time constant and the proportional gain, respectively. (See "Properties" on page 2-428 for more information.) The Report property of the
resulting model stores information about the estimation, such as handling of initial conditions and options used in estimation.
When you obtain an idproc model by estimation, you can extract estimated coefficients and their uncertainties from the model using commands such as getpar and getcov.
- Create an idproc model using the idproc command.

You can create an idproc model to configure an initial parameterization for estimation of a process model. When you do so, you can specify constraints on the parameters. For example, you can fix the values of some coefficients, or specify minimum or maximum values for the free coefficients. You can then use the configured model as an input argument to procest to estimate parameter values with those constraints.

\section*{Examples SISO Process Model with Complex Poles and Time Delay}

Create a process model with a pair of complex poles and a time delay. Set the initial value of the model to the following:
\[
\text { sys }=\frac{0.01}{1+2(0.1)(10) s+(10 s)^{2}} e^{-5 s} .
\]

Create a process model with the specified structure.
```

sys = idproc('P2DU')
sys =
Process model with transfer function:
Kp
G(s) = ----------------- * exp(-Td*s)
1+2*Zeta*Tw*s+(Tw*s)^2

```
```

Kp = NaN
Tw = NaN

```

\section*{idproc}
```

 Zeta = NaN
 Td = NaN
 Parameterization:
' P2DU'
Number of free coefficients: 4
Use "getpvec", "getcov" for parameters and their uncertainties.
Status:
Created by direct construction or transformation. Not estimated.

```

The input string 'P2DU' specifies an underdamped pair of poles and a time delay. The display shows that sys has the desired structure. The display also shows that the four free parameters, Kp, Tw, Zeta, and Td are all initialized to NaN.

Set the initial values of all parameters to the desired values.
```

sys.Kp = 0.01;
sys.Tw = 10;
sys.Zeta = 0.1;
sys.Td = 5;

```

You can use sys to specify this parametrization and these initial guesses for process model estimation with procest.

\section*{MIMO Process Model}

Create a one-input, three-output process model, where each channel has two real poles and a zero, but only the first channel has a time delay, and only the first and third channels have an integrator.
```

type = {'P2ZDI';'P2Z';'P2ZI'};
sys = idproc(type);

```

Providing an array of type strings causes idproc to create a MIMO model where each type string in the array defines the structure of the corresponding I/O pair. Since type is a column vector of strings, sys
is a one-input, 3 -output model having the specified parametrization structure. The string type \(\{k, 1\}\) specifies the structure of the subsystem sys \((k, 1)\). All identifiable parameters are initialized to NaN .

\section*{Array of Process Models}

Create a 3-by-1 array of process models, each containing one output and two input channels.

Create cell array of type strings.
```

type1 = {'P1D','P2DZ'};
type2 = {'PO','P3UI'};
type3 = {'P2D','P2DI'};
type = cat(3,type1,type2,type3);
size(type)
ans =
1 2 3

```

Use type to create the array.
```

sysarr = idproc(type);

```

The first two dimensions of the cell array type set the output and input dimensions of each model in the array of process models. The remaining dimensions of the cell array set the array dimensions. Thus, sysarr is a 3 -model array of 2 -input, one-output process models.

Select a model from the array.
sysarr(:,:,2)
Process model with 2 inputs: \(\mathrm{y}=\mathrm{G11}(\mathrm{~s}) \mathrm{u} 1+\mathrm{G12}(\mathrm{~s}) \mathrm{u} 2\)
From input 1 to output 1:
G11(s) \(=\mathrm{Kp}\)
\[
\mathrm{Kp}=\mathrm{NaN}
\]

\section*{idproc}
```

From input 2 to output 1:
Kp
G12(s) = ----------------------------------
s(1+2*Zeta*Tw*s+(Tw*s)^2)(1+Tp3*s)
Kp = NaN
Tw = NaN
Zeta = NaN
Tp3 = NaN
Parameterization:
'PO' 'P3IU'
Number of free coefficients: 5
Use "getpvec", "getcov" for parameters and their uncertainties.
Status:
Created by direct construction or transformation. Not estimated.

```

This two-input, one-output model corresponds to the type2 entry in the type cell array.

\section*{Input \\ Arguments}

\section*{type}

String or cell array of strings characterizing the model structure.
For SISO models, type is a string made up of a series of characters that specify aspects of the model structure.
\begin{tabular}{l|l}
\hline Characters & Meaning \\
\hline Pk & \begin{tabular}{l} 
A process model with \(k\) poles (not including an \\
integrator). \(k\) must be 0, 1, 2, or 3.
\end{tabular} \\
\hline Z & \begin{tabular}{l} 
The process model includes a zero \(\left(T_{z} \neq 0\right)\). A type \\
string with PO cannot include Z (a process model with \\
no poles cannot include a zero).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Characters & Meaning \\
\hline D & \begin{tabular}{l} 
The process model includes a time delay (deadtime) \\
\(\left(T_{d} \neq 0\right)\).
\end{tabular} \\
\hline I & The process model includes an integrator (1/s). \\
\hline U & \begin{tabular}{l} 
The process model is underdamped. In this case, the \\
process model includes a complex pair of poles
\end{tabular} \\
\hline
\end{tabular}

Every type string must begin with one of P0, P1, P2, or P3. All other components of the string are optional.

Example type strings include:
- 'P1D' specifies a process model with one pole and a time delay (deadtime) term:
\[
s y s=\frac{K_{p}}{1+T_{p 1} s} e^{-T_{d} s} .
\]
\(\mathrm{Kp}, \mathrm{Tp} 1\), and \(T d\) are the identifiable parameters of this model.
- 'P2U' creates a process model with a pair of complex poles:
\[
\text { sys }=\frac{K_{p}}{\left(1+2 \zeta T_{\omega} s+\left(T_{\omega} s\right)^{2}\right)} .
\]

Kp , Tw, and Zeta are the identifiable parameters of this model.
- 'P3ZDI ' creates a process model with three poles. All poles are real, because the string does not include \(U\). The model also includes a zero, a time delay, and an integrator:
\[
s y s=K_{p} \frac{1+T_{z} s}{s\left(1+T_{p 1} s\right)\left(1+T_{p 2} s\right)\left(1+T_{p 3} s\right)} e^{-T_{d} s}
\]

\section*{idproc}

The identifiable parameters of this model are \(\mathrm{Kp}, \mathrm{Tz}, \mathrm{Tp} 1, \mathrm{Tp} 2, \mathrm{Tp} 3\), and Td.

The values of all parameters in a particular model structure are initialized to NaN. You can change them to finite values by setting the values of the corresponding idproc model properties after you create the model. For example, sys.Td \(=5\) sets the initial value of the time delay of sys to 5 .
For a MIMO process model with Ny outputs and Nu inputs, type is an Ny -by-Nu cell array of strings specifying the structure of each input/output pair in the model. For example, type\{i, j\} specifies the type of the subsystem sys \((i, j)\) from the \(j\) th input to the \(y\) th output.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Use Name, Value arguments to specify parameter initial values and additional properties of idproc models during model creation. For example, sys = idproc('p2z','InputName', 'Voltage', 'Kp', 10, 'Tz', 0); creates an idtf model with the InputName property set to Voltage. The command also initializes the parameter Kp to a value of 10 , and Tz to 0 .

\section*{Properties}
idproc object properties include:

\section*{Type}

Cell array of strings characterizing the model structure.
For a SISO model sys, the property sys. Type contains a single string specifying the structure of the system.
For a MIMO model with Ny outputs and Nu inputs, sys. Type is an Ny-by-Nu cell array of strings specifying the structure of each input/output pair in the model. For example, type \(\{i, j\}\) specifies the
structure of the subsystem sys \((i, j)\) from the \(j\) th input to the \(i\) th output.

The strings are made up of a series of characters that specify aspects of the model structure, as follows.
\begin{tabular}{l|l}
\hline Characters & Meaning \\
\hline Pk & \begin{tabular}{l} 
A process model with \(k\) poles (not including an \\
integrator). \(k\) is \(0,1,2\), or 3.
\end{tabular} \\
\hline Z & The process model includes a zero \(\left(T_{z} \neq 0\right)\). \\
\hline D & \begin{tabular}{l} 
The process model includes a time delay (deadtime) \\
\(\left(T_{d} \neq 0\right)\).
\end{tabular} \\
\hline I & The process model includes an integrator (1/s). \\
\hline U & \begin{tabular}{l} 
The process model is underdamped. In this case, the \\
process model includes a complex pair of poles
\end{tabular} \\
\hline
\end{tabular}

If you create an idproc model sys using the idproc command, sys. Type contains the strings that you specify with the type input argument.
If you obtain an idproc model by identification using procest, then sys. Type contains the strings describing the model structures that you specified for that identification.
In general, you cannot change the type string of an existing model. However, you can change whether the model contains an integrator using the property sys. Integration.

\section*{Kp,Tp \(1, T p 2, T p 3, T z, T w, Z e t a, T d\)}

Values of process model parameters.
If you create an idproc model using the idproc command, the values of all parameters present in the model structure initialize by default to NaN. The values of parameters not present in the model structure are fixed to 0 . For example, if you create a model, sys, of type 'P1D', then \(K p, T p 1\), and \(T d\) are initialized to NaN and are identifiable (free) parameters. All remaining parameters, such as Tp 2 and Tz , are inactive

\section*{idproc}
in the model. The values of inactive parameters are fixed to zero and cannot be changed.

For a MIMO model with Ny outputs and Nu inputs, each parameter value is an Ny -by-Nu cell array of strings specifying the corresponding parameter value for each input/output pair in the model. For example, sys.Kp(i,j) specifies the Kp value of the subsystem sys(i,j) from the \(j\) th input to the \(i\) th output.

For an idproc model sys, each parameter value property such as sys.Kp, sys.Tp1, sys.Tz, and the others is an alias to the corresponding Value entry in the Structure property of sys. For example, sys.Tp3 is an alias to the value of the property sys.Structure.Tp3.Value.

Default: For each parameter value, NaN if the process model structure includes the particular parameter; 0 if the structure does not include the parameter.

\section*{Integration}

Logical value or matrix denoting the presence or absence of an integrator in the transfer function of the process model.

For a SISO model sys, sys.Integration = true if the model contains an integrator.
For a MIMO model, sys.Integration(i, \(j\) ) \(=\) true if the transfer function from the \(j\) th input to the \(i\) th output contains an integrator.

When you create a process model using the idproc command, the value of sys. Integration is determined by whether the corresponding type string contains I.

\section*{NoiseTF}

Coefficients of the noise transfer function.
sys.NoiseTF stores the coefficients of the numerator and the denominator polynomials for the noise transfer function \(H(s)=N(s) / D(s)\).
sys.NoiseTF is a structure with fields num and den. Each field is a cell array of \(N_{y}\) row vectors, where \(N_{y}\) is the number of outputs of sys. These row vectors specify the coefficients of the noise transfer function numerator and denominator in order of decreasing powers of \(s\).
Typically, the noise transfer function is automatically computed by the estimation function procest. You can specify a noise transfer function that procest uses as an initial value. For example:
```

NoiseNum = {[1 2.2]; [1 0.54]};
NoiseDen = {[1 1.3]; [1 2]};
NoiseTF = struct('num', {NoiseNum}, 'den', {NoiseDen});
sys = idproc({'p2'; 'p1di'}); % 2-output, 1-input process model
sys.NoiseTF = NoiseTF;

```

Each vector in sys.NoiseTF.num and sys.NoiseTF.den must be of length 3 or less (second-order in \(s\) or less). Each vector must start with 1 . The length of a numerator vector must be equal to that of the corresponding denominator vector, so that \(H(s)\) is always biproper.

\section*{Default:}
struct('num', \{num2cell(ones(Ny,1))\},'den' , \{num2cell(ones(Ny, 1))\})

\section*{Structure}

Information about the estimable parameters of the idproc model.
sys.Structure includes one entry for each parameter in the model structure of sys. For example, if sys is of type 'P1D', then sys includes identifiable parameters Kp , Tp1, and Td. Correspondingly, sys.Structure.Kp, sys.Structure.Tp1, and sys.Structure.Td contain information about each of these parameters, respectively.
Each of these parameter entries in sys. Structure contains the following fields:
- Value - Parameter values. For example, sys.Structure.Kp.Value contains the initial or estimated values of the \(K_{p}\) parameter.

NaN represents unknown parameter values.

\section*{idproc}

For SISO models, each parameter value property such as sys.Kp, sys.Tp1, sys.Tz, and the others is an alias to the corresponding Value entry in the Structure property of sys. For example, sys.Tp3 is an alias to the value of the property sys.Structure.Tp3.Value.
For MIMO models, \(\operatorname{sys} . \operatorname{Kp}\{i, j\}\) is an alias to sys.Structure (i,j).Kp.Value, and similarly for the other identifiable coefficient values.
- Minimum - Minimum value that the parameter can assume during estimation. For example, sys.Structure.Kp.Minimum \(=1\) constrains the proportional gain to values greater than or equal to 1 .
- Maximum - Maximum value that the parameter can assume during estimation.
- Free - Logical value specifying whether the parameter is a free estimation variable. If you want to fix the value of a parameter during estimation, set the corresponding Free \(=\) false. For example, to fix the dead time to 5 :
sys.Td = 5;
sys.Structure.Td.Free = false;
- Scale - Scale of the parameter's value. Scale is not used in estimation.
- Info - Structure array for storing parameter units and labels. The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe parameter units and labels.

Structure also includes a field Integration that stores a logical array indicating whether each corresponding process model has an integrator. sys.Structure. Integration is an alias to sys.Integration.
For a MIMO model with Ny outputs and Nu input, Structure is an Ny -by-Nu array. The element Structure(i,j) contains information corresponding to the process model for the (i,j) input-output pair.

\section*{NoiseVariance}

The variance (covariance matrix) of the model innovations \(e\).
An identified model includes a white, Gaussian noise component \(e(t)\). NoiseVariance is the variance of this noise component. Typically, the model estimation function (such as procest) determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models, NoiseVariance is a \(N_{y}\)-by- \(N_{y}\) matrix, where \(N_{y}\) is the number of outputs in the system.

\section*{Report}

Information about the estimation process.
Report contains the following fields:
- InitialCondition - Whether estimation estimated initial conditions or fixed them at zero.
- Fit - Quantitative quality assessment of estimation, including percent fit to data and final prediction error.
- Parameters - Estimated values of model parameters and input offset, and their covariances.
- OptionsUsed - Options used during estimation (see procestOptions).
- RandState - Random number stream state at start of estimation.
- Status - Whether model was obtained by construction, estimated, or modified after estimation.
- Method - Name of estimation method used.
- DataUsed - Attributes of data used for estimation, such as name and sampling time.
- Termination - Termination conditions for the iterative search scheme used for prediction error minimization, such as final cost value or stopping criterion.

\section*{idproc}

\section*{InputDelay}

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. Specify input delays in the time unit stored in the TimeUnit property.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

\section*{OutputDelay}

Output delays.
For identified systems, like idproc, OutputDelay is fixed to zero.

\section*{Ts}

Sampling time. For idproc, Ts is fixed to zero because all idproc models are continuous time.

\section*{TimeUnit}

String representing the unit of the time variable, any time delays in the model (for continuous-time models), and the sampling time Ts (for discrete-time models). TimeUnit can take the following values:
- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

\section*{InputName}

Input channel names. Set InputName to a string for single-input model. For a multi-input model, set InputName to a cell array of strings.
Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:
```

sys.InputName = 'controls';

```

The software automatically expands the input names to \{'controls(1)';'controls(2)'\}.
You can use the shorthand notation \(u\) to refer to the InputName property. For example, sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:
- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

\section*{InputUnit}

Input channel units. Use InputUnit to keep track of input signal units. Set InputUnit to a string for single-input model, or to a cell array of

\section*{idproc}
strings for a multi-input model. InputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

\section*{InputGroup}

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure whose field names are the group names and whose field values are the input channels belong to each group. For example:
```

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

```
creates input groups named controls and noise that include input channels 1,2 and 3,5 , respectively. You can then extract the subsystem from the controls inputs to all outputs using:
sys(:,'controls')
Default: Struct with no fields

\section*{OutputName}

Output channel names. Set OutputName to a string for single-output model. For a multi-output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:
sys.OutputName = 'measurements';
The software automatically expands the output names to \{'measurements(1)';'measurements(2)'\}.

You can use the shorthand notation \(y\) to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:
- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

\section*{OutputUnit}

Output channel units. Use OutputUnit to keep track of output signal units. Set OutputUnit to a string for single-input model, or to a cell array of strings for a multi-input model. OutputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

\section*{OutputGroup}

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure whose field names are the group names and whose field values are the output channels belong to each group. For example:
```

sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];

```
creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:
sys('measurement',:)
Default: Struct with no fields

\section*{idproc}

\section*{Name}

System name. Set Name to a string to label the system.
Default: ' '

\section*{Notes}

Any text that you wish to associate with the system. Set Notes to a string or a cell array of strings.

Default: \{\}

\section*{UserData}

Any type of data you wish to associate with system. Set UserData to any MATLAB data type.

\section*{Default: []}

\section*{See Also idtf | procest | idss | tfest | ssest | pem}
\begin{tabular}{|c|c|}
\hline Purpose & Resample time-domain data by decimation or interpolation \\
\hline Syntax & ```
datar = idresamp(data,R)
datar = idresamp(data,R,order,tol)
[datar,res_fact] = idresamp(data,R,order,tol)
``` \\
\hline Description & \begin{tabular}{l}
datar = idresamp(data,R) resamples data on a new sample interval \(R\) and stores the resampled data as datar. \\
datar = idresamp(data, R,order, tol) filters the data by applying a filter of specified order before interpolation and decimation. Replaces R by a rational approximation that is accurate to a tolerance tol. \\
[datar,res_fact] = idresamp(data,R,order,tol) returns res_fact, which corresponds to the value of \(R\) approximated by a rational expression.
\end{tabular} \\
\hline \multirow[t]{6}{*}{Input Arguments} & \begin{tabular}{l}
data \\
Name of time-domain iddata object or a matrix of data. Can be input-output or time-series data. \\
Data must be sampled at equal time intervals.
\end{tabular} \\
\hline & \begin{tabular}{l}
R \\
Resampling factor, such that \(\mathrm{R}>1\) results in decimation and \(\mathrm{R}<1\) results in interpolation.
\end{tabular} \\
\hline & Any positive number you specify is replaced by the rational approximation, Q/P. \\
\hline & order \\
\hline & \begin{tabular}{l}
Order of the filters applied before interpolation and decimation. \\
Default: 8
\end{tabular} \\
\hline & \begin{tabular}{l}
tol \\
Tolerance of the rational approximation for the resampling factor R.
\end{tabular} \\
\hline
\end{tabular}

\section*{idresamp}

Smaller tolerance might result in larger \(P\) and \(Q\) values, which produces more accurate answers at the expense of slower computation.

Default: 0.1

\section*{Output Arguments}

\section*{datar}

Name of the resampled data variable. datar class matches the data class, as specified.
res_fact
Rational approximation for the specified resampling factor R and tolerance tol.

Any positive number you specify is replaced by the rational approximation, \(Q / P\), where the data is interpolated by a factor \(P\) and then decimated by a factor \(Q\).

\section*{See Also}
resample

\section*{Purpose \\ Syntax \\ Description}

State-space model with identifiable parameters
```

sys = idss(A,B,C,D)
sys = idss(A,B,C,D,K)
sys = idss(A,B,C,D,K,xO)
sys = idss(A,B,C,D,K,x0,Ts)
sys = idss( __ ,Name,Value)
sys = idss(sys0)
sys = idss(sysO,'split')

```
sys \(=\) idss \((A, B, C, D)\) creates a state-space model with identifiable parameters. \(A, B, C\), and \(D\) are the initial values of the state-space matrices. By default, sys is discrete-time model with unspecified sampling time and no state disturbance element.
sys \(=\) idss(A, B,C,D,K) creates a state-space model with a disturbance element given by the matrix K .
sys \(=\) idss (\(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{K}, \mathrm{xO}\)) creates a state-space model with initial state values given by the vector x 0 .
sys \(=\) idss (\(A, B, C, D, K, x 0, T s)\) creates a state-space model with sampling time Ts. Use Ts \(=0\) to create a continuous-time model.
sys = idss(__ ,Name, Value) creates a state-space model using additional options specified by one or more Name, Value pair arguments.
sys = idss(sys0) converts any dynamic system model, sys0, to idss model form. When you convert a numeric (non-identified) model to idss form, the state-space data of sys 0 define the \(A, B, C\), and \(D\) matrices of the converted model. The disturbance matrix K is fixed to zero. The

NoiseVariance value defaults to eye(Ny), where Ny is the number of outputs of sys.
sys = idss(sys0,'split') converts sys0 to idss model form, and treats the last \(N y\) input channels of sys 0 as noise channels in the returned model. sys0 must be a numeric (non-identified) tf, zpk, or ss model object. Also, sys0 must have at least as many inputs as outputs.

\section*{Object Description}

An idss model represents a system as a continuous-time or discrete-time state-space model with identifiable (estimable) coefficients.

A state-space model of a system with input vector \(u\), output vector \(y\), and disturbance \(e\) takes the following form in continuous time:
\[
\begin{aligned}
\frac{d x(t)}{d t} & =A x(t)+B u(t)+K e(t) \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
\]

In discrete time, the state-space model takes the form:
\[
\begin{aligned}
x[k+1] & =A x[k]+B u[k]+K e[k] \\
y[k] & =C x[k]+D u[k]+e[k] .
\end{aligned}
\]

For idss models, the elements of the state-space matrices \(A, B, C\), and \(D\) can be estimable parameters. The elements of the state disturbance \(K\) can also be estimable parameters. The idss model stores the values of these matrix elements in the \(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\), and k properties of the model.

There are three ways to obtain an idss model.
- Estimate the idss model based on input-output measurements of a system, using n4sid or ssest. These estimation commands estimate the values of the estimable elements of the state-space matrices. The estimated values are stored in the \(a, b, c, d\), and \(k\) properties of the resulting idss model. The Report property of the resulting model stores information about the estimation, such as handling of initial state values and options used in estimation.

When you obtain an idss model by estimation, you can extract estimated coefficients and their uncertainties from the model using commands such as idssdata, getpar, or getcov.
- Create an idss model using the idss command.

You can create an idss model to configure an initial parameterization for estimation of a state-space model to fit measured response data. When you do so, you can specify constraints on one or more of the state-space matrix elements. For example, you can fix the values of some elements, or specify minimum or maximum values for the free elements. You can then use the configured model as an input argument to an estimation command (\(n 4\) sid or ssest) to estimate parameter values with those constraints.
- Convert an existing dynamic system model to an idss model using the idss command.

To configure an idss model in a desired form, such as a companion or modal form, use state transformation commands such as canon and ss2ss.

\section*{Examples}

\section*{Create State-Space Model with Identifiable Parameters}

Create a 4th-order SISO state-space model with identifiable parameters. Initialize the initial state values to 0.1 for all entries. Set the sampling time to 0.1 s as well.
```

A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];
C = [1 0 1 0];
D = 0;
K = zeros(4,1);
x0 = [0.1,0.1,0.1,0.1];
Ts = 0.1;
sys = idss(A,B,C,D,K,xO,Ts);

```
sys is a 4th-order, SISO idss model. The number of states and input-output dimensions are determined by the dimensions of the
state-space matrices. By default, all entries in the matrices A, B, C, D, and \(K\) are identifiable parameters.

You can use sys to specify an initial parametrization for state-space model estimation with ssest or n4sid.

\section*{Specify Additional Attributes of State-Space Model}

Create a 4th-order SISO state-space model with identifiable parameters. Name the input and output channels of the model, and specify minutes for the model time units.

You can use Name, Value pair arguments to specify additional model properties on model creation.
```

A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];
C = [1 0 1 0];
D = 0;
sys = idss(A,B,C,D,'InputName','Drive','TimeUnit','minutes');

```

To change or specify most attributes of an existing model, you can use dot notation. For example:
sys.OutputName = 'Torque';

\section*{Configure Identifiable Parameters of State-Space Model}

Configure an idss model so that it has no state disturbance element and only the non-zero entries of the A matrix are estimable. Additionally, fix the values of the \(B\) matrix.

You can configure individual parameters of an idss model to specify constraints for state-space model estimation with ssest or n4sid.

Create an idss model.
```

A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];
C = [1 0 1 0];

```
```

D = 0;
K = zeros(4,1);
x0 = [0.1,0.1,0.1,0.1];
sys = idss(A,B,C,D,K,x0,0);

```

Setting all entries of \(\mathrm{K}=0\) creates an idss model with no state disturbance element.

Use the Structure property of the model to fix the values of some of the parameters.
```

sys.Structure.a.Free = (A~=0);
sys.Structure.b.Free = false;
sys.Structure.k.Free = false;

```

The entries in sys.Structure.a.Free determine whether the corresponding entries in sys.a are free (identifiable) or fixed. The first line sets sys.Structure.a.Free to a logical matrix that is true wherever A is non-zero, and false everywhere else. Doing so fixes the value of the zero entries in sys.a.

The remaining lines fix all the values in sys.b and sys. \(k\) to the values you specified when you created the model.

\section*{Array of State-Space Models}

Create an array of state-space models.
There are several ways to create arrays of state-space models:
- Direct array construction using \(n\)-dimensional state-space arrays
- Array-building by indexed assignment
- Array-building using the stack command
- Sampling an identified model using the rsample command

Create an array by providing \(n\)-dimensional arrays as an input argument to idss, instead of 2 -dimensional matrices.
\(A=\operatorname{rand}(2,2,3,4) ;\)
sysarr \(=\) idss(A,[2;1],[11],0);
When you provide a multi-dimensional array to idss in place of one of the state-space matrices, the first two dimensions specify the numbers of states, inputs, or outputs of each model in the array. The remaining dimensions specify the dimensions of the array itself. A is a 2-by-2-by-3-by-4 array. Therefore, sysarr is a 3 -by- 4 array of idss models. Each model in sysarr has two states, specified by the first two dimensions of A. Further, each model in sysarr has the same B, \(C\), and \(D\) values.

Create an array by indexed assignment.
```

sysarr = idss(zeros(1,1,2));
sysarr(:,:,1) = idss([4 -3;-2 0],[2;1],[1 1],0);
sysarr(:,:,2) = idss(rand(2),rand(2,1),rand(1,2),1);

```

The first command preallocates the array. The first two dimensions of the array are the I/O dimensions of each model in the array. Therefore, sysarr is a 2 -element vector of SISO models.

The remaining commands assign an idss model to each position in sysarr. Each model in an array must have the same I/O dimensions.

Add another model to sysarr using stack.
stack is an alternative to building an array by indexing.
sysarr \(=\) stack(1,sysarr,idss([1 -2;-4 9],[0;-1],[1 1],0));
This command adds another idss model along the first array dimension of sysarr. sysarr is now a 3-by-1 array of SISO idss models

\section*{Input Arguments}

\section*{A,B,C,D}

Initial values of the state-space matrices.
For a system with \(N_{y}\) outputs, \(N_{u}\) inputs, and \(N_{x}\) states, specify initial values of the state-space matrix elements as follows:
- \(\mathrm{A}-N_{x}\)-by- \(N_{x}\) matrix.
- B \(-N_{x}\)-by- \(N_{u}\) matrix.
- \(\mathrm{C}-N_{y}\)-by- \(N_{x}\) matrix.
- D \(-N_{y}\)-by- \(N_{u}\) matrix.

Use NaN for any matrix element whose initial value is not known.

\section*{K}

Initial value of the state disturbance matrix.
Specify K as an \(N_{x}\)-by- \(N_{y}\) matrix.
Use NaN for any matrix element whose initial value is not known.

Default: \(N_{x}-\) by \(-N_{y}\) zero matrix.

\section*{\(x 0\)}

Initial state values.
Specify the initial condition as a column vector of \(N_{x}\) values.
Default: \(N_{x}\) column vector of zeros.

\section*{Ts}

Sampling time. For continuous-time models, Ts \(=0\). For discrete-time models, Ts is a positive scalar representing the sampling period expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set \(\mathrm{Ts}=-1\).

Default: -1 (discrete-time model with unspecified sampling time)

\section*{sys0}

Dynamic system.

Any dynamic system, such as idtf or idpoly, to convert to an idss model.

For the syntax sys = idss(sys0, 'split'), sys0 must be a numeric (non-identified) tf, zpk, or ss model object. Also, sys0 must have at least as many inputs as outputs. Finally, the subsystem sys0(: , Ny+1: \(\mathrm{Ny}+\mathrm{Nu}\)) must contain a non-zero feedthrough term (the subsystem must be biproper).

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Use Name, Value arguments to specify additional properties of idss models during model creation. For example, idss(A, B, C, D, 'InputName', 'Voltage') creates an idss model with the InputName property set to Voltage.

\section*{Properties}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
idss objects properties include:

\section*{\(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathrm{d}\)}

Values of state-space matrices.
- a - State matrix \(A\), an \(N_{x}\)-by- \(N_{x}\) matrix.
- b \(-N_{x}\)-by- \(N_{u}\) matrix.
- c \(-N_{y}\)-by- \(N_{x}\) matrix.
- d \(-N_{y}\)-by- \(N_{u}\) matrix.

If you create an idss model sys using the idss command, sys.a, sys.b, sys.c, and sys.d contain the initial values of the state-space matrices that you specify with the \(A, B, C, D\) input arguments.
If you obtain an idss model sys by identification using ssest or n4sid, then sys.a, sys.b, sys.c, and sys.d contain the estimated values of the matrix elements.

For an idss model sys, each property sys.a, sys.b, sys.c, and sys.d is an alias to the corresponding Value entry in the Structure property of sys. For example, sys.a is an alias to the value of the property sys.Structure.a.Value.

\section*{k}

Value of state disturbance matrix \(K\), an \(N_{x}\)-by- \(N_{y}\) matrix.
If you create an idss model sys using the idss command, sys.k contains the initial values of the state-space matrices that you specify with the K input argument.

If you obtain an idss model sys by identification using ssest or n4sid, then sys. k contains the estimated values of the matrix elements.
For an idss model sys, sys. k is an alias to the value of the property sys.Structure.k.Value.

Default: \(N_{x}\)-by- \(N_{y}\) zero matrix.

\section*{StateName}

State names. Set StateName to a string for first-order models, or to a cell array of strings for models with two or more states. Use an empty string ' ' for unnamed states.

Default: Empty string ' ' for all states

\section*{StateUnit}

State units. Use StateUnit to keep track of the units each state is expressed in. Set StateUnit to a string for first-order models, or to a
cell array of strings for models with two or more states. StateUnit has no effect on system behavior.

Default: Empty string ' ' for all states

\section*{Structure}

Information about the estimable parameters of the idss model. Structure.a, Structure.b, Structure.c, Structure.d, and Structure.k contain information about the \(A, B, C, D\), and \(K\) matrices, respectively. Each contains the following fields:
- Value - Parameter values. For example, sys.Structure.a.Value contains the initial or estimated values of the \(A\) matrix.

NaN represents unknown parameter values.
Each property sys.a, sys.b, sys.c, and sys.d is an alias to the corresponding Value entry in the Structure property of sys. For example, sys.a is an alias to the value of the property sys.Structure.a.Value
- Minimum - Minimum value that the parameter can assume during estimation. For example, sys.Structure.k.Minimum \(=0\) constrains all entries in the \(K\) matrix to be greater than or equal to zero.
- Maximum - Maximum value that the parameter can assume during estimation.
- Free - Boolean specifying whether the parameter is a free estimation variable. If you want to fix the value of a parameter during estimation, set the corresponding Free = false. For example, if \(A\) is a 3 -by- 3 matrix, sys.Structure.a.Free \(=\) eyes (3) fixes all of the off-diagonal entries in \(A\), to the values specified in sys.Structure.a. Value. In this case, only the diagonal entries in \(A\) are estimable.
- Scale - Scale of the parameter's value. Scale is not used in estimation.
- Info - Structure array for storing parameter units and labels. The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe parameter units and labels.

\section*{NoiseVariance}

The variance (covariance matrix) of the model innovations \(e\).
An identified model includes a white, Gaussian noise component \(e(t)\). NoiseVariance is the variance of this noise component. Typically, the model estimation function (such as ssest) determines this variance.
For SISO models, NoiseVariance is a scalar. For MIMO models, NoiseVariance is a \(N_{y}\)-by- \(N_{y}\) matrix, where \(N_{y}\) is the number of outputs in the system.

\section*{Report}

Information about the estimation process.
Report contains the following fields:
- N4Weight - Subspace algorithm option value used by n4sid estimator (see n4sidOptions).
- N4Horizon - Forward and backward prediction horizons used by n4sid (see n4sidOptions).
- InitialState - Whether initial state values were estimated or fixed.
- Fit - Quantitative quality assessment of estimation, including percent fit to data and final prediction error.
- Parameters - Estimated values of model parameters and initial states, and their covariances.
- OptionsUsed - Options used during estimation (see ssestOptions or n4sidOptions).
- RandState - Random number stream state at start of estimation.
- Status - Whether model was obtained by construction, estimated, or modified after estimation.
- Method - Name of estimation method used.
- DataUsed - Attributes of data used for estimation, such as name and sampling time.
- Termination - Termination conditions for the iterative search scheme used for prediction error minimization, such as final cost value or stopping criterion. Available only when the model is estimated using ssest or pem.

\section*{InputDelay}

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay = 3 means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

\section*{OutputDelay}

Output delays.
For identified systems, like idss, OutputDelay is fixed to zero.

\section*{Ts}

Sampling time. For continuous-time models, Ts \(=0\). For discrete-time models, Ts is a positive scalar representing the sampling period expressed in the unit specified by the TimeUnit property of the model.

To denote a discrete-time model with unspecified sampling time, set \(\mathrm{Ts}=-1\).

Changing this property does not discretize or resample the model. Use c2d and d2c to convert between continuous- and discrete-time representations. Use d2d to change the sampling time of a discrete-time system.

Default: -1 (discrete-time model with unspecified sampling time)

\section*{TimeUnit}

String representing the unit of the time variable, any time delays in the model (for continuous-time models), and the sampling time Ts (for discrete-time models). TimeUnit can take the following values:
- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

\section*{InputName}

Input channel names. Set InputName to a string for single-input model. For a multi-input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:
sys.InputName = 'controls';
The software automatically expands the input names to \{'controls(1)';'controls(2)'\}.
You can use the shorthand notation \(u\) to refer to the InputName property. For example, sys.u is equivalent to sys. InputName.

Input channel names have several uses, including:
- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

\section*{InputUnit}

Input channel units. Use InputUnit to keep track of input signal units. Set InputUnit to a string for single-input model, or to a cell array of strings for a multi-input model. InputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

\section*{InputGroup}

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure whose field names are the group names and whose field values are the input channels belong to each group. For example:
```

sys.InputGroup.controls = [1 2];

```
```

sys.InputGroup.noise = [3 5];

```
creates input groups named controls and noise that include input channels 1,2 and 3,5 , respectively. You can then extract the subsystem from the controls inputs to all outputs using:
```

sys(:,'controls')

```

Default: Struct with no fields

\section*{OutputName}

Output channel names. Set OutputName to a string for single-output model. For a multi-output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:
```

sys.OutputName = 'measurements';

```

The software automatically expands the output names to \{'measurements(1)';'measurements(2)'\}.

You can use the shorthand notation \(y\) to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:
- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

\section*{OutputUnit}

Output channel units. Use OutputUnit to keep track of output signal units. Set OutputUnit to a string for single-input model, or to a cell
array of strings for a multi-input model. OutputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

\section*{OutputGroup}

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure whose field names are the group names and whose field values are the output channels belong to each group. For example:
sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];
creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:
```

sys('measurement',:)

```

Default: Struct with no fields

\section*{Name}

System name. Set Name to a string to label the system.

\section*{Default: ''}

\section*{Notes}

Any text that you wish to associate with the system. Set Notes to a string or a cell array of strings.

Default: \{\}

\section*{UserData}

Any type of data you wish to associate with system. Set UserData to any MATLAB data type.

Default: []
See Also \(\quad \begin{aligned} & \text { idssdata | ssest | ssestoptions | n4sid | pem | idgrey | } \\ & \text { idpoly | idproc | idtf }\end{aligned}\)
Concepts - "Dynamic System Models"

\section*{idssdata}

Purpose
State-space data of identified system
Syntax
```

[A,B,C,D,K] = idssdata(sys)
[A,B,C,D,K,xO] = idssdata(sys)
[A,B,C,D,K,x0,dA,dB,dC,dD,dK,dx0] = idssdata(sys)
[A,B,C,D,K,__] = idssdata(sys,j1,...,jN)
[A,B,C,D,K,__] = idssdata(sys,'cell')

```

\section*{Description}

\section*{Input \\ Arguments}

\section*{Output \\ Arguments}
\([\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{K}]=\) idssdata(sys) returns the \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\) and K matrices of the identified state-space model sys.
\([A, B, C, D, K, x 0]=\) idssdata(sys) returns the initial state values, \(x 0\).
\([A, B, C, D, K, x 0, d A, d B, d C, d D, d K, d x 0]=i d s s d a t a(s y s)\) returns the uncertainties in the system matrices for sys.
\([A, B, C, D, K, \ldots]=i d s s d a t a(s y s, j 1, \ldots, j N)\) returns data for the j1, ..., jn entries in the model array sys.
\([A, B, C, D, K, \ldots]\) = idssdata(sys,'cell') returns data for all the entries in the model array sys as separate cells in cell arrays.

\section*{sys}

Identified model.
If sys is not an identified state-space model (idssor idgrey), then it is first converted to an idss model.
sys may be an array of identified models.

\section*{i1,..., \(\mathbf{N}\)}

Integer indices of N entries in the array sys of identified systems.

\section*{A,B,C,D,K}

State-space matrices that represent sys as:
\[
\begin{aligned}
& x[k+1]=A x[k]+B u[k]+K e[k] ; x[0]=x 0 ; \\
& y[k]=C x[k]+D u[k]+e[k] ;
\end{aligned}
\]

If sys is an array of identified models, then \(A, B, C, D, K\) are multi-dimension arrays. To access the state-space matrix, say A, for the \(k\)-th entry of sys, use \(\mathrm{A}(:,:, k)\).

\section*{\(x 0\)}

Initial state.
If sys is an idss or idgrey model, then \(x 0\) is the value obtained during estimation. It is also stored using the Report. Parameters property of sys.

For other model types, x 0 is zero.
If sys is an array of identified models, then \(x 0\) contains a column for each entry in sys.

\section*{dA,dB,dC,dD,dK}

Uncertainties associated with the state-space matrices A, B, C, D, K.
The uncertainty matrices represents 1 standard deviation of uncertainty.

If sys is an array of identified models, then \(d A, d B, d C, d D, d K\) are multi-dimension arrays. To access the state-space matrix, say A, for the \(k\)-th entry of sys, use \(\mathrm{A}(:,:, k)\).
dx0
Uncertainty associated with the initial state.
\(\mathrm{dx0}\) represents 1 standard deviation of uncertainty.
If sys is an array of identified models, then dx 0 contains a column for each entry in sys.

\section*{idssdata}

\section*{Examples Obtain Identified State-Space Matrices}

Obtain the identified state-space matrices for a model estimated from data.

Identify a model using data.
```

load icEngine.mat
data = iddata(y,u,0.04);
sys = n4sid(data,4,'InputDelay',2);

```
data is an iddata object representing data sampled at a sampling rate of 0.04 seconds.
sys is an idss model representing the identified system.
Obtain identified state-space matrices of sys.
[A,B,C,D,K] = idssdata(sys);
\(A, B, C, D\) and \(K\) represent the state-space matrices of the identified model sys.

\section*{Obtain Initial State of Identified Model}

Obtain the initial state associated with an identified model.
Identify a model using data.
load icEngine.mat
data \(=\) iddata(y, u, 0.04);
sys = n4sid(data,4,'InputDelay',2);
data is an iddata object representing data sampled at a sampling rate of 0.04 seconds.
sys is an idss model representing the identified system.
Obtain the initial state associated with sys.
\[
[A, B, C, D, K, x 0]=\text { idssdata(sys) }
\]
\(A, B, C, D\) and \(K\) represent the state-space matrices of the identified model sys.
\(x 0\) is the initial state identified for sys.

\section*{Obtain Uncertainty Data of State-Space Matrices of Identified Model}

Obtain the uncertainty matrices of the state-space matrices of an identified model.

Identify a model using data.
```

load icEngine.mat
data = iddata(y,u,0.04);
sys = n4sid(data,4,'InputDelay',2);

```
data is an iddata object representing data sampled at a sampling rate of 0.04 seconds.
sys is an idss model representing the identified system.
Obtain the uncertainty matrices associated with the state-space matrices of sys.
\[
[\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{~K}, \mathrm{xO}, \mathrm{dA}, \mathrm{~dB}, \mathrm{dC}, \mathrm{dD}, \mathrm{dx0}]=\text { idssdata(sys); }
\]
\(d A, d B, d C, d D\) and \(d K\) represent the uncertainty associated with the state-space matrices of the identified model sys.
\(\mathrm{dx0}\) represents the uncertainty associated with the estimated initial state.

\section*{Obtain State-Space Matrices for Multiple Identified Models}

Obtain the state-space matrices for multiple models from an array of identified models.

Identify multiple models using data.
```

load icEngine.mat
data = iddata(y,u,0.04);

```

\section*{idssdata}
```

sys2 = n4sid(data,2,'InputDelay',2);
sys3 = n4sid(data,3,'InputDelay',2);
sys4 = n4sid(data,4,'InputDelay',2);
sys = stack(1,sys2,sys3,sys4);

```
data is an iddata object representing data sampled at a sampling rate of 0.04 seconds.
sys is an array of idss models. The first entry of sys is a second order identified system. The second and third entries of sys are third and fourth order identified systems, respectively.

Obtain the state-space matrices for the first and third entries of sys.
\([A, B, C, D, K, x 0]=\) idssdata \((s y s, 1,3) ;\)

\section*{Obtain State-Space Matrices for Identified Model as Cell Array}

Obtain the state-space matrices of an array of identified models in cell arrays.

Identify multiple models using data.
```

load icEngine.mat
data = iddata(y,u,0.04);
sys3 = n4sid(data,3,'InputDelay',2);
sys4 = n4sid(data,4,'InputDelay',2);
sys = stack(1,sys3,sys4);

```
data is an iddata object representing data sampled at a sampling rate of 0.04 seconds.
sys is an array of idss models. The first entry of sys is a third order identified system and the second entry is a fourth order identified system.

Obtain the state-space matrices of sys in cell arrays.
```

[A,B,C,D,K,x0] = idssdata(sys,'cell');

```

\section*{idssdata}
\(A, B, C, D\) and \(K\) are cell arrays containing the state-space matrices of the individual entries of the identified model arraysys.
\(x 0\) is a cell array containing the estimated initial state of the individual entries of the identified model array sys.

See Also
ssdata | idss | tfdata | zpkdata | polydata

Purpose Transfer function model with identifiable parameters
```

Syntax sys = idtf(num,den)
sys = idtf(num,den,Ts)
sys = idtf( __ ,Name,Value)
sys = idtf(sys0)

```

\section*{Description}

\section*{Object Description}
sys \(=\) idtf(num,den) creates a continuous-time transfer function with identifiable parameters (an idtf model). num specifies the current values of the transfer function numerator coefficients. den specifies the current values of the transfer function denominator coefficients.
sys \(=\operatorname{idtf}(\) num, den, Ts) creates a discrete-time transfer function with identifiable parameters. Ts is the sampling time.
sys = idtf(__ , Name, Value) creates a transfer function with properties specified by one or more Name, Value pair arguments.
sys = idtf(sys0) converts any dynamic system model, sys0, to idtf model form.

An idtf model represents a system as a continuous-time or discrete-time transfer function with identifiable (estimable) coefficients. A SISO transfer function is a ratio of polynomials with an exponential term. In continuous time,
\[
G(s)=e^{-\tau s} \frac{b_{n} s^{n}+b_{n-1} s^{n-1}+\ldots+b_{0}}{s^{m}+a_{m-1} s^{m-1}+\ldots+a_{0}} .
\]

In discrete time,
\[
G\left(z^{-1}\right)=z^{-k} \frac{b_{n} z^{-n}+b_{n-1} z^{-n+1}+\ldots+b_{0}}{z^{-m}+a_{m-1} z^{-m+1}+\ldots+a_{0}}
\]

In discrete time, \(z^{-k}\) represents a time delay of \(k T_{s}\), where \(T_{s}\) is the sampling time.

For idtf models, the denominator coefficients \(a_{0}, \ldots, a_{m-1}\) and the numerator coefficients \(b_{0}, \ldots, b_{n}\) can be estimable parameters. (The leading denominator coefficient is always fixed to 1.) The time delay \(\tau\) (or \(k\) in discrete time) can also be an estimable parameter. The idtf model stores the polynomial coefficients \(a_{0}, \ldots, a_{m-1}\) and \(b_{0}, \ldots, b_{n}\) in the den and num properties of the model, respectively. The time delay \(\tau\) or \(k\) is stored in the ioDelay property of the model.
A MIMO transfer function contains a SISO transfer function corresponding to each input-output pair in the system. For idtf models, the polynomial coefficients and transport delays of each input-output pair are independently estimable parameters.
There are three ways to obtain an idtf model.
- Estimate the idtf model based on input-output measurements of a system, using tfest. The tfest command estimates the values of the transfer function coefficients and transport delays. The estimated values are stored in the num, den, and ioDelay properties of the resulting idtf model. The Report property of the resulting model stores information about the estimation, such as handling of initial conditions and options used in estimation.

When you obtain an idtf model by estimation, you can extract estimated coefficients and their uncertainties from the model using commands such as tfdata, getpar, or getcov.
- Create an idtf model using the idtf command.

You can create an idtf model to configure an initial parameterization for estimation of a transfer function to fit measured response data. When you do so, you can specify constraints on such values as the numerator and denominator coefficients and transport delays. For example, you can fix the values of some parameters, or specify
minimum or maximum values for the free parameters. You can then use the configured model as an input argument to tfest to estimate parameter values with those constraints.
- Convert an existing dynamic system model to an idtf model using the idtf command.

\section*{Examples Continuous-Time Transfer Function}

Specify a continuous-time, single-input, single-output (SISO) transfer function with estimable parameters. The initial values of the transfer function are:
\[
\begin{aligned}
& \quad G(s)=\frac{s+4}{s^{2}+20 s+5} \\
& \text { num }=\left[\begin{array}{ll}
1 & 4
\end{array}\right] ; \\
& \text { den }=\left[\begin{array}{ll}
1 & 20
\end{array}\right] ; \\
& G=\text { idtf(num, den) } ;
\end{aligned}
\]
\(G\) is an idtf model. num and den specify the initial values of the numerator and denominator polynomial coefficients in descending powers of \(s\). The numerator coefficients having initial values 1 and 4 are estimable parameters. The denominator coefficient having initial values 20 and 5 are also estimable parameters. The leading denominator coefficient is always fixed to 1 .

You can use G to specify an initial parametrization for estimation with tfest.

\section*{Transfer Function with Known Input Delay and Specified Attributes}

Specify a continuous-time, SISO transfer function with known input delay. The transfer function initial values are given by:
\[
G(s)=e^{-5.8 s} \frac{5}{s+5}
\]

Label the input of the transfer function with the name 'Voltage ' and specify the input units as volt.

Use Name, Value input pairs to specify the delay, input name, and input unit.
```

num = 5;
den = [1 5];
input_delay = 5.8;
input_name = 'Voltage';
input_unit = 'volt';
G = idtf(num,den,'InputDelay',input_delay,...
'InputName',input_name,'InputUnit',input_unit);

```
\(G\) is an idtf model. You can use \(G\) to specify an initial parametrization for estimation with tfest. If you do so, model properties such as InputDelay, InputName, and InputUnit are applied to the estimated model. Estimation treats InputDelay as a fixed value. If you want to estimate the delay and specify an initial value of 5.8 s , use the ioDelay property instead.

\section*{Discrete-Time Transfer Function}

Specify a discrete-time SISO transfer function with estimable parameters. The initial values of the transfer function are:
\[
H(z)=\frac{z-0.1}{z+0.8}
\]

Specify the sampling time as 0.2 seconds.
```

num = [1 -0.1];
den = [1 0.8];
Ts = 0.2
H = idtf(num,den,Ts);

```
num and den are the initial values of the numerator and denominator polynomial coefficients. For discrete-time systems, specify the coefficients in ascending powers of \(z^{-1}\).

Ts specifies the sampling time for the transfer function as 0.2 seconds.
H is an idtf model. The numerator and denominator coefficients are estimable parameters (except for the leading denominator coefficient, which is fixed to 1).

\section*{MIMO Discrete-Time Transfer Function}

Specify a discrete-time, two-input, two-output transfer function. The initial values of the MIMO transfer function are:
\[
H(z)=\left[\begin{array}{cc}
\frac{1}{z+0.2} & \frac{z}{z+0.7} \\
\frac{-z+2}{z-0.3} & \frac{3}{z+0.3}
\end{array}\right]
\]

Specify the sampling time as 0.2 seconds.
```

nums = {1,[1,0];[-1,2],3};
dens = {[1,0.2],[1,0.7];[1,-0.3],[1,0.3]};
Ts = 0.2
H = idtf(nums,dens,Ts);

```
nums and dens specify the initial values of the coefficients in cell arrays. Each entry in the cell array corresponds to the numerator or denominator of the transfer function of one input-output pair. For example, the first row of nums is \(\{1,[1,0]\}\). This specifies the numerators across the first row of transfer functions in H . Likewise, the first row of dens, \(\{[1,0.2],[1,0.7]\}\), specifies the denominators across the first row of H .

Ts specifies the sampling time for the transfer function as 0.2 seconds.
H is an idtf model. All of the polynomial coefficients are estimable parameters, except for the leading coefficient of each denominator polynomial. These coefficients are always fixed to 1 .

\section*{Specify \(\mathbf{q}^{\wedge}-1\) as Transfer Function Variable}

Specify the following discrete-time transfer function in terms of \(q^{\wedge}-1\) :
\[
H\left(q^{-1}\right)=\frac{1+.4 q^{-1}}{1+.1 q^{-1}-.3 q^{-2}}
\]

Specify the sampling time as 0.1 seconds.
```

num = [1 .4];
den = [1 .1 -.3];
Ts = 0.1;
convention_variable = 'q^-1';
H = idtf(num,den,Ts,'Variable',convention_variable);

```

Use a Name, Value pair argument to specify the variable \(q^{\wedge}-1\).
num and den are the numerator and denominator polynomial coefficients in ascending powers of \(q^{-1}\).

Ts specifies the sampling time for the transfer function as 0.1 seconds. H is an idtf model.

\section*{Gain Matrix Transfer Function}

Specify a transfer function with estimable coefficients whose initial value is the static gain matrix:
\[
\left.\begin{array}{l}
H(s)=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
3 & 0 & 2
\end{array}\right] \\
M=\left[\begin{array}{llllllll}
1 & 0 & 1 ; & 1 & 1 & 0 ; & 3 & 0
\end{array}\right]
\end{array}\right] ;
\]

H is an idtf model that describes a three input (\(\mathrm{Nu}=3\)), three output \((\mathrm{Ny}=3)\) transfer function. Each input/output channel is an estimable static gain. The initial values of the gains are given by the values in the matrix \(M\).

\section*{Convert Identifiable State-Space Model to Identifiable Transfer Function}

Convert a state-space model with identifiable parameters to a transfer function with identifiable parameters.

Convert the following identifiable state-space model to an identifiable transfer function.
\[
\begin{aligned}
& \quad \tilde{x}(t)=\left[\begin{array}{cc}
-0.2 & 0 \\
0 & -0.3
\end{array}\right] x(t)+\left[\begin{array}{c}
-2 \\
4
\end{array}\right] u(t)+\left[\begin{array}{l}
.1 \\
.2
\end{array}\right] e(t) \\
& \quad y(t)=\left[\begin{array}{cc}
1 & 1
\end{array}\right] x(t) \\
& \mathrm{A}=[-0.2,0 ; 0,-0.3] ; \mathrm{B}=[2 ; 4] ; \mathrm{C}=[1,1] ; \mathrm{D}=0 ; \mathrm{K}=[.1 ; .2] \text {; } \\
& \text { sys0 }=\operatorname{idss}(\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{~K}, \text { 'NoiseVariance' }, 0.1) ; \\
& \text { sys }=\operatorname{idtf}(\text { sys0 }) ;
\end{aligned}
\]
\(A, B, C, D\) and \(K\) are matrices that specify sys 0 , an identifiable state-space model with a noise variance of 0.1 .
sys = idtf(sys0) creates an idtf model, sys.

\section*{Obtain a Transfer Function by Estimation}

Identify a transfer function containing a specified number of poles for given data.

Load time domain system response data and use it to identify a transfer function for the system.
```

load iddata1 z1;
np = 2;
sys = tfest(z1,np);

```
\(z 1\) is an iddata object that contains time domain input-output data. np specifies the number of poles in the identified transfer function. sys is an idtf model containing the identified transfer function.

To see the numerator and denominator coefficients of the resulting estimated model sys, enter:
sys.num
sys.den

\section*{Obtain a Transfer Function with Prior Knowledge of Model Structure and Constraints}

Identify a transfer function for given data by providing its expected structure and coefficient constraints

Load time domain data.
load iddata1 z1;
z1.y = cumsum(z1.y);
This command integrates the output data of \(z 1\). The identified transfer function should therefore contain an integrator.

Create a transfer function model with the expected structure.
```

init_sys = idtf([100 1500],[1 10 10 0]);

```
int_sys is an idtf model with three poles and one zero. The denominator coefficient for the \(s^{\wedge} 0\) term is zero. Therefore, int_sys contains an integrator.

Specify constraints on the numerator and denominator coefficients of the transfer function model. To do so, configure fields in the Structure property of
```

init_sys.Structure.num.Minimum = eps;
init_sys.Structure.den.Minimum = eps;
init_sys.Structure.den.Free(end) = false;

```

The constraints specify that the numerator and denominator coefficients are nonnegative. Additionally, the last element of the denominator coefficients (associated with the \(s^{\wedge} 0\) term) is not a free estimation variable. This constraint forces one of the estimated poles to be at \(s=0\).

Create an estimation option set that specifies using the Levenberg-Marquardt search method.
```

opt = tfestOptions('SearchMethod', 'lm');

```

Estimate a transfer function for z1 using init_sys and the estimation option set.
```

sys = tfest(z1,init_sys,opt);

```
tfest uses the coefficients of init_sys to initialize the estimation of sys. Additionally, the estimation is constrained by the constraints you specify in the Structure property of init_sys. The resulting idtf model sys contains the parameter values that result from the estimation.

\section*{Array of Transfer Function Models}

Create an array of transfer function models with identifiable coefficients. Each transfer function in the array is of the form:
\[
H(s)=\frac{a}{s+a}
\]

The initial value of the coefficient \(a\) varies across the array, from 0.1 to 1.0 , in increments of 0.1 .
```

H = idtf(zeros(1,1,10));
for k = 1:10
num = k/10;
den = [1 k/10];
H(:,:,k) = idtf(num,den);
end

```

The first command pre-allocates a one-dimensional, 10 -element array H and fills it with empty idtf models.
The first two dimensions of a model array are the output and input dimensions. The remaining dimensions are the array dimensions. \(H(:,:, k)\) represents the kth model in the array. Thus, the for loop
replaces the kth entry in the array with a transfer function whose coefficients are initialized with \(a=k / 10\).

\section*{Input \\ Arguments}

\section*{num}

Initial values of transfer function numerator coefficients.
For SISO transfer functions, specify the initial values of the numerator coefficients num as a row vector. Specify the coefficients in order of:
- Descending powers of \(s\) or \(p\) (for continuous-time transfer functions).
- Ascending powers of \(z^{-1}\) or \(q^{-1}\) (for discrete-time transfer functions).

Use NaN for any coefficient whose initial value is not known.
For MIMO transfer functions with Ny outputs and Nu inputs, num is a Ny -by-Nu cell array of the numerator coefficients for each input/output pair.

\section*{den}

Initial values of transfer function denominator coefficients.
For SISO transfer functions, specify the initial values of the denominator coefficients den as a row vector. Specify the coefficients in order of:
- Descending powers of \(s\) or \(p\) (for continuous-time transfer functions).
- Ascending powers of \(z^{-1}\) or \(q^{-1}\) (for discrete-time transfer functions).

The leading coefficient in den must be 1 . Use NaN for any coefficient whose initial value is not known.
For MIMO transfer functions with Ny outputs and Nu inputs, den is a Ny -by-Nu cell array of the numerator coefficients for each input/output pair.

\section*{Ts}

Sampling time. For continuous-time models, Ts \(=0\). For discrete-time models, Ts is a positive scalar representing the sampling period
expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set Ts \(=-1\).

Changing this property does not discretize or resample the model. Use c2d and d2c to convert between continuous- and discrete-time representations. Use d2d to change the sampling time of a discrete-time system.

Default: 0 (continuous time)

\section*{sys0}

Dynamic system.
Any dynamic system, such as idss or idpoly, to convert to an idtf model.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Use Name, Value arguments to specify additional properties of idtf models during model creation. For example, idtf(num, den, 'InputName', 'Voltage') creates an idtf model with the InputName property set to Voltage.

\section*{Properties}
idtf object properties include:

\section*{num}

Values of transfer function numerator coefficients.
If you create an idtf model sys using the idtf command, sys.num contains the initial values of numerator coefficients that you specify with the num input argument.

If you obtain an idtf model by identification using tfest, then sys.num contains the estimated values of the numerator coefficients.
For an idtf model sys, the property sys.num is an alias to the value of the property sys.Structure.num. Value.
For SISO transfer functions, the values of the numerator coefficients are stored as a row vector in order of:
- Descending powers of \(s\) or \(p\) (for continuous-time transfer functions).
- Ascending powers of \(z^{-1}\) or \(q^{-1}\) (for discrete-time transfer functions).

Any coefficient whose initial value is not known is stored as NaN.
For MIMO transfer functions with Ny outputs and Nu inputs, num is a Ny -by-Nu cell array of the numerator coefficients for each input/output pair.

\section*{den}

Values of transfer function denominator coefficients.
If you create an idtf model sys using the idtf command, sys.den contains the initial values of denominator coefficients that you specify with the den input argument.
If you obtain an idtf model sys by identification using tfest, then sys. den contains the estimated values of the denominator coefficients.
For an idtf model sys, the property sys.den is an alias to the value of the property sys.Structure.den.Value.

For SISO transfer functions, the values of the denominator coefficients are stored as a row vector in order of:
- Descending powers of \(s\) or \(p\) (for continuous-time transfer functions).
- Ascending powers of \(z^{-1}\) or \(q^{-1}\) (for discrete-time transfer functions).

The leading coefficient in den is fixed to 1. Any coefficient whose initial value is not known is stored as NaN .

For MIMO transfer functions with Ny outputs and Nu inputs, den is a Ny -by-Nu cell array of the numerator coefficients for each input/output pair.

\section*{Variable}

String specifying the transfer function display variable. Variable can take the following values:
- 's' - Default for continuous-time models
- 'p' - Equivalent to 's'
- ' \(z^{\wedge}-1^{\prime}\) - Default for discrete-time models
- ' \(q^{\wedge}-1^{\prime}\) — Equivalent to \({ }^{\prime} z^{\wedge}-1\) '

The value of Variable is reflected in the display, and also affects the interpretation of the num and den coefficient vectors for discrete-time models. For Variable \(=\) ' \(z^{\wedge}-1\) ' or ' \(q^{\wedge}-1\) ', the coefficient vectors are ordered as ascending powers of the variable.

\section*{ioDelay}

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.
If you create an idtf model sys using the idtf command, sys.ioDelay contains the initial values of the transport delay that you specify with a Name, Value argument pair.

If you obtain an idtf model sys by identification using tfest, then sys.ioDelay contains the estimated values of the transport delay.
For an idtf model sys, the property sys.ioDelay is an alias to the value of the property sys.Structure.ioDelay. Value.
For continuous-time systems, transport delays are expressed in the time unit stored in the TimeUnit property. For discrete-time systems, specify transport are expressed as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay is a Ny -by-Nu array, where each entry is a numerical value representing the transport delay for the corresponding input/output pair. You can set ioDelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

\section*{Structure}

Information about the estimable parameters of the idtf model. Structure. num, Structure.den, and Structure.ioDelay contain information about the numerator coefficients, denominator coefficients, and transport delay, respectively. Each contains the following fields:
- Value - Parameter values. For example, sys.Structure. num.Value contains the initial or estimated values of the numerator coefficients.

NaN represents unknown parameter values. For denominators, the value of the leading coefficient, specified by sys.Structure.den.Value(1) is fixed to 1.

For SISO models, sys.num, sys.den, and sys.ioDelay are aliases to sys.Structure.num. Value, sys.Structure.den.Value, and sys.Structure.ioDelay.Value, respectively.
For MIMO models, sys.num \(\{i, j\}\) is an alias to sys.Structure (\(i, j\)). num.Value, and sys.den\{i,j\} is an alias to sys.Structure(i,j).den.Value. Additionally, sys.ioDelay(i, j) is an alias to sys.Structure (\(\mathrm{i}, \mathrm{j}\)).ioDelay.Value
- Minimum - Minimum value that the parameter can assume during estimation. For example, sys.Structure.ioDelay.Minimum \(=0.1\) constrains the transport delay to values greater than or equal to 0.1.
sys.Structure.ioDelay.Minimum must be greater than or equal to zero.
- Maximum - Maximum value that the parameter can assume during estimation.
- Free - Boolean specifying whether the parameter is a free estimation variable. If you want to fix the value of a parameter during estimation, set the corresponding Free \(=\) false. For example, sys.Structure.den.Free \(=\) false fixes all of the denominator coefficients in sys to the values specified in sys.Structure.den.Value.

For denominators, the value of Free for the leading coefficient, specified by sys.Structure.den.Free(1), is always false (the leading denominator coefficient is always fixed to 1).
- Scale - Scale of the parameter's value. Scale is not used in estimation.
- Info - Structure array for storing parameter units and labels. The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe parameter units and labels.

For a MIMO model with Ny outputs and Nu input, Structure is an Ny-by-Nu array. The element Structure (i,j) contains information corresponding to the transfer function for the (\(i, j\)) input-output pair.

\section*{NoiseVariance}

The variance (covariance matrix) of the model innovations \(e\).
An identified model includes a white, Gaussian noise component \(e(t)\). NoiseVariance is the variance of this noise component. Typically, the model estimation function (such as tfest) determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models, NoiseVariance is a \(N_{y}\)-by- \(N_{y}\) matrix, where \(N_{y}\) is the number of outputs in the system.

\section*{Report}

Information about the estimation process.
Report contains the following fields:
- InitMethod - Method used to initialize model coefficients before iterative prediction error minimization.
- N4Weight - Subspace algorithm option value used by n4sidestimator (see n4sidOptions).
- N4Horizon - Forward and backward prediction horizons used by n4sid (see n4sidOptions).
- InitialCondition - Whether estimation estimated initial conditions or fixed them at zero.
- Fit - Quantitative quality assessment of estimation, including percent fit to data and final prediction error.
- Parameters - Estimated values of model parameters and their covariance.
- OptionsUsed - Options used during estimation (see tfestOptions).
- RandState - Random number stream state at start of estimation.
- Status - Whether model was obtained by construction, estimated, or modified after estimation.
- Method - Name of estimation method used.
- DataUsed - Attributes of data used for estimation, such as name and sampling time.
- Termination - Termination conditions for the iterative search scheme used for prediction error minimization, such as final cost value or stopping criterion.

\section*{InputDelay}

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay \(=3\) means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Estimation treats InputDelay as a fixed constant of the model. Estimation uses the ioDelay property for estimating time delays. To specify initial values and constraints for estimation of time delays, use sys.Structure.ioDelay.

Default: 0 for all input channels

\section*{OutputDelay}

Output delays.
For identified systems, like idtf, OutputDelay is fixed to zero.

\section*{Ts}

Sampling time. For continuous-time models, Ts = 0. For discrete-time models, Ts is a positive scalar representing the sampling period expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sampling time, set Ts \(=-1\).

Changing this property does not discretize or resample the model. Use c2d and d2c to convert between continuous- and discrete-time representations. Use d2d to change the sampling time of a discrete-time system.
\[
\text { Default: } 0 \text { (continuous time) }
\]

\section*{TimeUnit}

String representing the unit of the time variable, any time delays in the model (for continuous-time models), and the sampling time Ts (for discrete-time models). TimeUnit can take the following values:
- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

\section*{InputName}

Input channel names. Set InputName to a string for single-input model. For a multi-input model, set InputName to a cell array of strings.
Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:
```

sys.InputName = 'controls';

```

The software automatically expands the input names to \{'controls(1)';'controls(2)'\}.

You can use the shorthand notation \(u\) to refer to the InputName property. For example, sys.u is equivalent to sys.InputName.
Input channel names have several uses, including:
- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

\section*{InputUnit}

Input channel units. Use InputUnit to keep track of input signal units. Set InputUnit to a string for single-input model, or to a cell array of strings for a multi-input model. InputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

\section*{InputGroup}

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure whose field names are the group names and whose field values are the input channels belong to each group. For example:
```

sys.InputGroup.controls = [1 2];

```
sys.InputGroup.noise = [3 5];
creates input groups named controls and noise that include input channels 1,2 and 3,5 , respectively. You can then extract the subsystem from the controls inputs to all outputs using:
```

sys(:,'controls')

```

Default: Struct with no fields

\section*{OutputName}

Output channel names. Set OutputName to a string for single-output model. For a multi-output model, set OutputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:
sys.OutputName = 'measurements';
The software automatically expands the output names to \{'measurements(1)';'measurements(2)'\}.

You can use the shorthand notation \(y\) to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:
- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: Empty string ' ' for all input channels

\section*{OutputUnit}

Output channel units. Use OutputUnit to keep track of output signal units. Set OutputUnit to a string for single-input model, or to a cell array of strings for a multi-input model. OutputUnit has no effect on system behavior.

Default: Empty string ' ' for all input channels

\section*{OutputGroup}

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure whose field names are the group names and whose field values are the output channels belong to each group. For example:
```

sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];

```
creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:
sys('measurement',:)

Default: Struct with no fields

\section*{Name}

System name. Set Name to a string to label the system.
Default: ''

\section*{Notes}

Any text that you wish to associate with the system. Set Notes to a string or a cell array of strings.

Default: \{\}

\section*{UserData}

Any type of data you wish to associate with system. Set UserData to any MATLAB data type.

\section*{Default: []}

Tips
- Unlike idss and idpoly, idtf uses a trivial noise model, with \(\mathrm{H}=\) 1 in
\[
y=G u+H e
\]
and does not let you parameterize the noise.

Concepts
```

See Also

```
```

tfdata | getcov | getpar | idpoly | idss | idproc | idfrd

```
tfdata | getcov | getpar | idpoly | idss | idproc | idfrd
| oe | tfest
```

| oe | tfest

```
- "Dynamic System Models"

\section*{Purpose Transform iddata objects from frequency to time domain}

\section*{Syntax \\ dat = ifft(Datf)}

Description ifft transforms a frequency-domain iddata object to the time domain. It requires the frequencies on Datf to be equally spaced from frequency 0 to the Nyquist frequency. This means that if there are N frequencies in Datf and the time sampling interval is Ts, then

Datf.Frequency = [0:df:F], where \(F\) is \(\mathrm{pi} / T s\) if \(N\) is odd and \(F=p i / T s^{*}(1-1 / N)\) if \(N\) is even.

See Also iddata \| fft

Purpose
Impulse response plot of dynamic system; impulse response data
Syntax
```

impulse(sys)
impulse(sys,Tfinal)
impulse(sys,t)
impulse(sys1,sys2,...,sysN)
impulse(sys1,sys2,...,sysN,Tfinal)
impulse(sys1,sys2,...,sysN,t)
[y,t] = impulse(sys)
[y,t] = impulse(sys,Tfinal)
y = impulse(sys,t)
[y,t,x] = impulse(sys)
[y,t,x,ysd] = impulse(sys)

```

\section*{Description}
impulse calculates the unit impulse response of a dynamic system model. For continuous-time dynamic systems, the impulse response is the response to a Dirac input \(\delta(t)\). For discrete-time systems, the impulse response is the response to a unit area pulse of length Ts and height \(1 / \mathrm{Ts}\), where Ts is the sampling time of the system. (This pulse approaches \(\delta(t)\) as Ts approaches zero.) For state-space models, impulse assumes initial state values are zero.
impulse(sys) plots the impulse response of the dynamic system model sys. This model can be continuous or discrete, and SISO or MIMO. The impulse response of multi-input systems is the collection of impulse responses for each input channel. The duration of simulation is determined automatically to display the transient behavior of the response.
impulse(sys,Tfinal) simulates the impulse response from \(t=0\) to the final time \(t=\) Tfinal. Express Tfinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sampling time (Ts = -1), impulse interprets Tfinal as the number of sampling periods to simulate.
impulse (sys, t) uses the user-supplied time vector t for simulation. Express \(t\) in the system time units, specified in the TimeUnit property of sys. For discrete-time models, \(t\) should be of the form Ti:Ts:Tf,
where Ts is the sample time. For continuous-time models, \(t\) should be of the form Ti:dt:Tf, where \(d t\) becomes the sample time of a discrete approximation to the continuous system (see "Algorithms" on page 2-490). The impulse command always applies the impulse at \(\mathrm{t}=0\), regardless of Ti.
To plot the impulse responses of several models sys \(1, \ldots\), sysN on a single figure, use:
```

impulse(sys1,sys2,...,sysN)
impulse(sys1,sys2,...,sysN,Tfinal)
impulse(sys1,sys2,···,sysN,t)

```

As with bode or plot, you can specify a particular color, linestyle, and/or marker for each system, for example,
```

impulse(sys1,'y:',sys2,'g--')

```

See "Plotting and Comparing Multiple Systems" and the bode entry in this section for more details.

When invoked with output arguments:
```

[y,t] = impulse(sys)
[y,t] = impulse(sys,Tfinal)
y = impulse(sys,t)

```
impulse returns the output response \(y\) and the time vector \(t\) used for simulation (if not supplied as an argument to impulse). No plot is drawn on the screen. For single-input systems, y has as many rows as time samples (length of t), and as many columns as outputs. In the multi-input case, the impulse responses of each input channel are stacked up along the third dimension of \(y\). The dimensions of \(y\) are then

For state-space models only:
[y,t,x] = impulse(sys)
(length of \(t) \times\) (number of outputs) \(\times\) (number of inputs)
and \(y(:,:, j)\) gives the response to an impulse disturbance entering the \(j\) th input channel. Similarly, the dimensions of \(x\) are
(length of \(t) \times(\) number of states) \(\times(\) number of inputs)
[\(y, t, x, y s d]=\) impulse(sys) returns the standard deviation YSD of the response \(Y\) of an identified system SYS. YSD is empty if SYS does not contain parameter covariance information.

Tips

\section*{Examples}

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

\section*{Example 1}

\section*{Impulse Response Plot of Second-Order State-Space Model}

Plot the impulse response of the second-order state-space model
\[
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
-0.5572 & -0.7814 \\
0.7814 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
y & =\left[\begin{array}{ll}
1.9691 & 6.4493
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
\]
use the following commands.
\(a=[-0.5572-0.7814 ; 0.78140] ;\)
b = [1-1;0 2];
\(c=\left[\begin{array}{ll}1.9691 & 6.4493\end{array}\right] ;\)
sys = ss(a,b,c,0);
impulse(sys)

The left plot shows the impulse response of the first input channel, and the right plot shows the impulse response of the second input channel.
You can store the impulse response data in MATLAB arrays by
[y, t] = impulse(sys)
Because this system has two inputs, y is a 3-D array with dimensions
```

size(y)
ans =
101 1 2

```
(the first dimension is the length of t). The impulse response of the first input channel is then accessed by
\(y(:,:, 1)\)

\section*{Example 2}

Fetch the impulse response and the corresponding 1 std uncertainty of an identified linear system.
```

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotor
z = iddata(y, u, 0.1, 'Name', 'DC-motor');
set(z, 'InputName', 'Voltage', 'InputUnit', 'V');
set(z, 'OutputName', {'Angular position', 'Angular velocity'});
set(z, 'OutputUnit', {'rad', 'rad/s'});
set(z, 'Tstart', 0, 'TimeUnit', 's');
model = tfest(z,2);
[y,t,~,ysd] = impulse(model,2);
% Plot 3 std uncertainty
subplot(211)
plot(t,y(:,1), t,y(:,1)+3*ysd(:,1),'k:', t,y(:,1)-3*ysd(:,1),'k:')
subplot(212)
plot(t,y(:,2), t,y(:,2)+3*ysd(:,2),'k:', t,y(:,2)-3*ysd(:,2),'k:')

```

\section*{Algorithms}

Continuous-time models are first converted to state space. The impulse response of a single-input state-space model
\[
\begin{aligned}
& \dot{x}=A x+b u \\
& y=C x
\end{aligned}
\]
is equivalent to the following unforced response with initial state \(b\).
\[
\begin{aligned}
\dot{x} & =A x, \quad x(0)=b \\
y & =C x
\end{aligned}
\]

To simulate this response, the system is discretized using zero-order hold on the inputs. The sampling period is chosen automatically based
on the system dynamics, except when a time vector \(\mathrm{t}=0: \mathrm{dt}: \mathrm{Tf}\) is supplied (dt is then used as sampling period).

\title{
Limitations The impulse response of a continuous system with nonzero \(D\) matrix is infinite at \(t=0\). impulse ignores this discontinuity and returns the lower continuity value \(C b\) at \(t=0\).
}

\author{
See Also \\ ltiview | step | initial | lsim | impulseest
}

Purpose Nonparameteric impulse response estimation

Syntax
Description

Tips
sys = impulseest(data)
sys = impulseest(data,N)
sys = impulseest(data,N,NK)
sys = impulseest(__, options)
sys = impulseest(data) estimates an impulse response model, sys, using time- or frequency-domain data, data. The model order (number of nonzero impulse response coefficients) is determined automatically using persistence of excitation analysis on the input data.
sys = impulseest(data, \(N\)) estimates an Nth order impulse response model, corresponding to the time range \(0: T s:(N-1) * T s\), where Ts is the data sampling time.
sys = impulseest (data, \(N, N K\)) specifies a transport delay of NK samples in the estimated impulse response.
sys = impulseest(__, options) specifies estimation options using the options set options.

Use nonparametric impulse response to analyze data for feedback effects, delays and significant time constants.
- To view the impulse or step response of sys, use either impulseplot or stepplot, respectively.
- A significant value of the impulse response of sys for negative time values indicates the presence of feedback in the data.
- To view the region of insignificant impulse response (statistically zero) in a plot, right-click on the plot and select Characteristics > Confidence Region. A patch depicting the zero-response region appears on the plot. The impulse response at any time value is significant only if it lies outside the zero response region. The level of significance depends on the number of standard deviations specified in ShowConfidence or options in the property
editor. A common choice is 3 standard deviations, which gives 99.7\% significance.

\section*{Input \\ Arguments}

\section*{data}

Estimation data with at least one input signal and nonzero sample time.
For time domain estimation, data is an iddata object containing the input and output signal values.
For frequency domain estimation, data can be one of the following:
- Frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency'

\section*{N}

Order of the FIR model. Must be one of the following:
- A positive integer.

For data containing \(N u\) inputs and \(N y\) outputs, you can also specify N as an \(N y\)-by- \(N u\) matrix of positive integers, such that \(N(i, j)\) represents the length of impulse response from input \(j\) to output \(i\).
- [] - Determines the order automatically using persistence of excitation analysis on the input data.

\section*{NK}

Transport delay in the estimated impulse response, specified as a scalar integer. For data containing \(N u\) inputs and \(N y\) outputs, you can also specify a \(N y\)-by- \(N u\) matrix.
- To generate the impulse response coefficients for negative time values, which is useful for feedback analysis, use a negative integer.

\section*{impulseest}

If you specify a negative value, the value must be the same across all output channels.

You can also use NK = 'negative' to automatically pick negative lags for all input/output channels of the model.
- Specify NK \(=0\) if the delay is unknown. The true delay is then be indicated by insignificant impulse response values in the beginning of the response.
- Specify NK = 1 to create a system whose leading numerator coefficient is zero.

Positive values of NK greater than 1 are stored in the ioDelay property of sys (sys.ioDelay \(=\max (\) NK-1,0)). Negative values are stored in the InputDelay property.

The impulse response (input \(j\) to output i) coefficients correspond to the time span NK (i,j)*Ts : Ts : (N(ij)+NK(i,j)-1)*Ts.

Default: zeros(\(N y, N u\))

\section*{options}

Estimation options that specify the following:
- Prefilter order
- Regularization algorithm
- Input and output data offsets

Use impulseestOptions to create the options set.

\section*{Output sys}

Arguments
Estimated impulse response model.
sys is an idtf model, which encapsulates an FIR model.

\section*{Examples}

\section*{Identify Nonparametric Impulse Response Model from Data}

Compute a nonparametric impulse response model using data from a hair dryer. The input is the voltage applied to the heater and the output is the heater temperature. Use the first 500 samples for estimation.
```

load dry2
ze = dry2(1:500);
sys = impulseest(ze);

```
ze is an iddata object that contains time-domain data.
sys, the identified nonparametric impulse response model, is an idtf model.

Analyze the impulse response of the identified model from time 0 to time 1.
```

impulseplot(sys,1);

```

Right-click the plot and select Characteristics > Confidence Region to view the statistically zero-response region.

The first significantly nonzero response value occurs at 0.24 seconds, or, the third lag. This implies that the transport delay is 3 samples. To generate a model where the 3 -sample delay is imposed, set the transport delay to 3 :
sys = impulseest(ze,[],3)

\section*{Specify Order of FIR Model}

Estimate an impulse response model with a specific order.
load iddata3 z3
sys = impulseest(z3,35);

\section*{Specify Transport Delay in FIR Model}

Estimate an impulse response model with transport delay of 10 samples.
```

load iddata3 z3

```
sys \(=\) impulseest(z3,35,-10);

\section*{Obtain Regularized Estimate of Impulse Response Model}

Obtain regularized estimates of impulse response model using the regularizing kernel estimation option.

Estimate a model using regularization.
load iddata3 z3;
sys1 = impulseest(z3);

By default, tuned and correlated kernel (' \({ }^{\prime}\) TC ') is used for regularization.
Estimate a model with no regularization.
```

opt = impulseestOptions('RegulKernel','none');
sys2 = impulseest(z3,opt);

```

Compare the impulse response of both models.
h = impulseplot(sys1,sys2,70);

\section*{impulseest}

As the plot shows, using regularization makes the response smoother.
Plot the confidence interval.
showConfidence(h);

The uncertainty in the computed response is reduced at larger lags for the model using regularization. Regularization decreases variance at the price of some bias. The tuning of the regularization is such that the bias is dominated by the variance error though.

\section*{Test Measured Data for Feedback Effects}

Use the empirical impulse response of the measured data to verify whether there are feedback effects. Significant amplitude of the impulse response for negative time values indicates feedback effects in data.

Compute the noncausal impulse response using a fourth-order prewhitening filter, automatically chosen order and negative lag using nonregularized estimation.
```

load iddata3 z3;
opt = impulseestOptions('pw',4,'RegulKernel','none');
sys = impulseest(z3,[],'negative',opt);

```
sys is a noncausal model containing response values for negative time.

Analyze the impulse response of the identified model.
```

impulseplot(sys);

```

View the statistically zero-response region by right-clicking on the plot and selecting Characteristics > Confidence Region.

The large response value at \(\mathrm{t}=0\) (zero lag) suggests that the data comes from a process containing feedthrough. That is, the input affects the output instantaneously. It could also be that there is a direct feedback effect (proportional control without some delay that \(u(t)\) is determined partly by y(t)).

Also, the response values are significant for some negative time lags, such as at -7 seconds and -9 seconds. Such significant negative values suggest the possibility of feedback in the data.

\section*{Compute Impulse Response on Frequency Response Data}

Compute an impulse response model for frequency response data.
```

load demofr;
zfr = AMP.*exp(1i*PHA*pi/180);

```
```

Ts = 0.1;
data = idfrd(zfr,W,Ts);
sys = impulseest(data);

```

\section*{Compare Identified Nonparametric and Parametric Models}

Identify parametric and nonparametric models for a data set, and compare their step response.

Identify the impulse response model (nonparametric) and state-space model (parametric), based on a data set.
```

load iddata1 z1;
sys1 = impulseest(z1);
sys2 = ssest(z1,4);

```
sys1 is a discrete-time identified transfer function model.
sys2 is a continuous-time identified state-space model.
Compare the step response for sys1 and sys2.
```

step(sys1,'b',sys2,'r');
legend('impulse response model','state-space model');

```


Algorithms

Correlation analysis refers to methods that estimate the impulse response of a linear model, without specific assumptions about model orders.

The impulse response, \(g\), is the system's output when the input is an impulse signal. The output response to a general input, \(u(t)\), is obtained as the convolution with the impulse response. In continuous time:
\[
y(t)=\int_{-\infty}^{t} g(\tau) u(t-\tau) d \tau
\]

In discrete-time:
\[
y(t)=\sum_{k=1}^{\infty} g(k) u(t-k)
\]

The values of \(g(k)\) are the discrete time impulse response coefficients.

You can estimate the values from observed input-output data in several different ways. impulseest estimates the first \(n\) coefficients using the least-squares method to obtain a finite impulse response (FIR) model of order \(n\).

Several important options are associated with the estimate:
- Prewhitening - The input can be pre-whitened by applying an input-whitening filter of order PW to the data. This minimizes the effect of the neglected tail (\(k>n\)) of the impulse response.
1 A filter of order PW is applied such that it whitens the input signal u:
\(1 / A=A(u) e\), where \(A\) is a polynomial and \(e\) is white noise.
2 The inputs and outputs are filtered using the filter:
\[
u f=A u, y f=A y
\]

3 The filtered signals uf and yf are used for estimation.
You can specify prewhitening using the PW name-value pair argument of impulseestOptions.
- Regularization - The least-squares estimate can be regularized. This means that a prior estimate of the decay and mutual correlation among \(g(k)\) is formed and used to merge with the information about \(g\) from the observed data. This gives an estimate with less variance, at the price of some bias. You can choose one of the several kernels to encode the prior estimate.
This option is essential because, often, the model order n can be quite large. In cases where there is no regularization, \(n\) can be automatically decreased to secure a reasonable variance.

You can specify the regularizing kernel using the RegulKernel Name-Value pair argument of impulseestOptions.
- Autoregressive Parameters - The basic underlying FIR model can be complemented by NA autoregressive parameters, making it an ARX model.
\[
y(t)=\sum_{k=1}^{n} g(k) u(t-k)-\sum_{k=1}^{N A} a_{k} y(t-k)
\]

This gives both better results for small \(n\) and allows unbiased estimates when data are generated in closed loop. impulseest uses NA \(=5\) for \(\mathrm{t}>0\) and NA \(=0\) (no autoregressive component) for \(\mathrm{t}<0\).
- Noncausal effects - Response for negative lags. It may happen that the data has been generated partly by output feedback:
\[
u(t)=\sum_{k=0}^{\infty} h(k) y(t-k)+r(t)
\]
where \(h(k)\) is the impulse response of the regulator and \(r\) is a setpoint or disturbance term. The existence and character of such feedback \(h\) can be estimated in the same way as \(g\), simply by trading places between \(y\) and \(u\) in the estimation call. Using impulseest with an indication of negative delays, \(\mathrm{mi}=\operatorname{impulseest}(\) data, \(n k, n b), n k<0\), returns a model mi with an impulse response
\[
[h(-n k), h(-n k-1), \ldots, h(0), g(1), g(2), \ldots, g(n b+n k)]
\]
aligned so that it corresponds to lags \([n k, n k+1, . ., 0,1,2, \ldots, n b+n k]\). This is achieved because the input delay (InputDelay) of model mi is \(n k\).

For a multi-input multi-output system, the impulse response \(g(k)\) is an \(n y\)-by- \(n u\) matrix, where \(n y\) is the number of outputs and \(n u\) is the number of inputs. The \(i-j\) element of the matrix \(g(k)\) describes the behavior of the \(i\) th output after an impulse in the \(j\) th input.
See Also
impulseestOptions | impulse | step | cra | covf | spa
Concepts
- "What Is Time-Domain Correlation Analysis?"
Purpose Options set for impulseest
Syntax options = impulseestOptions

options = impulseestOptions(Name,Value)
Description
Tips
Input
Arguments
options = impulseestOptions creates a default options set for impulseest.
options = impulseestOptions(Name, Value) creates an options set with the options specified by one or more Name, Value pair arguments.
- A linear model cannot describe arbitrary input-output offsets. Therefore, before using the data, you must either detrend it or remove the levels using InputOffset and OutputOffset. You can reintroduce the removed data during simulations by using the InputOffset and OutputOffset simulation options. For more information, see simOptions.
- Estimating the impulse response by specifying either InputOffset, OutputOffset or both is equivalent to detrending the data using getTrend and detrend. For example:
```

opt = impulseestOptions('InputOffest',in_off.'OuputOffset',out_off)
impulseest(data,opt);

```
is the same as:
```

Tr = getTrend(data),
Tr.InputOffset = in_off
TR.OutputOffset = out_off
dataT = detrend(data,Tr)
impulseest(dataT)

```

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can

\section*{impulseestOptions}
specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{RegulKernel}

Regularizing kernel, used for regularized estimates of impulse response for all input-output channels. Regularization reduces variance of estimated model coefficients and produces a smoother response by trading variance for bias. For more information, see [1].

Must be one of the following strings:
- 'TC' - Tuned and correlated kernel
- 'none ' - No regularization is used
- 'CS' - Cubic spline kernel
- 'SE' - Squared exponential kernel
- 'SS' - Stable spline kernel
- 'HF ' - High frequency stable spline kernel
- 'DI' - Diagonal kernel
- 'DC' - Diagonal and correlated kernel

Default: 'TC'

\section*{PW}

Order of the input prewhitening filter. Must be one of the following:
- 'auto' - Uses a filter of order 10 when RegulKernel is 'none'; otherwise, 0 .
- Nonnegative integer

Use a nonzero value of prewhitening only for unregularized estimation (RegulKernel is 'none').

Default: 'auto'

\section*{InputOffset}

Input signal offset level of time-domain estimation data. Must be one of the following:
- An Nu-element column vector, where Nu is the number of inputs. For multi-experiment data, specify a Nu-by-Ne matrix, where Ne is the number of experiments. The offset value InputOffset (\(i, j\)) is subtracted from the \(i^{\text {th }}\) input signal of the \(j^{\text {th }}\) experiment.
- [] — No offsets.

Default: []

\section*{OutputOffset}

Output signal offset level of time-domain estimation data. Must be one of the following:
- An Ny-element column vector, where Ny is the number of outputs. For multi-experiment data, specify a Ny-by-Ne matrix, where Ne is the number of experiments. The offset value OputOffset(i,j) is subtracted from the \(i^{\text {th }}\) output signal of the \(j^{\text {th }}\) experiment.
- [] — No offsets.

Default: []

\section*{Advanced}

Structure with the following fields:
- MaxSize - Maximum allowable size of Jacobian matrices formed during estimation. Specify a large positive number.
Default: 250e3
- SearchMethod - Search method for estimating regularization parameters. Must be one of the following strings:
- 'gn': Quasi-Newton line search

\section*{impulseestOptions}
- 'fmincon': Trust-region-reflective constrained minimizer. Requires Optimization Toolbox software.

In general, 'fmincon' is better than 'gn' for handling bounds on regularization parameters that are imposed automatically during estimation. Thus, if you have the Optimization Toolbox software, use 'fmincon'.

SearchMethod is used only when RegulKernel is not 'none'.
Default: 'gn'

\section*{Output \\ Arguments}

\section*{options}

Option set containing the specified options for impulseest.

\section*{Examples Create Default Options Set for Impulse Response Estimation}

Create a default options set for impulseest.
options = impulseestOptions;

\section*{Specify Regularizing Kernel and Prewhitening Options for Impulse Response Estimation}

Specify 'HF' regularizing kernel and order of prewhitening filter for impulseest.
```

options = impulseestOptions('RegulKernel','HF','PW',5);

```

Alternatively, use dot notation to specify these options.
```

options = impulseestOptions;
options.RegulKernel = 'HF';
options.PW = 5;

```

\author{
References \\ [1] T. Chen, H. Ohlsson, and L. Ljung. "On the Estimation of Transfer Functions, Regularizations and Gaussian Processes - Revisited", Automatica, Volume 48, August 2012.
}

See Also impulseest

\section*{Purpose}

Plot impulse response and return plot handle

\section*{Syntax}
```

impulseplot(sys)
impulseplot(sys,Tfinal)
impulseplot(sys,t)
impulseplot(sys1,sys2,...,sysN)
impulseplot(sys1,sys2,...,sysN,Tfinal)
impulseplot(sys1,sys2,...,sysN,t)
impulseplot(AX,...)
impulseplot(..., plotoptions)
h = impulseplot(...)

```

\section*{Description}
impulseplot plots the impulse response of the dynamic system model sys. For multi-input models, independent impulse commands are applied to each input channel. The time range and number of points are chosen automatically. For continuous systems with direct feedthrough, the infinite pulse at \(\mathrm{t}=0\) is disregarded. impulseplot can also return the plot handle, h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
```

help timeoptions

```
for a list of available plot options.
impulseplot(sys) plots the impulse response of the LTI model without returning the plot handle.
impulseplot(sys,Tfinal) simulates the impulse response from \(t=0\) to the final time \(t=\) Tfinal. Express Tfinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sampling time (\(\mathrm{Ts}=-1\)), impulseplot interprets Tfinal as the number of sampling intervals to simulate.
impulseplot (sys, \(t\)) uses the user-supplied time vector \(t\) for simulation. Express \(t\) in the system time units, specified in the TimeUnit property of sys. For discrete-time models, \(t\) should be of the form Ti:Ts:Tf, where Ts is the sample time. For continuous-time models, \(t\) should be of the form Ti:dt:Tf, where \(d t\) becomes the

\section*{impulseplot}
sample time of a discrete approximation to the continuous system (see impulse). The impulseplot command always applies the impulse at \(t=0\), regardless of Ti.

To plot the impulse response of multiple LTI models sys 1, sys \(2, \ldots\) on a single plot, use:
impulseplot(sys1,sys2,...,sysN)
impulseplot(sys1,sys2, ...,sysN,Tfinal)
impulseplot(sys1,sys2,...,sysN,t)
You can also specify a color, line style, and marker for each system, as in
impulseplot(sys1,'r',sys2,'y--',sys3,'gx')
impulseplot (AX,...) plots into the axes with handle AX.
impulseplot(..., plotoptions) plots the impulse response with the options specified in plotoptions. Type
help timeoptions
for more detail.
\(\mathrm{h}=\) impulseplot(...) plots the impulse response and returns the plot handle h .

Tips

\section*{Examples}

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

\section*{Example 1}

Normalize the impulse response of a third-order system.
```

sys = rss(3);
h = impulseplot(sys);
% Normalize responses
setoptions(h,'Normalize','on');

```

\section*{Example 2}

Plot the impulse response and the corresponding 1 std "zero interval" of an identified linear system.
```

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmc
z = iddata(y, u, 0.1, 'Name', 'DC-motor');
set(z, 'InputName', 'Voltage', 'InputUnit', 'V');
set(z, 'OutputName', {'Angular position', 'Angular velocity'});
set(z, 'OutputUnit', {'rad', 'rad/s'});
set(z, 'Tstart', 0, 'TimeUnit', 's');
model = n4sid(z,4,n4sidOptions('Focus', 'simulation'));
h = impulseplot(model,2);
showConfidence(h);

```

See Also getoptions | impulse | setoptions | showConfidence

\section*{init}
\begin{tabular}{|c|c|}
\hline Purpose & Set or randomize initial parameter values \\
\hline Syntax & \[
\begin{aligned}
& \mathrm{m}=\operatorname{init}(\mathrm{mO}) \\
& \mathrm{m}=\operatorname{init}(\mathrm{mO}, \mathrm{R}, \text { pars }, \mathrm{sp})
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{Description} & This function randomizes initial parameter estimates for model structures m0 for any linear or nonlinear identified model. It does not support idnlgrey models. \(m\) is the same model structure as \(m 0\), but with a different nominal parameter vector. This vector is used as the initial estimate by pem. \\
\hline & The parameters are randomized around pars with variances given by the row vector R. Parameter number \(k\) is randomized as pars (\(k\)) + \(e^{*} \operatorname{sqrt}(R(k))\), where e is a normal random variable with zero mean and a variance of 1 . The default value of \(R\) is all ones, and the default value of pars is the nominal parameter vector in mo. \\
\hline & \begin{tabular}{l}
Only models that give stable predictors are accepted. If \(s p=\) ' \(b\) ', only models that are both stable and have stable predictors are accepted. \\
\(s p=\) 's' requires stability only of the model, and \(s p=\) ' \(p\) ' requires stability only of the predictor. \(s p=\) ' \(p\) ' is the default.
\end{tabular} \\
\hline & Sufficiently free parameterizations can be stabilized by direct means without any random search. To just stabilize such an initial model, set \(R=0\). With \(R>0\), randomization is also done. \\
\hline & For model structures where a random search is necessary to find a stable model/predictor, a maximum of 100 trials is made by init. It can be difficult to find a stable predictor for high-order systems by trial and error. \\
\hline See Also & idnlarx | idnlhw | rsample | simsd \\
\hline
\end{tabular}

\section*{Purpose Interpolate FRD model}

Syntax isys \(=\) interp \((\) sys, freqs \()\)
Description isys \(=\) interp(sys,freqs) interpolates the frequency response data contained in the FRD model sys at the frequencies freqs. interp, which is an overloaded version of the MATLAB function interp, uses linear interpolation and returns an FRD model isys containing the interpolated data at the new frequencies freqs. If sys is an IDFRD model, the noise spectrum, if non-empty, is also interpolated. The response and noise covariance data, if available, are also interpolated.

You should express the frequency values freqs in the same units as sys.frequency. The frequency values must lie between the smallest and largest frequency points in sys (extrapolation is not supported).

See Also freqresp \| frd \| idfrd

Purpose Plot pole-zero map for I/O pairs of model
Syntax \(\begin{aligned} & \text { iopzmap(sys) } \\ & \text { iopzmap(sys } 1, \text { sys } 2, \ldots \text {) }\end{aligned}\)
Description iopzmap(sys) computes and plots the poles and zeros of each input/output pair of the dynamic system model sys. The poles are plotted as x's and the zeros are plotted as o's.
iopzmap(sys1,sys2,...) shows the poles and zeros of multiple models sys1,sys2,... on a single plot. You can specify distinctive colors for each model, as in iopzmap(sys1,'r',sys2,'y',sys3,'g').

The functions sgrid or zgrid can be used to plot lines of constant damping ratio and natural frequency in the \(s\) or \(z\) plane.

For model arrays, iopzmap plots the poles and zeros of each model in the array on the same diagram.

Tips

\section*{Examples}

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

\section*{Example 1}

Create a one-input, two-output system and plot pole-zero maps for I/O pairs.
```

H = [tf(-5 ,[1 -1]); tf([1 -5 6],[1 1 0])];
iopzmap(H)

```


\section*{Example 2}

View the poles and zeros of an over-parameterized state-space model estimated using input-output data.
```

load iddata1
sys = ssest(z1,6,ssestOptions('focus','simulation'))
iopzmap(sys)

```

The plot shows that there are two pole-zero pairs that almost overlap, which hints are their potential redundancy.

See Also
pzmap | pole | zero | sgrid | zgrid | iopzplot

Purpose
Plot pole-zero map for I/O pairs and return plot handle
Syntax
```

h = iopzplot(sys)
iopzplot(sys1,sys2,...)
iopzplot(AX,...)
iopzplot(..., plotoptions)

```

\section*{Description}
\(\mathrm{h}=\) iopzplot(sys) computes and plots the poles and zeros of each input/output pair of the LTI model SYS. The poles are plotted as x's and the zeros are plotted as o's. It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
help pzoptions
for a list of available plot options.
iopzplot (sys1, sys2, ...) shows the poles and zeros of multiple LTI models SYS1,SYS2,... on a single plot. You can specify distinctive colors for each model, as in
iopzplot(sys1,'r',sys2,'y',sys3,'g')
iopzplot (AX,...) plots into the axes with handle AX.
iopzplot(..., plotoptions) plots the poles and zeros with the options specified in plotoptions. Type
help pzoptions
for more detail.
The function sgrid or zgrid can be used to plot lines of constant damping ratio and natural frequency in the s or z plane.
For arrays sys of LTI models, iopzplot plots the poles and zeros of each model in the array on the same diagram.

\section*{Tips You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".}

\section*{Examples}

See Also
getoptions | iopzmap | setoptions | showConfidence

Purpose Determine if dynamic system model is in continuous time

\section*{Syntax bool = isct(sys)}

Description bool = isct(sys) returns a logical value of 1 (true) if the dynamic system model sys is a continuous-time model. The function returns a logical value of 0 (false) otherwise.

Input
Arguments
Output
Arguments
sys
Dynamic system model or array of such models.

\section*{bool}

Logical value indicating whether sys is a continuous-time model. bool = 1 (true) if sys is a continuous-time model (sys.Ts = 0). If sys is a discrete-time model, bool \(=0\) (false).

For a static gain, both isct and isdt return true unless you explicitly set the sampling time to a nonzero value. If you do so, isdt returns true and isct returns false.

For arrays of models, bool is true if the models in the array are continuous.

\section*{See Also \\ isdt | isstable}
\begin{tabular}{ll}
Purpose & Determine if dynamic system model is in discrete time \\
Syntax & bool = isdt (sys) \\
Description & \begin{tabular}{l}
bool \(=\) isdt (sys) returns a logical value of 1 (true) if the dynamic \\
system model sys is a discrete-time model. The function returns a \\
logical value of 0 (false) otherwise.
\end{tabular} \\
Input & sys \\
Arguments & \begin{tabular}{l}
Dynamic system model or array of such models.
\end{tabular} \\
Output & \begin{tabular}{l}
bool
\end{tabular} \\
Arguments & \begin{tabular}{l}
Logical value indicating whether sys is a discrete-time model. \\
bool = 1 (true) if sys is a discrete-time model (sys. Ts \\
is a continuous-time model, bool = 0 (false). If sys
\end{tabular} \\
See Also & \begin{tabular}{l}
For a static gain, both isct and isdt return true unless you explicitly \\
set the sampling time to a nonzero value. If you do so, isdt returns \\
true and isct returns false.
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l}
For arrays of models, bool is true if the models in the array are \\
discrete.
\end{tabular}

\section*{isempty}

Purpose Determine whether dynamic system model is empty

\section*{Syntax isempty(sys)}

Description isempty (sys) returns TRUE (logical 1) if the dynamic system model sys has no input or no output, and FALSE (logical 0) otherwise. Where sys is a FRD model, isempty (sys) returns TRUE when the frequency vector is empty. Where sys is a model array, isempty(sys) returns TRUE when the array has empty dimensions or when the LTI models in the array are empty.

\section*{Examples \\ Both commands}
```

isempty(tf) % tf by itself returns an empty transfer function
isempty(ss(1,2,[],[]))

```
return TRUE (logical 1) while
isempty(ss(1,2,3,4))
returns FALSE (logical 0).

\section*{See Also issiso | size}

\section*{Purpose}

Determine if dynamic system model is proper
Syntax
B = isproper(sys)
B = isproper(sys,'elem')
[B, sysr] = isproper(sys)

\section*{Description}

\section*{Examples}

\section*{Example 1}

The following commands
```

isproper(tf([1 0],1)) % transfer function s
isproper(tf([1 0],[1 1])) % transfer function s/(s+1)

```
return FALSE (logical 0) and TRUE (logical 1), respectively.

\section*{Example 2}

Combining state-space models can yield results that include more states than necessary. Use isproper to compute an equivalent lower-order model.
```

H1 = ss(tf([1 1],[1 2 5]));
H2 = ss(tf([1 7],[1]));
H = H1*H2
a =

	x1	x2	x3	x4
x1	-2	-2.5	0.5	1.75
x2	2	0	0	0
x3	0	0	1	0
x4	0	0	0	1

b =
u1
x1 0
x2 0
x3 0
x4 -4
c =
lrrrrer
d =
u1
y1 0
e =

	x1	x2	x3	x4
x1	1	0	0	0
x2	0	1	0	0

```
```

x3 0 0 0 0.5
x4 0}000
H is proper and reducible:
[isprop, Hr] = isproper(H)
isprop =
1
a =
x1 x2
x1 0 0.1398
x2 -0.06988 -0.0625
b =
u1
x1 -0.125
x2 -0.1398
c =
y1 -0.5 -1.118
d =
u1
y1 1
e =

	x 1	x 2
x 1	0.0625	0
x 2	0	0.03125

Continuous-time model.

```

H and Hr are equivalent, as a Bode plot demonstrates:
bode(H, Hr)

See Also
ss | dss

\title{
Purpose \\ Determine whether model parameters or data values are real
}

\section*{Syntax isreal(Data) \\ isreal(Model)}

Description Data is an iddata set and Model is any idmodel. The isreal function returns 1 if all parameters of the model are real and if all signals of the data set are real.

See Also realdata

Purpose Determine if dynamic system model is single-input/single-output (SISO)

\section*{Syntax issiso(sys)}

Description issiso(sys) returns 1 (true) if the dynamic system model sys is SISO and 0 (false) otherwise.

See Also isempty | size

\section*{Purpose Determine whether system is stable}
Syntax
B = isstable(sys)
B = isstable(sys,'elem')

Description \(\quad B=\) isstable(sys) returns 1 (true) if the dynamic system model sys has stable dynamics, and 0 (false) otherwise. If sys is a model array, then \(B\) is true if all models in sys are stable.

B = isstable(sys,'elem') returns a logical array of the same size as the model array sys. The logical array indicates which models in sys are stable.
isstable is only supported for analytical models with a finite number of poles.

\section*{See Also \\ pole}

Purpose
AR model estimation using instrumental variable method

\section*{Syntax}
sys = ivar(data,na)
sys = ivar(data,na,nc)
sys = ivar(data,na,nc,max_size)

\section*{Description}

Input Arguments
sys = ivar(data, na) estimates an AR polynomial model, sys, using the instrumental variable method and the time series data data. na specifies the order of the \(A\) polynomial.

An AR model is represented by the equation:
\[
A(q) y(t)=e(t)
\]

In the above model, \(e(t)\) is an arbitrary process, assumed to be a moving average process of order nc, possibly time varying. nc is assumed to be equal to na. Instruments are chosen as appropriately filtered outputs, delayed nc steps.
sys = ivar(data, na, nc) specifies the value of the moving average process order, nc, separately.
sys = ivar(data, na, nc, max_size) specifies the maximum size of matrices formed during estimation.

\section*{data}

Estimation time series data.
data must be an iddata object with scalar output data only.
na
Order of the \(A\) polynomial
nc
Order of the moving average process representing \(e(t)\).

\section*{max_size}

Maximum matrix size.
max_size specifies the maximum size of any matrix formed by the algorithm for estimation.

Specify max_size as a reasonably large positive integer.
Default: 250000

\section*{Output Arguments}

\section*{Examples}

\section*{References}

See Also

\section*{sys}

Identified polynomial model.
sys is an AR idpoly model which encapsulates the identified polynomial model.

Compare spectra for sinusoids in noise, estimated by the IV method and by the forward-backward least squares method.
```

y = iddata(sin([1:500]'*1.2) + sin([1:500]'*1.5) + ...
0.2*randn(500,1),[]);
miv = ivar(y,4);
mls = ar(y,4);
spectrum(miv,mls)

```
[1] Stoica, P., et al. Optimal Instrumental Variable Estimates of the AR-parameters of an ARMA Process, IEEE Trans. Autom. Control, Volume AC-30, 1985, pp. 1066-1074.

\section*{Purpose Loss functions for sets of ARX model structures}
```

Syntax v = ivstruc(ze,zv,NN)
v = ivstruc(ze,zv,NN,p,maxsize)

```

\section*{Description \\ NN is a matrix that defines a number of different structures of the ARX} type. Each row of NN is of the form
nn = [na nb nk]
with the same interpretation as described for arx. See struc for easy generation of typical NN matrices.
ze and zv are iddata objects containing output-input data. Only time-domain data is supported. Models for each model structure defined in NN are estimated using the instrumental variable (IV) method on data set ze. The estimated models are simulated using the inputs from data set \(z v\). The normalized quadratic fit between the simulated output and the measured output in zv is formed and returned in v . The rows below the first row in \(v\) are the transpose of \(N N\), and the last row contains the logarithms of the condition numbers of the IV matrix
\[
\sum \varsigma(t) \varphi^{T}(t)
\]

A large condition number indicates that the structure is of unnecessarily high order (see Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999, p. 498).

The information in \(v\) is best analyzed using selstruc.
If \(p\) is equal to zero, the computation of condition numbers is suppressed.
The routine is for single-output systems only.

Note The IV method used does not guarantee that the models obtained are stable. The output-error fit calculated in v can then be misleading.
```

Examples Compare the effect of different orders and delays, using the same data set for both the estimation and validation.
load iddata1 $\mathrm{z1}$;
v = ivstruc(z1,z1,struc(1:3,1:2,2:4));
$\mathrm{nn}=$ selstruc(v)
m = iv4(z1,nn);

```

Algorithms A maximum-order ARX model is computed using the least squares method. Instruments are generated by filtering the input(s) through this model. The models are subsequently obtained by operating on submatrices in the corresponding large IV matrix.

\author{
References Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999.
}

\author{
See Also \\ arxstruc | iv4 | selstruc | struc
}
Purpose ARX model estimation using instrumental variable method with arbitrary instruments
```

```
Syntax
```

```
Syntax
sys = ivx(data,[na nb nk],x)
sys = ivx(data,[na nb nk],x)
sys = ivx(data,[na nb nk],x,max_size)
```

```
sys = ivx(data,[na nb nk],x,max_size)
```

```

\section*{Description}

Tips

\section*{Input Arguments}
sys \(=\) ivx(data, [na nb nk],x) estimates an ARX polynomial model, sys, using the instrumental variable method with arbitrary instruments. The model is estimated for the time series data data. [na nb nk] specifies the ARX structure orders of the \(A\) and \(B\) polynomials and the input to output delay, expressed in the number of samples.
An ARX model is represented as:
\[
A(q) y(t)=B(q) u(t-n k)+v(t)
\]
sys = ivx(data, [na nb nk],x,max_size) specifies the maximum size of matrices formed during estimation.
- Use iv4 first for IV estimation to identify ARX polynomial models where the instruments \(x\) are chosen automatically. Use ivx for nonstandard situations. For example, when there is feedback present in the data, or, when other instruments need to be tried. You can also use iv to automatically generate instruments from certain custom defined filters.

\section*{data}
Estimation time series data.
data must be an iddata object and can represent either time- or frequency-domain data. If using frequency domain data, the number of outputs must be 1 .

\section*{[na nb nk]}
ARX model orders.

For more details on the ARX model structure, see arx.

\section*{x}

Instrument variable matrix.
\(x\) is a matrix containing the arbitrary instruments for use in the instrumental variable method.
\(x\) must be of the same size as the output data, data.y. For multi-experiment data, specify X as a cell array with one entry for each experiment.

The instruments used are analogous to the regression vector, with y replaced by x .
max_size
Maximum matrix size.
max_size specifies the maximum size of any matrix formed by the algorithm for estimation.

Specify max_size as a reasonably large positive integer.
Default: 250000

\section*{Output \\ sys}

Arguments

References \(\quad \begin{aligned} & \text { [1] Ljung, L. System Identification: Theory for the User, page 222, } \\ & \text { Upper Saddle River, NJ, Prentice-Hal PTR, } 1999 .\end{aligned}\)
See Also
arx | arxstruc | idpoly | iv4 | ivar | polyest

Purpose
ARX model estimation using four-stage instrumental variable method.

\author{
Syntax
}
```

sys = iv4(data,[na nb nk])
sys = iv4(data,'na',na,'nb',nb,'nk',nk)
sys = iv4(data,[na nb nk],Name,Value)
sys = iv4(data,[na nb nk],___,opt)

```

Description sys = iv4(data, [na nb nk]) estimates an ARX polynomial model, sys, using the four-stage instrumental variable method, for the data object data. [na nb nk] specifies the ARX structure orders of the \(A\) and \(B\) polynomials and the input to output delay. The estimation algorithm is insensitive to the color of the noise term.
sys is an ARX model:
\[
A(q) y(t)=B(q) u(t-n k)+v(t)
\]

Alternatively, you may also use the following syntax:
sys = iv4(data,'na',na,'nb',nb,'nk',nk)
sys = iv4(data,[na nb nk],Name,Value) estimates an ARX polynomial with additional options specified by one or more Name, Value pair arguments.
sys = iv4(data,[na nb nk], __, opt) uses the option set, opt, to configure the estimation behavior.

\section*{Input \\ Arguments}

\section*{data}

Estimation time series data.
data must be an iddata object.

\section*{[na nb nk]}

ARX polynomial orders.
For multi-output model, [na nb nk] contains one row for every output. In particular, specify na as an \(N y\)-by- \(N y\) matrix, where each
entry is the polynomial order relating the corresponding output pair. Here, \(N y\) is the number of outputs. Specify nb and nk as \(N y\)-by- \(N u\) matrices, where \(N u\) is the number of inputs. For more details on the ARX model structure, see arx.

\section*{opt}

Estimation options.
opt is an options set that configures the estimation options. These options include:
- estimation focus
- handling of initial conditions
- handling of data offsets

Use iv40ptions to create the options set.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{InputDelay}

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay \(=3\) means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

\section*{ioDelay}

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

For continuous-time systems, specify transport delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify transport delays as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array, where each entry is a numerical value representing the transport delay for the corresponding input/output pair. You can also set ioDelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

\section*{Output} Arguments

\section*{Examples}

Algorithms
sys
Identified polynomial model of ARX structure.
sys is an idpoly model which encapsulates the identified polynomial model.

Estimate a two-input, one-output system with different delays on the inputs \(u_{1}\) and \(u_{2}\).
z = iddata(y, [u1 u2]);
nb = [2 2];
nk = [0 2];
m= iv4(z,[2 nb nk]);
Estimation is performed in 4 stages. The first stage uses the arx function. The resulting model generates the instruments for a second-stage IV estimate. The residuals obtained from this model are modeled as a high-order AR model. At the fourth stage, the input-output
data is filtered through this AR model and then subjected to the IV function with the same instrument filters as in the second stage.

For the multiple-output case, optimal instruments are obtained only if the noise sources at the different outputs have the same color. The estimates obtained with the routine are reasonably accurate, however, even in other cases.

\section*{References [1] Ljung, L. System Identification: Theory for the User, equations (15.21) through (15.26), Upper Saddle River, NJ, Prentice-Hal PTR, 1999. \\ See Also \(\quad \begin{aligned} & \text { iv40ptions } \\ & \mid \text { | polyest }\end{aligned}\) arx | armax | bj | idpoly | ivx | n4sid | oe}

\section*{iv40ptions}

\section*{Purpose Option set for iv4}
```

Syntax opt = iv40ptions
opt = iv4Options(Name,Value)

```

\section*{Description}

\section*{Input \\ Arguments}
opt \(=\) iv40ptions creates the default options set for iv4.
opt = iv40ptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{InitialCondition}

Specify handling of initial conditions during estimation.
InitialCondition takes one of the following values:
- 'zero' - The initial condition is set to zero.
- 'estimate' - The initial condition is treated as an independent estimation parameter.
- 'backcast ' - The initial condition is estimated using the best least squares fit.
- 'auto' - ssest chooses the initial condition handling method based on the estimation data.

Default: 'auto'

\section*{Focus}

Defines how the errors \(e\) between the measured outputs and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.
Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus can take the following values:
- 'simulation' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input spectrum has the most power.
This method provides a stable model.
- 'prediction' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. The weighting function minimizes the one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this is the optimal weighting function. However, this method neglects the approximation aspects (bias) of the fit.
- 'stability' - Same as 'prediction' but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
```

[wl,wh]
[w1l,w1h;w2l,w2h;w31,w3h;...]

```
where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.

\section*{iv40ptions}
- The \(\{A, B, C, D\}\) format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function
This calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.
- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

\section*{EstCovar}

Controls whether parameter covariance data is generated or not.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

Default: true

\section*{Display}

Specifies whether estimation progress should be displayed.
Display requires one of the following strings:
- 'on ' - Information on model structure and estimation results are displayed in a progress viewer window
- 'off' - No progress or results information is displayed

Default: 'off'

\section*{InputOffset}

Removes offset from time domain input data during estimation.
Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.

Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a \(N u\)-by- \(N e\) matrix. \(N u\) is the number of inputs, and \(N e\) is the number of experiments.

Each entry specified by Input0ffset is subtracted from the corresponding input data.

Default: []

\section*{OutputOffset}

Removes offset from time domain output data during estimation.
Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.

Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a \(N y\)-by- \(N e\) matrix. \(N y\) is the number of outputs, and \(N e\) is the number of experiments. Each entry specified by OutputOffset is subtracted from the corresponding output data.

Default: []

\section*{OutputWeight}

Weight of prediction errors in multi-output estimation.
Specify OutputWeight as a positive semi-definite symmetric matrix (W). The software will minimize the trace of the weighted prediction error matrix trace (\(E^{\prime}{ }^{*} E^{*} W\)). Where \(E\) is the matrix of prediction errors, with one column for each output, and \(W\) is the positive semi-definite symmetric matrix of size equal to the number of outputs. Use

\section*{iv4Options}

W to specify the relative importance of outputs in multiple-input multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-output models.

\section*{Advanced}

Advanced is a structure with the following fields:
- MaxSize - Specifies the maximum number of elements in a segment when input-output data is split into segments.

MaxSize must be a positive integer.
Default: 250000
- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:
- s - Specifies the location of the right-most pole to test the stability of continuous-time models. A model is considered stable when its right-most pole is to the left of \(s\).

Default: 0
- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance \(z\) from the origin.

Default: 1+sqrt(eps)

\section*{Output Arguments}

\section*{opt}

Option set containing the specified options for iv4.

\section*{Examples Create Default Options Set for ARX Model Estimation Using 4-Stage Instrument Variable Method}

Create a default options set for iv4.
opt = iv40ptions;

\section*{iv40ptions}

\section*{Specify Options for ARX Model Estimation Using 4-Stage Instrument Variable Method}

Create an options set for iv4 using the 'backcast' algorithm to initialize the state and set the Display to 'on'.
```

opt = iv4Options('InitialState','backcast','Display','on');

```

Alternatively, use dot notation to set the values of opt.
opt = iv4Options;
opt.InitialState = 'backcast';
opt.Display = 'on';

\section*{linapp}

\section*{Purpose}

Syntax

Input Arguments

\section*{Description}

Linear approximation of nonlinear ARX and Hammerstein-Wiener models for given input
lm = linapp(nlmodel,u)
lm = linapp(nlmodel,umin,umax, nsample)
nlmodel
Name of the idnlarx or idnlhw model object you want to linearize.
u
Input signal as an iddata object or a real matrix.
Dimensions of u must match the number of inputs in nlmodel.
[umin, umax]
Minimum and maximum input values for generating white-noise input with a magnitude in this rectangular range. The sample length of this signal is nsample.
nsample
Optional argument when you specify [umin, umax]. Specifies the length of the white-noise input. Default: 1024.
lm = linapp(nlmodel, \(u\)) computes a linear approximation of a nonlinear ARX or Hammerstein-Wiener model by simulating the model output for the input signal \(u\), and estimating a linear model \(1 m\) from \(u\) and the simulated output signal.
lm = linapp(nlmodel, umin, umax, nsample) computes a linear approximation of a nonlinear ARX or Hammerstein-Wiener model by first generating the input signal as a uniformly distributed white noise from the magnitude range umin and umax and (optionally) the number of samples.

The following table summarizes the linear model objects that store the linear approximation for each type of nonlinear model and the number of outputs.
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l}
Nonlinear Model \\
Type
\end{tabular} & Number of Outputs & \begin{tabular}{l}
Linear Model \\
Object
\end{tabular} \\
\hline idnlarx & Single output & idpoly \\
\hline idnlarx & Multiple outputs & idarx \\
\hline idnlhw & Single output & idpoly \\
\hline idnlhw & Multiple outputs & idss \\
\hline
\end{tabular}
See Also \(\quad\)\begin{tabular}{l}
idnlarx | idnlhw | findop(idnlarx) | findop(idnlhw) | \\
linearize (idnlarx) | linearize(idnlhw)
\end{tabular}

How To . "Linear Approximation of Nonlinear Black-Box Models"

\section*{linear}

Purpose Class representing linear nonlinearity estimator for nonlinear ARX models

\section*{Syntax}
lin=linear
lin=linear('Parameters',Par)

\section*{Description}

Tips
- linear is a linear (affine) function \(y=F(x)\), defined as follows:
\[
F(x)=x L+d
\]
\(y\) is scalar, and \(x\) is a \(1-b y-\mathrm{m}\) vector.
- Use evaluate (lin, x) to compute the value of the function defined by the linear object lin at x .
- When creating a nonlinear ARX model using the constructor (idnlarx) or estimator (nlarx), you can specify a linear nonlinearity estimator using [], instead of entering linear explicitly. For example:
```

m=idnlarx(orders,[]);

```

You can include property-value pairs in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% List Parameters values
get(lin)

```
\% Get value of Parameters property
lin. Parameters
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Parameters & Structure containing the following fields: \\
& - LinearCoef: m-by-1 vector \(L\). \\
& - OutputOffset: Scalar d. \\
\hline
\end{tabular}

\section*{Examples}

\section*{Algorithms \\ When the idnlarx property Focus is 'Prediction', linear uses a fast, noniterative initialization and iterative search technique for estimating parameters. In most cases, iterative search requires only a few iterations. \\ When the idnlarx property Focus='Simulation', linear uses an iterative technique for estimating parameters.}

\section*{linear}

\author{
Tutorials \\ "How to Estimate Nonlinear ARX Models at the Command Line" \\ See Also customreg | nlarx
}

\section*{linearize(idnlarx)}
\begin{tabular}{ll}
Purpose & Linearize nonlinear ARX model \\
Syntax & SYS = linearize (NLSYS, UO, XO)
\end{tabular}

Description

\section*{Input Arguments}

\section*{Output \\ Arguments}

Algorithms

SYS = linearize(NLSYS,UO,XO)
SYS = linearize(NLSYS, UO,XO) linearizes a nonlinear ARX model about the specified operating point UO and XO. The linearization is based on tangent linearization. For more information about the definition of states for idnlarx models, see "Definition of idnlarx States" on page 2-354.
- NLSYS: idnlarx model.
- UO: Matrix containing the constant input values for the model.
- XO: Model state values. The states of a nonlinear ARX model are defined by the time-delayed samples of input and output variables. For more information about the states of nonlinear ARX models, see the getDelayInfo reference page.

Note To estimate UO and XO from operating point specifications, use the findop(idnlarx) command.
- SYS is an idss model.

When the Control System Toolbox product is installed, SYS is an LTI object.

The following equations govern the dynamics of an idnlarx model:
\[
\begin{aligned}
& X(t+1)=A X(t)+B \tilde{u}(t) \\
& y(t)=f(X, u)
\end{aligned}
\]
where \(X(t)\) is a state vector, \(u(t)\) is the input, and \(y(t)\) is the output. \(A\) and \(B\) are constant matrices. \(\tilde{u}(t)\) is \([y(t), u(t)]^{T}\).

The output at the operating point is given by

\section*{linearize(idnlarx)}
\(y^{*}=f\left(X^{*}, u^{*}\right)\)
where \(X^{*}\) and \(u^{*}\) are the state vector and input at the operating point. The linear approximation of the model response is as follows:
\[
\begin{aligned}
& \Delta X(t+1)=\left(A+B_{1} f_{X}\right) \Delta X(t)+\left(B_{1} f_{u}+B_{2}\right) \Delta u(t) \\
& \Delta y(t)=f_{X} \Delta X(t)+f_{u} \Delta u(t)
\end{aligned}
\]
where
- \(\Delta X(t)=X(t)-X^{*}(t)\)
- \(\Delta u(t)=u(t)-u^{*}(t)\)
- \(\Delta y(t)=y(t)-y^{*}(t)\)
- \(B \tilde{U}=\left[B_{1}, B_{2}\right]\left[\begin{array}{l}Y \\ U\end{array}\right]=B_{1} Y+B_{2} U\)
- \(f_{X}=\left.\frac{\partial}{\partial X} f(X, U)\right|_{X^{*}, U^{*}}\)
- \(f_{U}=\left.\frac{\partial}{\partial U} f(X, U)\right|_{X^{*}, U^{*}}\)

Note For linear approximations over larger input ranges, use linapp. For more information, see the linapp reference page.

\section*{Examples}

Linearize a nonlinear ARX model around an operating point corresponding to a simulation snapshot at a specific time. Create an idnlarx model estimated using sample data.

1 Load sample data:
load iddata2

\section*{linearize(idnlarx)}

2 Estimate idnlarx model from sample data:
```

nlsys = nlarx(z2,[4 3 10],'tree','custom',...
{'sin(y1(t-2)*u1(t))+y1(t-2)*u1(t)+u1(t).*u1(t-13)',...
'y1(t-5)*y1(t-5)*y1(t-1)'},'nlr',[1:5, 7 9]);

```

3 Plot the response of the model for a step input:
```

step(nlsys, 20)

```


The model step response is a steady-state value of 0.8383 at \(\mathrm{T}=\) 20 seconds.

4 Compute the operating point corresponding to \(\mathrm{T}=20\).
```

stepinput = iddata([],[zeros(10,1);ones(200,1)],...
nlsys.Ts);
% Compute operating point.
[x,u] = findop(nlsys,'snapshot',20,stepinput);

```

\section*{linearize(idnlarx)}

5 Linearize the model about the operating point corresponding to the model snapshot at \(\mathrm{T}=20\).
sys = linearize(nlsys, \(u, x\))
6 To validate the linear model, apply a small perturbation delta_u to the steady-state input of the nonlinear model nlsys. If the linear approximation is accurate, the following should match:
- The response of the nonlinear model y_nl to an input that is the sum of the equilibrium level and the perturbation delta_u.
- The sum of the response of the linear model to a perturbation input delta_u and the output equilibrium level.
\% Generate a 200 -sample step signal with amplitude 0.1
\% This is the perturbation signal.
delta_u = [zeros(10,1); 0.1*ones(190,1)];
\%
\% For a nonlinear system with a steady-state input of 1
\% and a steady-state output of 0.8383 ,
\% compute the steady-state response
\% y_nl to the perturbed input u_nl. Use equilibrium state
\% values x as initial conditions (see Step 4).
u_nl = 1 + delta_u;
y_nl \(=\) sim(nlsys,u_nl, \(x)\);
\(\%\)
\% Compute response of linear model to perturbation input
\% and add it to the output equilibrium level:
y_lin = 0.8383 + lsim(sys,delta_u);
\%
\% Compare the response of nonlinear and linear models:
time = [0:0.1:19.9]';
plot(time,y_nl,time,y_lin)
legend('Nonlinear response',...
'Linear response about op. pt.')
title(['Nonlinear and linear model response'...

\section*{linearize(idnlarx)}

The linearized model response tracks the nonlinear model output.

\section*{See Also}
findop(idnlarx) | getDelayInfo | idnlarx | linapp
How To . "Linear Approximation of Nonlinear Black-Box Models"

\section*{linearize(idnlhw)}

\section*{Purpose Linearize Hammerstein-Wiener model}

Syntax \(\quad\) SYS = linearize(NLSYS, UO)
SYS = linearize(NLSYS,UO,XO)

SYS = linearize(NLSYS, UO) linearizes a Hammerstein-Wiener model around the equilibrium operating point. When using this syntax, equilibrium state values for the linearization are calculated automatically using UO.
SYS = linearize(NLSYS, UO,XO) linearizes the idnlhw model NLSYS around the operating point specified by the input UO and state values XO. In this usage, X0 need not contain equilibrium state values. For more information about the definition of states for idnlhw models, see "idnlhw States" on page 2-389.

The output is a linear model that is the best linear approximation for inputs that vary in a small neighborhood of a constant input \(u(t)=U\). The linearization is based on tangent linearization.
- NLSYS: idnlhw model.
- UO: Matrix containing the constant input values for the model.
- XO: Operating point state values for the model.

Note To estimate UO and XO from operating point specifications, use the findop(idnlhw) command.

Output
Arguments

\section*{Algorithms}
- SYS is an idss model.

When the Control System Toolbox product is installed, SYS is an LTI object.

The idnlhw model structure represents a nonlinear system using a linear system connected in series with one or two static nonlinear systems. For example, you can use a static nonlinearity to simulate
saturation or dead-zone behavior. The following figure shows the nonlinear system as a linear system that is modified by static input and output nonlinearities, where function \(f\) represents the input nonlinearity, \(\boldsymbol{g}\) represents the output nonlinearity, and \([A, B, C, D]\) represents a state-space parameterization of the linear model.

The following equations govern the dynamics of an idnlhw model:
\(v(t)=f(u(t))\)
\(X(t+1)=A X(t)+B v(t)\)
\(w(t)=C X(t)+D v(t)\)
\(y(t)=g(w(t))\)
where
- \(u\) is the input signal
- \(v\) and \(w\) are intermediate signals (outputs of the input nonlinearity and linear model respectively)
- \(y\) is the model output

The linear approximation of the Hammerstein-Wiener model around an operating point (\(X^{*}, u^{*}\)) is as follows:
\[
\begin{aligned}
& \Delta X(t+1)=A \Delta X(t)+B f_{u} \Delta u(t) \\
& \Delta y(t) \approx g_{w} C \Delta X(t)+g_{w} D f_{u} \Delta u(t)
\end{aligned}
\]
where
- \(\Delta X(t)=X(t)-X^{*}(t)\)
- \(\Delta u(t)=u(t)-u^{*}(t)\)
- \(\Delta y(t)=y(t)-y^{*}(t)\)

\section*{linearize(idnlhw)}
- \(f_{u}=\left.\frac{\partial}{\partial u} f(u)\right|_{u=u^{*}}\)
- \(g_{w}=\frac{\partial}{\partial w} g(w)\)
 state vector \(X^{*}, v^{*}=f\left(u^{*}\right)\), and \(w^{*}\) is the response of the linear model for input \(v^{*}\) and state \(X^{*}\).

Note For linear approximations over larger input ranges, use linapp. For more information, see the linapp reference page.

\section*{Examples}

Linearize a Hammerstein-Wiener model with two inputs at an equilibrium point, and compare the linearized model response to the original model response.

1 Load the sample data to create iddata object \(z\).
```

load iddata2
load iddata3
z2.Ts = z3.Ts;
z = [z2(1:300),z3]; % Estimation data

```

2 Estimate an idnlhw model using a combination of pwlinear, poly1d, sigmoidnet and customnet nonlinearities.
```

orders = [2 2 3 4 1 5; 2 5 1 2 5 2];
nlsys = nlhw(z,orders,[pwlinear;poly1d],...
[sigmoidnet;customnet(@gaussunit)]);

```

3 Linearize the model at an equilibrium operating point corresponding to input levels of 10 and 5 respectively. To do this you first compute the operating point using findop, then linearize the model around the computed input and state values.
```

[x,u_s,report] = findop(nlsys,'steady',[10,5]);
sys = linearize(nlsys,u_s,x);
% sys is a state-space model

```

4 To validate the linear model, apply a small perturbation delta_u to the steady-state input of the nonlinear model nlsys. If the linear approximation is accurate, the following should match:
- The response of the nonlinear model y_nl to an input that is the sum of the equilibrium level and the perturbation delta_u.
- The sum of the response of the linear model to a perturbation input delta_u and the output equilibrium level.
```

% Generate a 300-sample step signal with amplitude 0.1
% This is the perturbation input signal.
delta_u = [zeros(20,2); 0.1*ones(280,2)];
%
% Compute the response of the linear model delta_y_lin
% to the perturbed input signal delta_u:
delta_y_lin = lsim(sys,delta_u);
%
% For the nonlinear system with a steady-state input u_s,
% compute the steady-state output y_s from the
% SignalLevels field of the findop report (see Step 3):
y_s = report.SignalLevels.Output;
%
% Compute the perturbed input to the nonlinear system
% as the sum of the steady-state input u_s and
% the perturbation signal delta_u:
u_nl = bsxfun(@plus,delta_u,u_s);
% Compute the steady-state response of the
% nonlinear system y_nl to the perturbed input u_nl.
% Use equilibrium state values x as initial conditions.
y_nl = sim(nlsys,u_nl,x);
%
% Compare the response of nonlinear and linear models:

```

\section*{linearize(idnlhw)}
```

time = (0:299)';
subplot(211)
plot(time,y_nl(:,1),time,delta_y_lin(:,1)+y_s(1),'.')
legend('Nonlinear response',...
'Linear response about op. pt.')
title('Comparison of signal values for output 1')
subplot(212)
plot(time,y_nl(:,2),time,delta_y_lin(:,2)+y_s(2),'.')
legend('Nonlinear response',...
'Linear response about op. pt.')
title('Comparison of signal values for output 2')

```


See Also
findop(idnlhw) | idnlhw | linapp

How To
- "Linear Approximation of Nonlinear Black-Box Models"

\section*{Purpose}

Simulate time response of dynamic system to arbitrary inputs

\section*{Syntax}
lsim
lsim(sys,u,t)
lsim(sys,u,t,x0)
lsim(sys,u,t,x0,'zoh')
lsim(sys,u,t,x0,'foh')
lsim(sys)

\section*{Description}
lsim simulates the (time) response of continuous or discrete linear
systems to arbitrary inputs. When invoked without left-hand arguments, lsim plots the response on the screen.
lsim(sys, \(u, t\)) produces a plot of the time response of the dynamic system model sys to the input time history \(t, u\). The vector \(t\) specifies the time samples for the simulation (in system time units, specified in the TimeUnit property of sys), and consists of regularly spaced time samples.
t = 0:dt:Tfinal
The matrix \(u\) must have as many rows as time samples (length(\(t\))) and as many columns as system inputs. Each row u(i,:) specifies the input value(s) at the time sample \(\mathrm{t}(\mathrm{i})\).

The LTI model sys can be continuous or discrete, SISO or MIMO. In discrete time, u must be sampled at the same rate as the system (t is then redundant and can be omitted or set to the empty matrix). In continuous time, the time sampling \(d t=t(2)-t(1)\) is used to discretize the continuous model. If dt is too large (undersampling), lsim issues a warning suggesting that you use a more appropriate sample time, but will use the specified sample time. See "Algorithms" on page 2-563 for a discussion of sample times.
\(\operatorname{lsim}(s y s, u, t, x 0)\) further specifies an initial condition \(x 0\) for the system states. This syntax applies only to state-space models.
lsim(sys,u,t,x0,'zoh') or lsim(sys,u,t,x0, 'foh') explicitly specifies how the input values should be interpolated between samples
(zero-order hold or linear interpolation). By default, lsim selects the interpolation method automatically based on the smoothness of the signal U.

Finally,
```

lsim(sys1,sys2,···,sysN,u,t)

```
simulates the responses of several LTI models to the same input history \(\mathrm{t}, \mathrm{u}\) and plots these responses on a single figure. As with bode or plot, you can specify a particular color, linestyle, and/or marker for each system, for example,
```

lsim(sys1,'y:',sys2,'g--',u,t,x0)

```

The multisystem behavior is similar to that of bode or step.
When invoked with left-hand arguments,
```

[y,t] = lsim(sys,u,t)
$[y, t, x]=\operatorname{lsim}(s y s, u, t) \quad$ ofor state-space models only
$[y, t, x]=\operatorname{lsim}(s y s, u, t, x 0) \quad$ \% with initial state

```
return the output response \(y\), the time vector \(t\) used for simulation, and the state trajectories \(x\) (for state-space models only). No plot is drawn on the screen. The matrix y has as many rows as time samples (length(t)) and as many columns as system outputs. The same holds for \(x\) with "outputs" replaced by states.
lsim(sys) opens the Linear Simulation Tool GUI. For more information about working with this GUI, see Working with the Linear Simulation Tool.

\section*{Examples Example 1}

Simulate and plot the response of the system
\[
H(s)=\left[\begin{array}{c}
\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3} \\
\frac{s-1}{s^{2}+s+5}
\end{array}\right]
\]
to a square wave with period of four seconds. First generate the square wave with gensig. Sample every 0.1 second during 10 seconds:
[u,t] = gensig('square', \(4,10,0.1\));
Then simulate with lsim.
```

H = [tf([2 5 1],[1 2 3]) ; tf([1 -1],[1 1 5])]
lsim(H,u,t)

```


\section*{Example 2}

Simulate the response of an identified linear model using the same input signal as the one used for estimation and the initial states returned by the estimation command.
```

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmc
z = iddata(y, u, 0.1, 'Name', 'DC-motor');
[sys, x0] = n4sid(z, 4);
[y,t,x] = lsim(sys, z.InputData, [], x0);

```

Compare the simulated response \(y\) to measured response z.OutputData.
```

plot(t,z.OutputData,'k', t,y, 'r')

```
legend('Measured', 'Simulated')

\section*{Algorithms}

Discrete-time systems are simulated with ltitr (state space) or filter (transfer function and zero-pole-gain).

Continuous-time systems are discretized with c2d using either the 'zoh' or 'foh' method ('foh' is used for smooth input signals and 'zoh' for discontinuous signals such as pulses or square waves). The sampling period is set to the spacing dt between the user-supplied time samples \(t\).

The choice of sampling period can drastically affect simulation results. To illustrate why, consider the second-order model
\[
H(s)=\frac{\omega^{2}}{s^{2}+2 s+\omega^{2}}, \quad \omega=62.83
\]

To simulate its response to a square wave with period 1 second, you can proceed as follows:
```

w2 = 62.83^2
h = tf(w2,[1 2 w2])
t = 0:0.1:5; % vector of time samples
u = (rem(t,1)>=0.5); % square wave values

```
\(\operatorname{lsim}(h, u, t)\)
lsim evaluates the specified sample time, gives this warning

Warning: Input signal is undersampled. Sample every 0.016 sec or faster.

and produces this plot.
To improve on this response, discretize \(H(s)\) using the recommended sampling period:
```

dt=0.016;
ts=0:dt:5;
us = (rem(ts,1)>=0.5)
hd = c2d(h,dt)
lsim(hd,us,ts)

```


This response exhibits strong oscillatory behavior hidden from the undersampled version.

See Also
gensig | impulse | initial | ltiview | step | sim

\section*{Isiminfo}

\section*{Purpose Compute linear response characteristics}
```

Syntax $\quad S=1$ siminfo(y,t,yfinal)
S = lsiminfo(y,t)
S = lsiminfo(...,'SettlingTimeThreshold',ST)

```

Description

\section*{Examples}
\(S=1\) siminfo(\(y, t, y f i n a l)\) takes the response data (\(t, y\)) and a steady-state value yfinal and returns a structure \(S\) containing the following performance indicators:
- SettlingTime - Settling time
- Min - Minimum value of Y
- MinTime - Time at which the min value is reached
- Max - Maximum value of Y
- MaxTime - Time at which the max value is reached

For SISO responses, \(t\) and \(y\) are vectors with the same length NS. For responses with NY outputs, you can specify y as an NS-by-NY array and yfinal as a NY-by-1 array. lsiminfo then returns an NY-by-1 structure array \(S\) of performance metrics for each output channel.
\(\mathrm{S}=\) lsiminfo(\(\mathrm{y}, \mathrm{t})\) uses the last sample value of y as steady-state value yfinal. \(s=1\) siminfo \((y)\) assumes \(t=1: N S\).

S = lsiminfo(...,'SettlingTimeThreshold',ST) lets you specify the threshold ST used in the settling time calculation. The response has settled when the error \(\mid y(t)\) - yfinal| becomes smaller than a fraction ST of its peak value. The default value is \(\mathrm{ST}=0.02(2 \%)\).

Create a fourth order transfer function and ascertain the response characteristics.
```

sys = tf([1 -1],[1 2 3 4]);
[y,t] = impulse(sys);
s = lsiminfo(y,t,0) % final value is 0
s =

```

\author{
SettlingTime: 22.8626 \\ Min: -0.4270 \\ MinTime: 2.0309 \\ Max: 0.2845 \\ MaxTime: 4.0619
}

See Also
lsim | impulse | initial | stepinfo

\section*{Isimplot}

\section*{Purpose}

Syntax
```

h = lsimplot(sys)
lsimplot(sys1,sys2,...)
lsimplot(sys,u,t)
lsimplot(sys,u,t,x0)
lsimplot(sys1,sys2,...,u,t,x0)
lsimplot(AX,...)
lsimplot(..., plotoptions)
lsimplot(sys,u,t,x0,'zoh')
lsimplot(sys,u,t,x0,'foh')

```

\section*{Description}
\(\mathrm{h}=\) lsimplot(sys) opens the Linear Simulation Tool for the dynamic system model sys, which enables interactive specification of driving input(s), the time vector, and initial state. It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
help timeoptions
for a list of available plot options.
lsimplot(sys1,sys2, ...) opens the Linear Simulation Tool for multiple models sys1,sys2,.... Driving inputs are common to all specified systems but initial conditions can be specified separately for each.
lsimplot(sys,u,t) plots the time response of the model sys to the input signal described by \(u\) and \(t\). The time vector \(t\) consists of regularly spaced time samples (in system time units, specified in the TimeUnit property of sys). For MIMO systems, \(u\) is a matrix with as many columns as inputs and whose ith row specifies the input value at time \(t(i)\). For SISO systems \(u\) can be specified either as a row or column vector. For example,
```

t = 0:0.01:5;
u = sin(t);

```
```

lsimplot(sys,u,t)

```
simulates the response of a single-input model sys to the input \(u(t)=s i n(t)\) during 5 seconds.

For discrete-time models, \(u\) should be sampled at the same rate as sys (\(t\) is then redundant and can be omitted or set to the empty matrix).

For continuous-time models, choose the sampling period \(t(2)-t(1)\) small enough to accurately describe the input u. lsim issues a warning when u is undersampled, and hidden oscillations can occur.
lsimplot (sys, \(u, t, x 0\)) specifies the initial state vector \(x 0\) at time \(t(1)\) (for state-space models only). \(x 0\) is set to zero when omitted.
lsimplot(sys1, sys2, ..., u,t,x0) simulates the responses of multiple LTI models sys 1, sys \(2, \ldots\) on a single plot. The initial condition \(x 0\) is optional. You can also specify a color, line style, and marker for each system, as in
lsimplot(sys1,'r',sys2,'y--',sys3,'gx',u,t)
lsimplot (AX,...) plots into the axes with handle AX.
lsimplot(..., plotoptions) plots the initial condition response with the options specified in plotoptions. Type
help timeoptions
for more detail.
For continuous-time models, lsimplot(sys,u,t,x0,'zoh') or lsimplot (sys, u,t,x0, 'foh') explicitly specifies how the input values should be interpolated between samples (zero-order hold or linear interpolation). By default, lsimplot selects the interpolation method automatically based on the smoothness of the signal \(u\).

\section*{See Also}
```

getoptions | lsim | setoptions

```

\section*{mag2db}

Purpose Convert magnitude to decibels (dB)

\section*{Syntax \(\quad y d b=\operatorname{mag2db}(y)\)}

Description \(\quad y d b=\operatorname{mag} 2 d b(y)\) returns the corresponding decibel \((\mathrm{dB})\) value \(y d b\) for \(a\) given magnitude \(y\). The relationship between magnitude and decibels is \(y d b=20 \log _{10}(y)\).

See Also db2mag

\section*{Purpose Merge data sets into iddata object \\ Syntax \(\quad\) dat \(=\) merge (dat1, dat2, \(\ldots\). datN \()\)}

Description
dat collects the data sets in dat1, ..., datN into one iddata object, with several experiments. The number of experiments in dat will be the sum of the number of experiments in datk. For the merging to be allowed, a number of conditions must be satisfied:
- All of datk must have the same number of input channels, and the InputNames must be the same.
- All of datk must have the same number of output channels, and the OutputNames must be the same. If some input or output channel is lacking in one experiment, it can be replaced by a vector of NaNs to conform with these rules.
- If the ExperimentNames of datk have been specified as something other than the default 'Exp1', 'Exp2', etc., they must all be unique. If default names overlap, they are modified so that dat will have a list of unique ExperimentNames.

The sampling intervals, the number of observations, and the input properties (Period, InterSample) might be different in the different experiments.

You can retrieve the individual experiments by using the command getexp. You can also retrieve them by subreferencing with a fourth index.
```

dat1 = dat(:,:,:,ExperimentNumber)

```
or
```

dat1 = dat(:,:,:,ExperimentName)

```

Storing multiple experiments as one iddata object can be very useful for handling experimental data that has been collected on different
occasions, or when a data set has been split up to remove "bad" portions of the data. All the toolbox routines accept multiple-experiment data.

\section*{Examples}

Bad portions of data have been detected around sample 500 and between samples 720 to 730 . Cut out these bad portions and form a multiple-experiment data set that can be used to estimate models without the bad data destroying the estimate.
```

dat = merge(dat(1:498),dat(502:719),dat(731:1000))
m = pem(dat)

```

Use the first two parts to estimate the model and the third one for validation.
```

m = pem(getexp(dat,[1,2]));
compare(getexp(dat,3),m)

```

See also iddemo \#8.
```

See Also
iddata | getexp | merge

```

\section*{Purpose Merge estimated models}

\section*{Syntax \\ \(m=\operatorname{merge}(m 1, m 2, \ldots, m N)\)}
[m,tv] = merge(m1,m2)

\section*{Description}

The models \(\mathrm{m} 1, \mathrm{~m} 2, \ldots, \mathrm{mN}\) must all be of the same structure, just differing in parameter values and covariance matrices. Then \(m\) is the merged model, where the parameter vector is a statistically weighted mean (using the covariance matrices to determine the weights) of the parameters of mk.

When two models are merged,
[m, tv] = merge(m1,m2)
returns a test variable tv. It is \(x^{2}\) distributed with n degrees of freedom, if the parameters of \(m 1\) and \(m 2\) have the same means. Here \(n\) is the length of the parameter vector. A large value of tv thus indicates that it might be questionable to merge the models.
For idfrd models, merge is a statistical average of two responses in the individual models, weighted using inverse variances. You can only merge two idfrd models with responses at the same frequencies and nonzero covariances.

Merging models is an alternative to merging data sets and estimating a model for the merged data.
```

load iddata1 z1;
load iddata2 z2;
m1 = arx(z1,[2 3 4]);
m2 = arx(z2,[2 3 4]);
ma = merge(m1,m2);
and
mb = arx(merge(z1,z2),[2 3 4]);

```
result in models ma and mb that are related and should be close. The difference is that merging the data sets assumes that the signal-to-noise ratios are about the same in the two experiments. Merging the models allows one model to be much more uncertain, for example, due to more disturbances in that experiment. If the conditions are about the same, we recommend that you merge data rather than models, since this is more efficient and typically involves better conditioned calculations.
Purpose Set folder for storing idprefs.mat containing GUI startup information
Syntax midprefsmidprefs(path)
Description The graphical user interface ident allows a large number of variablesfor customized choices. These include the window layout, the defaultchoices of plot options, and names and directories of the four mostrecent sessions with ident. This information is stored in the fileidprefs.mat, which should be placed on the user's MATLABPATH. Thedefault, automatic location for this file is in the same folder as theuser's startup.m file.midprefs is used to select or change the folder where you storeidprefs.mat. Either type midprefs and follow the instructions, orgive the folder name as the argument. Include all folder delimiters, asin the PC case
```

midprefs('c:\matlab\toolbox\local\')
or in the UNIX }\mp@subsup{}{}{\circledR}\mathrm{ case
midprefs('/home/ljung/matlab/')

```
See Alsoident

\section*{misdata}

Purpose Reconstruct missing input and output data
```

Syntax Datae = misdata(Data)
Datae = misdata(Data,Model)
Datae = misdata(Data,Maxiter,Tol)

```

Description

Algorithms

See Also arx | advice | pexcit | tfest is a good approximation in many cases. reconstruction.
```

arx | advice | pexcit | tfest

```

For a given model, the missing data is estimated as parameters so as to minimize the output prediction errors obtained from the reconstructed data. See Section 14.2 in Ljung (1999). Treating missing outputs as parameters is not the best approach from a statistical point of view, but

When no model is given, the algorithm alternates between estimating missing data and estimating models, based on the current

\section*{Purpose \\ Syntax \\ Description}

Estimate state-space model using a subspace method.
```

sys = n4sid(data,nx)
sys = n4sid(data,nx,Name,Value)
sys = n4sid(data,nx,___,opt)
[sys,x0] = n4sid(data,nx,__, )

```

Input
Arguments
sys \(=\mathrm{n} 4\) sid(data, \(n x\)) estimates an \(n x\) order state-space model, sys, using measured input-output data, data.
sys is an idss model representing the system:
\[
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t)+K e(t) \\
& y(t)=C x(t)+D u(t)+e(t)
\end{aligned}
\]

Here, \(A, B, C\), and \(D\) are state-space matrices. \(K\) is the disturbance matrix. \(u(t)\) is the input, \(y(t)\) is the output, \(x(t)\) is the vector of nx states and \(e(t)\) is the disturbance.

All the entries of the \(A, B, C\) and \(K\) matrices are considered free estimation parameters. \(D\) is fixed to zero, meaning that there is no feedthrough, except for static systems (\(n x=0\)).
sys \(=n 4\) sid(data, \(n x\), Name, Value) specifies additional attributes of the state-space structure using one or more Name, Value pair arguments.
sys \(=\) n4sid(data, nx, __, opt) specifies estimation options, opt, that configure the initial states, estimation objective, and sub-space algorithm related choices to be used for estimation.
[sys, \(x 0\)] = n4sid(data, \(n x, \ldots\),) also returns the estimated initial state.

\section*{data}

Estimation data.
For time domain estimation, data is an iddata object containing the input and output signal values.

For frequency domain estimation, data can be one of the following:
- recorded frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency’

For multi-experiment data, the sample times and inter-sample behavior of all the experiments must match.
You can only estimate continuous-time models using continuous-time frequency domain data. You can estimate both continuous-time and discrete-time models (of sample time matching that of data) using time-domain data and discrete-time frequency domain data.

\section*{nx}

Order of estimated model.
Specify \(n x\) as a positive integer. \(n x\) may be a scalar or a vector. If \(n x\) is a vector, then \(n 4\) sid creates a plot which you can use to choose a suitable model order. The plot shows the Hankel singular values for models of different orders. States with relatively small Hankel singular values can be safely discarded. A default choice is suggested in the plot.

You can also specify \(n x\) as 'best', in which case the optimal order is automatically chosen from \(n x=1, \ldots, 10\).

\section*{opt}

Estimation options.
opt is an options set that specifies estimation options including:
- estimation objective
- handling of initial conditions
- subspace algorithm related choices

Use n4sidOptions to create the options set.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{Ts}

Sampling time. For continuous-time models, use Ts \(=0\). For discrete-time models, specify Ts as a positive scalar whose value is equal to that of the data sampling time.

Default: data.Ts

\section*{Form}

Type of canonical form of sys.
Form is a string that takes one of the following values:
- 'modal' - obtainsys in modal form.
- 'companion' - obtain sys in companion form.
- 'free' - all entries of the \(A, B\) and \(C\) matrices are treated as free.
- 'canonical' - obtain sys in observable canonical form [1].

Default: 'free'

\section*{Feedthrough}

Logical specifying direct feedthrough from input to output.
Feedthrough is a logical vector of length of length \(N u\), where \(N u\) is the number of inputs.
If Feedthrough is specified as a logical scalar, it is applied to all the inputs.

Default: false(\(1, N u\)) (\(N u\) is the number of inputs). If the model has no states, then Feedthrough is true \((1, \mathrm{Nu})\).

\section*{DisturbanceModel}

Specifies if the noise component, the \(K\) matrix, is to be estimated.
DisturbanceModel takes one of the following values:
- 'none ' - Noise component is not estimated. The value of the \(K\) matrix, is fixed to zero value.
- 'estimate ' - The \(K\) matrix is treated as a free parameter.

DisturbanceModel must be 'none' when using frequency domain data.

Default: 'estimate' (For time domain data)

\section*{InputDelay}

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay \(=3\) means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels
\begin{tabular}{ll}
Output & sys \\
Arguments & \begin{tabular}{l}
Identified state space model. \\
\\
sys is an idss model, which encapsulates the identified state space \\
model.
\end{tabular}
\end{tabular}

\section*{x0}

Initial states computed during the estimator of sys.
If data contains multiple experiments, then \(x 0\) is an array with each column corresponding to an experiment.

\section*{Definitions \\ Modal Form}

In modal form, \(A\) is a block-diagonal matrix. The block size is typically 1-by-1 for real eigenvalues and 2 -by- 2 for complex eigenvalues. However, if there are repeated eigenvalues or clusters of nearby eigenvalues, the block size can be larger.

For example, for a system with eigenvalues (\(\lambda_{1}, \sigma \pm j \omega, \lambda_{2}\)), the modal \(A\) matrix is of the form
\[
\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \sigma & \omega & 0 \\
0 & -\omega & \sigma & 0 \\
0 & 0 & 0 & \lambda_{2}
\end{array}\right]
\]

\section*{Companion Form}

In the companion realization, the characteristic polynomial of the system appears explicitly in the rightmost column of the \(A\) matrix. For a system with characteristic polynomial
\[
p(s)=s^{n}+\alpha_{1} s^{n-1}+\ldots+\alpha_{n-1} s+\alpha_{n}
\]
the corresponding companion \(A\) matrix is
\[
A=\left[\begin{array}{cccccc}
0 & 0 & . & . . & 0 & -\alpha_{n} \\
1 & 0 & 0 & . . & 0 & -\alpha_{n}-1 \\
0 & 1 & 0 & . & : & : \\
: & 0 & . & . & : & : \\
0 & . & . & 1 & 0 & -\alpha_{2} \\
0 & . . & . . & 0 & 1 & -\alpha_{1}
\end{array}\right]
\]

The companion transformation requires that the system be controllable from the first input. The companion form is poorly conditioned for most state-space computations; avoid using it when possible.

\section*{Examples}

Build a fifth-order model from data with three inputs and two outputs. Try several choices of N4Horizon. Look at the frequency response of the model.
```

z = iddata([y1 y2],[ u1 u2 u3]);
opt = n4sidOptions('N4Horizon',[7:15]','Display', 'on');
m = n4sid(z, 5, opt);
h = bodeplot(m)
showConfidence(h)

```

Estimate a continuous-time model, in a canonical form parameterization, focusing on the simulation behavior. Determine the order yourself, in the 1:10 range, after seeing the plot of singular values.
```

load iddata1 z1
opt = n4sidOptions('Focus','simulation');
m = n4sid(z1, 1:10,'Ts',0,'form','canonical',opt)
bode(m)

```

\section*{References}
[1] Ljung, L. System Identification - Theory For the User, Appendix4A, pp 132-134, 2nd ed, PTR Prentice Hall, Upper Saddle River, N.J., 1999.
[2] van Overschee, P., and B. De Moor, Subspace Identification of Linear Systems: Theory, Implementation, Applications, Kluwer Academic Publishers, 1996.
[3] Verhaegen, M., Identification of the deterministic part of MIMO state space models, Automatica, Vol. 30, pp. 61-74, 1994.
[4] Larimore, W.E., Canonical variate analysis in identification, filtering and adaptive control, Proc. 29th IEEE Conference on Decision and Control, pp.596-604, Honolulu, 1990.

\section*{See Also}
```

n4sidOptions | idss | ssest | tfest | procest | polyest |
iddata | idfrd | idgrey | canon | pem

```

\section*{n4sidOptions}

Purpose Option set for n4sid
Syntax \(\quad\)\begin{tabular}{rl}
opt & \(=n 4\) sidOptions \\
opt & \(=n 4\) sidOptions (Name, Value \()\)
\end{tabular}

Description

Input
Arguments
opt \(=\) n4sidOptions creates the default options set for n4sid.
opt \(=\) n4sidOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{InitialState}

Specify handling of initial states during estimation.
InitialState requires one of the following values:
- 'zero' - The initial state is set to zero.
- 'estimate' - The initial state is treated as an independent estimation parameter.

Default: 'estimate'

\section*{N4Weight}

Weighting scheme used for singular-value decomposition by the N4SID algorithm.
'N4Weight' requires one of the following values:
- 'MOESP' - Uses the MOESP algorithm by Verhaegen [2].
- 'CVA' - Uses the Canonical Variable Algorithm by Larimore [1].
- 'auto ' - The estimating function chooses between the MOESP and CVA algorithms.

Default: 'auto'

\section*{N4Horizon}

Forward- and backward-prediction horizons used by the N4SID algorithm.
'N4Horizon' requires one of the following values:
- A row vector with three elements - [r sy su], where \(r\) is the maximum forward prediction horizon, using up to \(r\) step-ahead predictors. sy is the number of past outputs, and su is the number of past inputs that are used for the predictions. See pages 209 and 210 in [3] for the exact meaning of this. These numbers can have a substantial influence on the quality of the resulting model, and there are no simple rules for choosing them. Making 'N4Horizon' a k-by-3 matrix means that each row of 'N4Horizon' is tried, and the value that gives the best (prediction) fit to data is selected. k is the number of guesses of [\(r\) sy su] combinations. If you specify N4Horizon as a single column, \(r=s y=s u\) is used.
- 'auto' - The software uses an Akaike Information Criterion (AIC) for the selection of sy and su.

Default: auto

\section*{Focus}

Defines how the errors \(e\) between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.
Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus can take the following values:
- 'simulation' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.

This method provides a stable model.
- 'prediction' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. The weighting function minimizes the one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this weighting function is optimal. However, this method neglects the approximation aspects (bias) of the fit. Thus, the method may not result in a stable model. Specify Focus as 'stability' when you want to ensure a stable model.
- 'stability' - Same as 'prediction', but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
```

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

```
where wl and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The \(\{A, B, C, D\}\) format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This format calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.
- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

\section*{EstCovar}

Controls whether parameter covariance data is generated or not.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

Default: true

\section*{Display}

Specifies whether estimation progress should be displayed.
Display requires one of the following strings:
- 'on ' - Information on model structure and estimation results are displayed in a progress viewer window
- 'off' - No progress or results information is displayed

Default: 'off'

\section*{InputOffset}

Removes offset from time domain input data during estimation.

Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.
Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a \(N u\)-by- \(N e\) matrix. \(N u\) is the number of inputs, and \(N e\) is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

\section*{Default: []}

\section*{OutputOffset}

Removes offset from time domain output data during estimation.
Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.

Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a \(N y\)-by- \(N e\) matrix. \(N y\) is the number of outputs, and \(N e\) is the number of experiments. Each entry specified by OutputOffset is subtracted from the corresponding output data.

\section*{Default: []}

\section*{OutputWeight}

Specifies criterion used during minimization.
OutputWeight can have the following values:
- 'noise' - Minimize \(\operatorname{det}\left(E^{\prime *} E\right)\), where \(E\) represents the prediction error. This choice is optimal in a statistical sense and leads to the maximum likelihood estimates in case no data is available about the variance of the noise. This option uses the inverse of the estimated noise variance as the weighting function.
- positive semidefinite symmetric matrix (W) - Minimize the trace of the weighted prediction error matrix trace (\(\mathrm{E}^{\prime *} \mathrm{E}^{*} \mathrm{~W}\)). E is the matrix of prediction errors, with one column for each output. W is the positive semidefinite symmetric matrix of size equal to the number of outputs. Use \(W\) to specify the relative importance of outputs in multiple-input, multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-input, multi-output models.
- [] — The software chooses between the 'noise ' or using the identity matrix for \(W\).

\section*{Default: []}

\section*{Advanced}

Advanced is a structure with the field MaxSize. MaxSize specifies the maximum number of elements in a segment when input-output data is split into segments.

MaxSize must be a positive integer.
Default: 250000

\section*{Output opt}

Arguments
Option set containing the specified options for n4sid.

\section*{Examples Create Default Options Set for State-Space Estimation Using Subspace Method}
```

opt = n4sidOptions;

```

\section*{Specify Options for State-Space Estimation Using Subspace Method}

Create an options set for n4sid using the 'zero' option to initialize the state. Set the Display to 'on'.
```

opt = n4sidOptions('InitialState','zero','Display','on');

```

\section*{n4sidOptions}

Alternatively, use dot notation to set the values of opt.
```

opt = n4sidOptions;
opt.InitialState = 'zero';
opt.Display = 'on';

```

\section*{References [1] Larimore, W.E. "Canonical variate analysis in identification, filtering and adaptive control." Proceedings of the 29th IEEE Conference on Decision and Control, pp. 596-604, 1990.}
[2] Verhaegen, M. "Identification of the deterministic part of MIMO state space models." Automatica, Vol. 30, 1994, pp. 61-74.
[3] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999.

\section*{See Also}
n4sid | idpar | idfilt

\section*{Purpose}

Query number of dimensions of dynamic system model or model array

\section*{Syntax}
n = ndims(sys)
\(\mathrm{n}=\) ndims(sys) is the number of dimensions of a dynamic system model or a model array sys. A single model has two dimensions (one for outputs, and one for inputs). A model array has \(2+p\) dimensions, where \(p \geq 2\) is the number of array dimensions. For example, a 2 -by- 3 -by- 4 array of models has \(2+3=5\) dimensions.
```

ndims(sys) = length(size(sys))

```

\section*{Examples \\ sys \(=r s s(3,1,1,3)\);} ndims(sys)
ans =
4
ndims returns 4 for this 3-by-1 array of SISO models.
See Also size

\section*{Purpose \\ Class representing neural network nonlinearity estimator for nonlinear ARX models}
```

Syntax
net_estimator = neuralnet(Network)

```

\section*{Description}
neuralnet is the class that encapsulates the neural network nonlinearity estimator. A neuralnet object lets you use networks, created using Neural Network Toolbox \({ }^{\mathrm{TM}}\) software, in nonlinear ARX models.

The neural network nonlinearity estimator defines a nonlinear function
\(y=F(x)\), where \(F\) is a multilayer feed-forward (static) neural network, as defined in the Neural Network Toolbox software. \(y\) is a scalar and \(x\) is an m-dimensional row vector.

You create multi-layer feed-forward neural networks using Neural Network Toolbox commands such as feedforwardnet, cascadeforwardnet and linearlayer. When you create the network:
- Designate the input and output sizes to be unknown by leaving them at the default value of zero (recommended method). When estimating a nonlinear ARX model using the nlarx command, the software automatically determines the input-output sizes of the network.
- Initialize the sizes manually by setting input and output ranges to \(m\)-by-2 and 1-by-2 matrices, respectively, where \(m\) is the number of nonlinear ARX model regressors and the range values are minimum and maximum values of regressors and output data, respectively.
See "Examples" on page 2-594 for more information.
Use evaluate (net_estimator, x) to compute the value of the function defined by the neuralnet object net_estimator at input value \(x\). When used for nonlinear ARX model estimation, \(x\) represents the model regressors for the output for which the neuralnet object is assigned as the nonlinearity estimator.

You cannot use neuralnet when Focus property of the idnlarx model is 'Simulation' because this nonlinearity estimator is considered to
be nondifferentiable for estimation. Minimization of simulation error requires differentiable nonlinear functions.

\section*{Construction}
net_estimator \(=\) neuralnet(Network) creates a neural network nonlinearity estimator based on the feed-forward (static) network object Network created using Neural Network Toolbox commands feedforwardnet, cascadeforwardnet, and linearlayer. Network must represent a static mapping between the inputs and output without I/O delays or feedback. The number of outputs of the network, if assigned, must be one. For a multiple-output nonlinear ARX models, create a separate neuralnet object for each output-that is, each estimator must represent a single-output network object.

\section*{Properties}

\author{
Network
}

Neural network object, typically created using the Neural Network Toolbox commands feedforwardnet, cascadeforwardnet, and linearlayer.

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% List Network property value
get(n)
n.Network

```

You can also use the set function to set the value of particular properties. For example:
set(d, 'Network', net_obj)
The first argument to set must be the name of a MATLAB variable.
```

Examples Create a neural network nonlinearity estimator using a feed-forward neural network with three hidden layers, transfer functions of types logsig, radbas, and purelinand unknown input and output sizes:

```
```

% Create a neural network.

```
% Create a neural network.
net = feedforwardnet([4 6 1]);
net = feedforwardnet([4 6 1]);
net.layers{1}.transferFcn = 'logsig';
net.layers{1}.transferFcn = 'logsig';
net.layers{2}.transferFcn = 'radbas';
net.layers{2}.transferFcn = 'radbas';
net.layers{3}.transferFcn = 'purelin';
net.layers{3}.transferFcn = 'purelin';
% View the network diagram.
% View the network diagram.
view(net)
view(net)
% Create a neuralnet estimator.
% Create a neuralnet estimator.
net_estimator = neuralnet(net);
```

net_estimator = neuralnet(net);

```

Create a single-layer, cascade-forward network with unknown input and output sizes and use this network for nonlinear ARX model estimation:

1 Create a cascade-forward neural network with 20 neurons and unknown input-output sizes.
```

net = cascadeforwardnet(20);

```

2 Create a neural network nonlinearity estimator.
```

net_estimator = neuralnet(net);

```

3 Estimate nonlinear ARX model.
```

% Create estimation data.
load twotankdata
Data = iddata(y, u, 0.2);
% Estimate model.
Model = nlarx(Data, [2 2 1], net_estimator);
% Compare model response to measured output signal.
compare(Data, Model)

```

Initialize the input-output sizes of a two-layer feed-forward neural network based on estimation data and use this network for nonlinear ARX estimation:

1 Create estimation data.
```

% Load estimation data.
load iddata7 z7
% Use only first }200\mathrm{ samples for estimation.
z7 = z7(1:200);

```

2 Create a template Nonlinear ARX model with no nonlinearity.
```

model = idnlarx([4 4 4 1 1], []);

```

This model has six regressors and is simply used to define the regressors. The range of regressor values for input-output data in \(z 7\) is then used to set the input ranges in the neural network object, as shown in the next steps.

3 Obtain the model regressor values.
\(R=\) getreg(model, 'all', z7);
\(R\) is a matrix of regressor values for \(z 7\).
4 Create a two-layer, feed-forward neural network and initialize the network input and output dimensions to 2 and 1, respectively.
```

% Use 5 neurons for first layer and 7 for second layer.
net = feedforwardnet([5 7]);
% Determine input range.
InputRange = [min(R); max(R)].';
% Initialize input dimensions of estimator.
net.inputs{1}.range = InputRange;
% Determine output range.
OutputRange = [min(z7.OutputData), max(z7.OutputData)];
% Initialize output dimensions of estimator.

```
```

net.outputs{net.outputConnect}.range = OutputRange;
% Create neuralnet estimator.
net_estimator = neuralnet(net);

```

5 Specify the nonlinearity estimator in the model.
```

model.Nonlinearity = net_estimator;

```

6 Estimate the parameters of the network to minimize the prediction error between data and model.
```

% Estimate model.
model = nlarx(z7, model);
% Compare model's predicted response to measured output signal.
compare(z7(1:100), model,1)

```

The nlarx command uses the train method of the network object, defined in the Neural Network Toolbox software, to compute the network parameter values.

\author{
See Also
}

Tutorials
nlarx | sigmoidnet | wavenet | treepartition | customnet | feedforwardnet | cascadeforwardnet | linearlayer
- "Identifying Nonlinear ARX Models"

\section*{Purpose}

Shift data sequences

\section*{Syntax}

Datas = nkshift(Data,nk)

Data contains input-output data in the iddata format.
nk is a row vector with the same length as the number of input channels in Data.
Datas is an iddata object where the input channels in Data have been shifted according to nk. A positive value of nk(ku) means that input channel number ku is delayed \(\mathrm{nk}(\mathrm{ku})\) samples.
nkshift supports both frequency- and time-domain data. For frequency-domain data it multiplies with \(e^{i n k \omega T}\) to obtain the same effect as shifting in the time domain. For continuous-time frequency-domain data (\(\mathrm{Ts}=0\)), nk should be interpreted as the shift in seconds.
nkshift lives in symbiosis with the InputDelay property of linear identified models:
m1 = ssest(dat, 4,'InputDelay', nk)
is related to
\(\mathrm{m} 2=\operatorname{ssest}(\) nkshift(dat, nk), 4);
such that m 1 and m 2 are the same models, but m 1 stores the delay information and uses this information when computing the frequency response, for example. When using m 2 , the delay value must be accounted for separately when computing time and frequency responses.

\footnotetext{
See Also
idpoly | absorbDelay | delayest | idss
}

\section*{Purpose Estimate nonlinear ARX model}
```

Syntax $\quad m=n l a r x\left(d a t a,\left[\begin{array}{lll}n a & n b & n k\end{array}\right]\right)$
$m=n l a r x(d a t a,[n a ~ n b ~ n k], N o n l i n e a r i t y) ~$
$m$ = nlarx(data,[na nb nk],'PropertyName',PropertyValue)
$m=$ nlarx(data,LinModel)
$m=n l a r x(d a t a, L i n M o d e l, N o n l i n e a r i t y)$
$m=$ nlarx(data,LinModel,Nonlinearity,'PropertyName',
PropertyValue)

```

\section*{Description}
\(m=n l a r x(d a t a,[n a n b n k])\) creates and estimates a nonlinear ARX model using a default wavelet network as its nonlinearity estimator. data is an iddata object. na, nb, and \(n k\) are positive integers that specify the model orders and delays.
\(m=n l a r x(d a t a,[n a n b n k], N o n l i n e a r i t y)\) specifies a nonlinearity estimator Nonlinearity, as a nonlinearity estimator object or string representing the nonlinearity estimator type.
 constructs and estimates the model using options specified as idnlarx property name and value pairs. Specify PropertyName inside single quotes.
\(m=n l a r x(d a t a, L i n M o d e l)\) creates and estimates a nonlinear ARX model using a linear model (in place of [na nb nk]), and a wavelet network as its nonlinearity estimator. LinModel is a discrete time input-output polynomial model of ARX structure (idpoly) for single-output systems, and idarx object, for multi-output systems. LinModel sets the model orders, input delay, input-output channel names and units, sample time, and time unit of \(m\), and the polynomials initialize the linear function of the nonlinearity estimator.
\(m=\) nlarx(data,LinModel,Nonlinearity) specifies a nonlinearity estimator Nonlinearity.
\(m=\)
nlarx(data,LinModel,Nonlinearity,'PropertyName',PropertyValue),
constructs and estimates the model using options specified as idnlarx property name and value pairs.

\section*{Input \\ Arguments}

\section*{data}

Time-domain iddata object.

\section*{na nb nk}

Positive integers that specify the model orders and delays.
For ny output channels and nu input channels, na is an ny-by-ny matrix whose \(i\)-jth entry gives the number of delayed \(j\) th outputs used to compute the \(i\) th output. nb and nk are ny-by-nu matrices, where each row defines the orders for the corresponding output.

\section*{Nonlinearity}

Nonlinearity estimator, specified as a nonlinearity estimator object or string representing the nonlinearity estimator type.
'wavenet' or wavenet object (default)
'sigmoidnet' or sigmoidnet object
'treepartition' or treepartition object
'linear' or [] or linear object
neuralnet object
customnet object

Wavelet network
Sigmoid network
Binary-tree
Linear function
Neural network
Custom network

Specifying a string creates a nonlinearity estimator object with default settings. Use object representation to configure the properties of a nonlinearity estimator.
For ny output channels, you can specify nonlinear estimators individually for each output channel by setting Nonlinearity to an ny-by-1 cell array or object array of nonlinearity estimators. To specify
the same nonlinearity for all outputs, specify Nonlinearity as a single nonlinearity estimator.

\section*{LinModel}

Discrete time input-output polynomial model of ARX structure, typically estimated using the arx command:
- idpoly object for single-output systems
- idarx object for multi-output systems

\section*{Examples}

Estimate nonlinear ARX model with default settings:
```

load twotankdata
Ts = 0.2; % Sampling interval is 0.2 min
z = iddata(y,u,Ts); % constructs iddata object
m = nlarx(z,[4 4 1]) % na=nb=4 and nk=1

```

Estimate nonlinear ARX model with a specific nonlinearity:
NL = wavenet('NumberOfUnits',5);
\% Wavelet network has 5 units
\(m=n l a r x\left(z,\left[\begin{array}{lll}4 & 4 & 1\end{array}\right], N L\right)\)

Estimate nonlinear ARX model with a custom network nonlinearity:
```

% Define custom unit function and save it as gaussunit.m.
function [f, g, a] = GAUSSUNIT(x)
[f, g, a] = gaussunit(x)
f = exp(-x.*x);
if nargout>1
g = - 2*x.*f;
a = 0.2;
end

```
```

% Estimate nonlinear ARX model using the custom
% Gauss unit function.
H = @gaussunit;
CNetw = customnet(H);
m = nlarx(data,[na nb nk],CNetw)

```

Estimate nonlinear ARX model with specific algorithm settings:
```

    m = nlarx(z,[4 4 1],'sigmoidnet','MaxIter',50,...
    'Focus','Simulation')
    % Maximum number of estimation iterations is 50.
% Estimation focus 'simulation' optimizes model for
% simulation applications.

```

Estimate nonlinear ARX model from time series data:
```

t = 0:0.01:10;
y = 10*sin(2*pi*10*t)+rand(size(t));
z = iddata(y',[],0.01);
m = nlarx(z,2,'sigmoid')
compare(z,m,1) % compare 1-step-ahead
% prediction pf response

```

Estimate nonlinear ARX model and avoid local minima:
```

% Estimate initial model.
load iddata1
m1=nlarx(z1,[4 2 1],'wave','nlr',[1:3])
% Perturb parameters slightly to avoid local minima:
m2=init(m1)
% Estimate model with perturbed initial parameter values:
m2=nlarx(z1,m2)

```

Estimate nonlinear ARX model with custom regressors:
\% Load sample data z1 (iddata object). load iddata1
\% Estimate the model parameters:
m = nlarx(z1,[0 O 0],'linear','CustomReg',...
\{'y1(t-1)^2',...
'y1(t-2)*u1(t-3)'\})
\% na=nb=nk=0 means there are no standard regressors.
\% 'linear' means that the nonlinear estimator has only
\% the linear function.

Estimate nonlinear ARX model with custom regressor object:
```

% Load sample data z1 (iddata object):
load iddata1
% Define custom regressors as customreg objects:
C1 = customreg(@(x)x^2,{`y1'}, [1]); % y1(t-1)^2     C2 = customreg(@(x,y)x*y,{`y1', `u1'},...                             [2 3]); % y1(t-2)*u1(t-3)     C = [C1, C2]; % object array of custom regressors % Estimate model with custom regressors:     m = nlarx(z1,[O O O],`linear',`CustomReg',C);
% List all model regressors:
getreg(m)

```

Estimate nonlinear ARX model and search for optimum regressors for input to the nonlinear function:
load iddata1
```

m = nlarx(z1,[4 4 1],'sigmoidnet',...
'NonlinearRegressors','search');
m.NonlinearRegressors

```
```

% regressors indices in nonlinear function

```

Estimate nonlinear ARX model with selected regressors as inputs to the nonlinear function:
```

    load iddata1
    m = nlarx(z1,[4 4 1],'sigmoidnet',...
        'NonlinearReg','input');
    % Only input regressors enter the nonlinear function.
% m is linear in past outputs.

```

Estimate nonlinear ARX model with no linear term in the nonlinearity estimator:
```

load iddata1
SNL = sigmoidnet('LinearTerm','off')
m = nlarx(z1,[2 2 1],SNL);

```

Estimate MIMO nonlinear ARX model that has the same nonlinearity estimator for all output channels:
```

    m = nlarx(data,[[2 1;0 1] [2;1] [1;1]],...
    sigmoidnet('num',7))
    % m uses a sigmoid network with 7 units
% for all output channels.

```

Estimate MIMO nonlinear ARX model with different nonlinearity estimator for each output channel:
```

    m = nlarx(data,[[2 1;0 1] [2;1] [1;1]],...
    ['wavenet'; sigmoidnet('num',7)])
    % first output channel uses a wavelet network
% second output channel uses a sigmoid network with 7 units

```

Estimate a nonlinear ARX model using an ARX model:
\% Estimate linear ARX model.
load throttledata.mat
Tr = getTrend(ThrottleData);
Tr.OutputOffset = 15;
DetrendedData = detrend(ThrottleData, Tr);
LinearModel = arx(DetrendedData, [2 1 1], 'Focus', 'Simulation');
\% Estimate nonlinear ARX model using linear model to model
\% output saturation in data.
NonlinearModel = nlarx(ThrottleData, LinearModel, 'sigmoidnet',...
'Focus', 'Simulation')
See Also addreg | customreg | getreg | idnlarx | init | polyreg
Tutorials

How To
- "Example - Using nlarx to Estimate Nonlinear ARX Models"
- "Estimate Nonlinear ARX Models Using Linear ARX Models"
- "Identifying Nonlinear ARX Models"
- "Using Linear Model for Nonlinear ARX Estimation"
\begin{tabular}{|c|c|}
\hline Purpose & Estimate Hammerstein-Wiener model \\
\hline Syntax & ```
m = nlhw(data,[nb nf nk])
m = nlhw(data,[nb nf nk],InputNL,OutputNL)
m = nlhw(data,[nb nf nk],InputNL,OutputNL,'PropertyName',
 PropertyValue)
m = nlhw(data,LinModel)
m = nlhw(data,LinModel,InputNL,OutputNL)
m = nlhw(data,LinModel,InputNL,OutputNL,'PropertyName',
 PropertyValue)
``` \\
\hline Description & \begin{tabular}{l}
\(m=n l h w(d a t a,[n b n f n k])\) creates and estimates a Hammerstein-Wiener model using piecewise linear functions as its input and output nonlinearity estimators. data is a time-domain iddata object. \(n b, n f\), and \(n k\) are positive integers that specify the model orders and delay. \(n b\) is the number of zeros plus \(1, n f\) is the number of poles, and \(n k\) is the input delay. \\
\(m=\) nlhw(data,[nb nf nk],InputNL,OutputNL) specifies input nonlinearity InputNL and output nonlinearity OutputNL, as a nonlinearity estimator object or string representing the nonlinearity estimator type. \\
\(m=n l h w(d a t a,[n b n f\) \\
nk],InputNL,OutputNL,'PropertyName',PropertyValue) creates and estimates the model using options specified as idnlhw property name and value pairs. Specify PropertyName inside single quotes. \\
\(m=n l h w(d a t a, L i n M o d e l)\) creates and estimates a Hammerstein-Wiener model using a linear model (in place of [nb nf nk]), and default piecewise linear functions for the input and output nonlinearity estimators. LinModel is a discrete-time input-output polynomial model of Output-Error (OE) structure (idpoly) or state-space model with no disturbance component (idss with \(K=0\) ) for single-output systems, and idss model with \(K=0\) for multi-output systems. LinModel sets the model orders, input delay, \(B\) and \(F\) polynomial values, input-output names and units, sampling time and time units of \(m\).
\end{tabular} \\
\hline
\end{tabular}

\section*{nlhw}

'unitgain' or unitgain object
customnet object

Unit gain
Custom network

Specifying a string creates a nonlinearity estimator object with default settings. Use object representation to configure the properties of a nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators individually for each output channel by setting InputNL or OutputNL to an ny-by- 1 cell array or object array of nonlinearity estimators. To specify the same nonlinearity for all outputs, specify a single input and output nonlinearity estimator.

\section*{LinModel}

Discrete time linear model, typically estimated using the oe or n4sid command:
- Input-output polynomial model of Output-Error (OE) structure (idpoly) or state-space model with no disturbance component (idss with \(K=0\) )

\section*{Examples Estimate a Hammerstein-Wiener model:}
```

load iddata3
m1=nlhw(z3,[4 2 1],'sigmoidnet','deadzone')

```

Estimate a Hammerstein model with saturation:
load iddata1
\% Create a saturation object with lower limit of 0
\% and upper limit of 5:
InputNL = saturation('LinearInterval', [0 5]);
\% Estimate model with no output nonlinearity. \(m=n l h w(z 1,[230], I n p u t N L,[]) ;\)

\section*{nlhw}

Estimate a Wiener model with a nonlinearity containing 5 sigmoid units:
```

load iddata1
m2 = nlhw(z1,[2 3 0],[],sigmoidnet('num', 5))

```

Estimate a Hammerstein-Wiener model with a custom network nonlinearity:
```

% Define custom unit function and save it as gaussunit.m.
function [f, g, a] = GAUSSUNIT(x)
[f, g, a] = gaussunit(x)
f = exp(-x.*x);
if nargout>1
g = - 2*x.*f;
a = 0.2;
end

```
\% Estimate Hammerstein-Wiener model using the custom
\% Gauss unit function.
H = @gaussunit;
CNetw = cutomnet (H) ;
m = nlhw(data,[na nb nk],CNetw)

Estimate a MISO Hammerstein model with a different nonlinearity for each input:
```

m = nlhw(data,[nb,nf,nk],...
[sigmoidnet;pwlinear],...
[])

```

Refine a Hammerstein-Wiener model using successive calls of nlhw:
```

load iddata3

```
```

m3 = nlhw(z3,[4 2 1],'sigmoidnet','deadzone')
m3 = nlhw(z3,m3)
LinearBlock = m3.LinearModel % retrieves the linear block

```

Estimate a Hammerstein-Wiener model and avoid local minima:
```

load iddata3
M1 = nlhw(z3, [2 2 1], 'sigm','wave'); % original model
M1p = init(M1); % randomly perturbs parameters about nominal values
M2 = pem(z3, M1p); % estimates parameters of perturbed model

```

Estimate default Hammerstein-Wiener model using an input-output polynomial model of Output-Error (OE) structure:
```

% Estimate linear OE model.
load throttledata.mat
Tr = getTrend(ThrottleData);
Tr.OutputOffset = 15;
DetrendedData = detrend(ThrottleData, Tr);
opt = oeOptions('Focus','simulation');
LinearModel = oe(DetrendedData,[1 2 1],opt);

```
\% Estimate Hammerstein-Wiener model using OE model as
\% its linear component and saturation as its output nonlinearity.
NonlinearModel = nlhw(ThrottleData, LinearModel, [], 'saturation')
customnet | deadzone | findop(idnlhw) | linapp |
linearize(idnlhw) | idnlhw | pem | poly1d| pwlinear | saturation
| sigmoidnet | unitgain | wavenet
\begin{tabular}{ll} 
Tutorials & - "Example - Using nlhw to Estimate Hammerstein-Wiener Models" \\
& - "Estimate Hammerstein-Wiener Models Using Linear OE Models" \\
How To & - "Identifying Hammerstein-Wiener Models"
\end{tabular}
- "Using Linear Model for Hammerstein-Wiener Estimation"
\begin{tabular}{|c|c|}
\hline Purpose & Noise component of model \\
\hline Syntax & ```
noise_model = noise2meas(sys)
noise_model = noise2meas(sys,noise)
``` \\
\hline Description & \begin{tabular}{l}
noise_model = noise2meas(sys) returns the noise component, noise_model, of a linear identified model, sys. Use noise2meas to convert a time-series model (no inputs), to an input/output model that may be used for linear analysis, including viewing pole/zero maps, and plotting the step response. \\
noise_model = noise2meas(sys, noise) specifies the noise variance normalization method.
\end{tabular} \\
\hline \multirow[t]{5}{*}{Input Arguments} & sys \\
\hline & Identified linear model. \\
\hline & noise \\
\hline & \begin{tabular}{l}
Noise variance normalization method. \\
noise is a string that takes one of the following values: \\
- 'innovations' - Noise sources are not normalized and remain as the innovations process. \\
- 'normalize' - Noise sources are normalized to be independent and of unit variance.
\end{tabular} \\
\hline & Default: 'innovations' \\
\hline \multirow[t]{4}{*}{Output Arguments} & noise_model \\
\hline & Noise component of sys. \\
\hline & sys represents the system \\
\hline & \(y(t)=G u(t)+H e(t)\) \\
\hline
\end{tabular}

Here \(G\) is the transfer function between the measured input, \(u(t)\), and the output, \(y(t) . H\) is the noise model and describes the effect of the disturbance, \(e(t)\), on the model's response.
An equivalent state-space representation of sys is
\[
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t)+K e(t) \\
y(t) & =C x(t)+D u(t)+e(t) \\
e(t) & =L v(t)
\end{aligned}
\]

Here, \(v(t)\) is white noise with independent channels and unit variances. The white noise signal \(e(t)\) represents the model's innovations and has variance \(L L^{T}\). The noise variance data is stored using the NoiseVariance property of sys.
- If noise is 'innovations', noise2meas returns \(H\) and noise_model represents the system
\[
y(t)=H e(t)
\]

An equivalent state-space representation of noise_model is
\[
\begin{aligned}
\dot{x}(t) & =A x(t)+K e(t) \\
y(t) & =C x(t)+e(t)
\end{aligned}
\]
noise2meas returns the noise channels of sys as the input channels of noise_model. The input channels are named using the format 'e@yk', where yk corresponds to the OutputName property of an output. The measured input channels of sys are discarded and the noise variance is set to zero.
- If noise is 'normalize', noise2meas first normalizes
\[
e(t)=L v(t)
\]
noise_model represents the system
\[
y(t)=H L v(t)
\]
or, equivalently, in state-space representation
\[
\begin{aligned}
& \dot{x}(t)=A x(t)+K L v(t) \\
& y(t)=C x(t)+L v(t)
\end{aligned}
\]

The input channels are named using the format 'v@yk', where yk corresponds to the OutputName property of an output.

The model type of noise_model depends on the model type of sys.
- noise_model is an idtf model if sys is an idproc model.
- noise_model is an idss model if sys is an idgrey model.
- noise_model is the same type of model as sys for all other model types.

To obtain the model coefficients of noise_model in state-space form, use ssdata. Similarly, to obtain the model coefficients in transfer-function form, use tfdata.

\section*{Examples Convert Noise Component of Linear Identified Model into Input/Output Model}

Convert a time series model (no inputs) to an input/output model that may be used by linear analysis tools.

Identify a time series model
```

load iddata9 z9;
sys = ar(z9,4,'ls');

```
sys is an idpoly model with no inputs.
Convert sys to a measured model.
noise_model = noise2meas(sys);
noise_model is an idpoly model with one input.

You can use noise_model for linear analysis functions such as step, iopzmap, etc.

\section*{Normalizing Noise Variance}

Convert an identified linear model's to an input/output model and normalize its noise variance.

Identify a linear model using data.
load twotankdata;
data = iddata(y,u,0.2);
sys = ssest(z,4);
sys is an idss model, with a noise variance of \(6.6211 \mathrm{e}-06\). The value of \(L\) is sqrt(sys.NoiseVariance), which is 0.0026 . The disturbance matrix is
sys.K
0.2719
1.6570
-0.6318
\(-0.2877\)
Obtain a model that absorbs the noise variance of sys.
noise_model_normalize = noise2meas(sys,'normalize');
noise_model_normalize is an idpoly model. The \(B\) matrix for
noise_model_normalize is
noise_model_normalize.B
0.0007
0.0043
-0.0016
-0.0007
As expected, noise_model_normalize.B is equal to L*sys.K.

Compare the Bode response with a model that ignores the noise variance of sys.
```

noise_model_innovation = noise2meas(sys,'innovations');
bodemag(noise_model_normalize,noise_model_innovation);
legend('Normalized noise variance','Ignored noise variance');

```

The difference between the bode magnitudes of the noise_model_innovation and noise_model_normalized is approximately 51 dB . As expected, the magnitude difference is approximately equal to \(20 * \log 10(\mathrm{~L})\).

\section*{See Also}
noisecnv | tfdata | zpkdata | idssdata | spectrum

\section*{Purpose}

\section*{Syntax}

\section*{Description}

Transform idmodel object with noise channels to model with measured channels only
```

mod1 = noisecnv(mod)
mod2 = noisecnv(mod,'normalize')

```
mod is any linear identified model, idproc, idtf, idgrey, idpoly, or idss.

The noise input channels in mod are converted as follows: Consider a model with both measured input channels \(u\) (\(n u\) channels) and noise channels \(e\) (\(n y\) channels) with covariance matrix \(\Lambda\) :
\[
\begin{aligned}
& y=G u+H e \\
& \operatorname{cov}(e)=\Lambda=L L
\end{aligned}
\]
where \(L\) is a lower triangular matrix. Note that mod. NoiseVariance \(=\Lambda\). The model can also be described with unit variance, using a normalized noise source \(v\) :
\[
\begin{aligned}
& y=G u+H L v \\
& \operatorname{cov}(v)=I
\end{aligned}
\]
- mod1 = noisecnv(mod) converts the model to a representation of the system \([G H]\) with \(n u+n y\) inputs and \(n y\) outputs. All inputs are treated as measured, and mod1 does not have any noise model. The former noise input channels have names e@yname, where yname is the name of the corresponding output.
- mod2 = noisecnv(mod,'norm') converts the model to a representation of the system [GHL] with \(n u+n y\) inputs and \(n y\) outputs. All inputs are treated as measured, and mod2 does not have any noise model. The former noise input channels have names v@yname, where yname is the name of the corresponding output. Note that the noise variance matrix factor \(L\) typically is uncertain (has a nonzero covariance). This is taken into account in the uncertainty description of mod2.
- If mod is a time series, that is, \(n u=0\), mod1 is a model that describes the transfer function \(H\) with measured input channels. Analogously, mod2 describes the transfer function \(H L\).

Note the difference with subreferencing:
- mod('m') gives a description of G only.
- mod(:, []) gives a description of the noise model characteristics as a time-series model, that is, it describes \(H\) and also the covariance of \(e\). In contrast, noisecnv(m(:, [])) or noise2meas(m) describe just the transfer function \(H\). To obtain a description of the normalized transfer function \(H L\), use noisecnv(m(:, []), 'normalize') or noise2meas('normalize').

Converting the noise channels to measured inputs is useful to study the properties of the individual transfer functions from noise to output. It is also useful for transforming idmodel objects to representations that do not handle disturbance descriptions explicitly.

\section*{Examples}

See Also noise2meas | tfdata | zpkdata | idssdata

\section*{Purpose Norm of linear model}
\begin{tabular}{|c|c|}
\hline Syntax & \(\mathrm{n}=\) norm(sys) \\
\hline & \(\mathrm{n}=\) norm(sys,2) \\
\hline & \(\mathrm{n}=\) norm(sys,inf) \\
\hline & [\(\mathrm{n}, \mathrm{fpeak}\)] = norm(sys,inf) \\
\hline & [...] = norm(sys,inf,tol) \\
\hline
\end{tabular}

\section*{Description}

\section*{Input \\ Arguments}

\section*{Output Arguments}
n = norm(sys) or \(\mathrm{n}=\) norm(sys,2) return the \(H_{2}\) norm of the linear dynamic system model sys.
\(\mathrm{n}=\) norm(sys,inf) returns the \(H_{\infty}\) norm of sys.
[n,fpeak] = norm(sys,inf) also returns the frequency fpeak at which the gain reaches its peak value.
[...] = norm(sys,inf,tol) sets the relative accuracy of the \(H_{\infty}\) norm to tol.
sys
Continuous- or discrete-time linear dynamic system model. sys can also be an array of linear models.
tol
Positive real value setting the relative accuracy of the \(H_{\infty}\) norm.
Default: 0.01
n
\(H_{2}\) norm or \(H_{\infty}\) norm of the linear model sys.
If sys is an array of linear models, \(n\) is an array of the same size as sys. In that case each entry of n is the norm of each entry of sys.

\section*{fpeak}

Frequency at which the peak gain of sys occurs.

\section*{Definitions}

\section*{H2 norm}

The \(H_{2}\) norm of a stable continuous-time system with transfer function \(H(s)\), is given by:
\[
\|H\|_{2}=\sqrt{\frac{1}{2 \pi} \int_{-\infty}^{\infty} \operatorname{Trace}\left[H(j \omega)^{H} H(j \omega)\right] d \omega} .
\]

For a discrete-time system with transfer function \(H(z)\), the \(H_{2}\) norm is given by:
\[
\|H\|_{2}=\sqrt{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \operatorname{Trace}\left[H\left(e^{j \omega}\right)^{H} H\left(e^{j \omega}\right)\right] d \omega} .
\]

The \(H_{2}\) norm is equal to the root-mean-square of the impulse response of the system. The \(H_{2}\) norm measures the steady-state covariance (or power) of the output response \(y=H w\) to unit white noise inputs \(w\) :
\[
\|H\|_{2}^{2}=\lim _{t \rightarrow \infty} E\left\{y(t)^{T} y(t)\right\}, \quad E\left(w(t) w(\tau)^{T}\right)=\delta(t-\tau) I .
\]

The \(\mathrm{H}_{2}\) norm is infinite in the following cases:
- sys is unstable.
- sys is continuous and has a nonzero feedthrough (that is, nonzero gain at the frequency \(\omega=\infty\)).
norm(sys) produces the same result as
```

sqrt(trace(covar(sys,1)))

```

\section*{H-infinity norm}

The \(H_{\infty}\) norm (also called the \(L_{\infty}\) norm) of a SISO linear system is the peak gain of the frequency response. For a MIMO system, the \(H_{\infty}\) norm is the peak gain across all input/output channels. Thus, for a continuous-time system \(H(s)\), the \(H_{\infty}\) norm is given by:
\[
\begin{aligned}
& \|H(s)\|_{\infty}=\max _{\omega}|H(j \omega)| \\
& \|H(s)\|_{\infty}=\max _{\omega} \sigma_{\max }(H(j \omega))
\end{aligned}
\]
where \(\sigma_{\max }(\cdot)\) denotes the largest singular value of a matrix. For a discrete-time system \(H(z)\) :
\[
\begin{aligned}
& \|H(z)\|_{\infty}=\max _{\theta \in[0, \pi]}\left|H\left(e^{j \theta}\right)\right| \\
& \|H(z)\|_{\infty}=\max _{\theta \in[0, \pi]} \sigma_{\max }\left(H\left(e^{j \theta}\right)\right)
\end{aligned}
\]

The \(H_{\infty}\) norm is infinite if sys has poles on the imaginary axis (in continuous time), or on the unit circle (in discrete time).

\section*{Examples}

This example uses norm to compute the \(H_{2}\) and \(H_{\infty}\) norms of a discrete-time linear system.

Consider the discrete-time transfer function
\[
H(z)=\frac{z^{3}-2.841 z^{2}+2.875 z-1.004}{z^{3}-2.417 z^{2}+2.003 z-0.5488}
\]
with sample time 0.1 second.
To compute the \(H_{2}\) norm of this transfer function, enter:
\(\mathrm{H}=\mathrm{tf}\left(\left[\begin{array}{llll}1 & -2.841 & 2.875 & -1.004\end{array}\right],\left[\begin{array}{llll}1 & -2.417 & 2.003 & -0.5488\end{array}\right], 0.1\right)\)
norm(H)
These commands return the result:
ans =
1.2438

To compute the \(H_{\infty}\) infinity norm, enter:
```

[ninf,fpeak] = norm(H,inf)

```

This command returns the result:
```

ninf =

```
 2.5488
fpeak =
 3.0844

You can use a Bode plot of \(H(z)\) to confirm these values.
bode (H)
grid on;

The gain indeed peaks at approximately \(3 \mathrm{rad} / \mathrm{sec}\). To find the peak gain in dB , enter:
```

20*log10(ninf)

```

This command produces the following result:
ans =
8.1268

\section*{Algorithms}

\section*{References}

See Also freqresp \| sigma
Purpose Number of model parameters

\section*{Syntax \\ Description}

Input
Arguments
Output
Arguments
\(n p=n p a r a m s(s y s)\)
np = nparams(sys,'free')
\(n p=\) nparams(sys) returns the number of parameters in the identified model sys.
\(n p=n p a r a m s(s y s, ' f r e e ')\) returns the number free estimation parameters in the identified model sys.

Note Not all model coefficients are parameters, such as the leading entry of the denominator polynomials in idpoly and idtf models.

\section*{sys}

Identified linear model.

\section*{np}

Number of parameters of sys.
For the syntax np = nparams(sys,'free'), np is the number of free estimation parameters of sys.
idgrey models can contain non-scalar parameters. nparams accounts for each individual entry of the non-scalar parameters in the total parameter count.

\section*{Examples}

Obtain the number of parameters of a transfer function model.
```

sys = idtf(1,[1 2]);
np = nparams(sys);

```

Obtain the number of free estimation parameters of a transfer function model.
```

sysO = idtf([1 0],[1 2 0]);
sysO.Structure.den.Free(3) = false;
np = nparams(sys,'free');

```

See Also size | idpoly | idss | idtf | idproc | idgrey | idfrd

Purpose Set step size for numerical differentiation

\section*{Syntax nds = nuderst (pars)}

Description Many estimation functions use numerical differentiation with respect to the model parameters to compute their values.

The step size used in these numerical derivatives is determined by the nuderst command. The output argument nds is a row vector whose kth entry gives the increment to be used when differentiating with respect to the kth element of the parameter vector pars.

The default version of nuderst uses a very simple method. The step size is the maximum of \(10^{-4}\) times the absolute value of the current parameter and \(10^{-7}\). You can adjust this to the actual value of the corresponding parameter by editing nuderst. Note that the nominal value, for example 0 , of a parameter might not reflect its normal size.

Purpose
Syntax
nyquist (sys)
nyquist(sys,w)
nyquist(sys1, sys2,..., sysN)
nyquist(sys1, sys2,..., sysN,w)
nyquist(sys1,'PlotStyle1',...,sysN, 'PlotStyleN')
[re,im,w] = nyquist(sys)
[re,im] \(=\) nyquist(sys,w)
[re,im,w,sdre,sdim] = nyquist(sys)

\section*{Description}

Nyquist plot of frequency response
nyquist creates a Nyquist plot of the frequency response of a dynamic system model. When invoked without left-hand arguments, nyquist produces a Nyquist plot on the screen. Nyquist plots are used to analyze system properties including gain margin, phase margin, and stability.
nyquist (sys) creates a Nyquist plot of a dynamic system sys. This model can be continuous or discrete, and SISO or MIMO. In the MIMO case, nyquist produces an array of Nyquist plots, each plot showing the response of one particular I/O channel. The frequency points are chosen automatically based on the system poles and zeros.
nyquist(sys,w) explicitly specifies the frequency range or frequency points to be used for the plot. To focus on a particular frequency interval, set \(w=\{w m i n\), wmax \(\}\). To use particular frequency points, set \(w\) to the vector of desired frequencies. Use logspace to generate logarithmically spaced frequency vectors. Frequencies must be in rad/TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys.
nyquist(sys1,sys2,...,sysN) or nyquist(sys1, sys2, ...,sysN,w) superimposes the Nyquist plots of several LTI models on a single figure. All systems must have the same number of inputs and outputs, but may otherwise be a mix of continuous- and discrete-time systems. You can also specify a distinctive color, linestyle, and/or marker for each system plot with the syntax
nyquist(sys1,'PlotStyle1', ...,sysN, 'PlotStyleN')
See bode for an example.
When invoked with left-hand arguments
```

[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

```
return the real and imaginary parts of the frequency response at the frequencies w (in rad/TimeUnit). re and im are 3-D arrays (see "Arguments" below for details).
[re,im,w,sdre,sdim] = nyquist(sys) also returns the standard deviations of re and im for the identified system sys.

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

\section*{Arguments}

The output arguments re and im are 3-D arrays with dimensions
```

(number of outputs) }\times\mathrm{ (number of inputs) }\times\mathrm{ (length of w)

```

For SISO systems, the scalars re(1, \(1, k)\) and \(\operatorname{im}(1,1, k)\) are the real and imaginary parts of the response at the frequency \(\omega_{k}=\mathrm{w}(\mathrm{k})\).
\[
\begin{aligned}
& \operatorname{re}(1,1, k)=\operatorname{Re}\left(h\left(j \omega_{k}\right)\right) \\
& \operatorname{im}(1,1, k)=\operatorname{Im}\left(h\left(j w_{k}\right)\right)
\end{aligned}
\]

For MIMO systems with transfer function \(H(s)\), re (: , : , k) and \(\operatorname{im}(:,:, k)\) give the real and imaginary parts of \(H\left(j \omega_{k}\right)\) (both arrays with as many rows as outputs and as many columns as inputs). Thus,
\[
\begin{aligned}
& \operatorname{re}(\mathrm{i}, \mathrm{j}, \mathrm{k})=\operatorname{Re}\left(h_{i j}\left(j \omega_{k}\right)\right) \\
& \operatorname{im}(\mathrm{i}, \mathrm{j}, \mathrm{k})=\operatorname{Im}\left(h_{i j}\left(j \omega_{k}\right)\right)
\end{aligned}
\]
where \(h_{i j}\) is the transfer function from input \(j\) to output \(i\).

\section*{Examples Example 1}

\section*{Nyquist Plot of Dynamic System}

Plot the Nyquist response of the system
\[
\begin{aligned}
& H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3} \\
& H=\operatorname{tf}\left(\left[\begin{array}{lll}
2 & 5 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\right) \\
& \text { nyquist }(H)
\end{aligned}
\]

The nyquist function has support for M-circles, which are the contours of the constant closed-loop magnitude. M-circles are defined as the locus of complex numbers where
\[
T(j \omega)=\left|\frac{G(j \omega)}{1+G(j \omega)}\right|
\]
is a constant value. In this equation, \(\omega\) is the frequency in radians/TimeUnit, where TimeUnit is the system time units, and \(G\) is the collection of complex numbers that satisfy the constant magnitude requirement.

To activate the grid, select Grid from the right-click menu or type
grid
at the MATLAB prompt. This figure shows the M circles for transfer function \(H\).

You have two zoom options available from the right-click menu that apply specifically to Nyquist plots:
- Tight - Clips unbounded branches of the Nyquist plot, but still includes the critical point \((-1,0)\)
- On (-1,0) - Zooms around the critical point (\(-1,0\))

Also, click anywhere on the curve to activate data markers that display the real and imaginary values at a given frequency. This figure shows the nyquist plot with a data marker.

\section*{Example 2}

Compute the standard deviation of the real and imaginary parts of frequency response of an identified model. Use this data to create a \(3 \sigma\) plot of the response uncertainty.
Identify a transfer function model based on data. Obtain the standard deviation data for the real and imaginary parts of the frequency response.
```

load iddata2 z2;
sys_p = tfest(z2,2);
w = linspace(-10*pi,10*pi,512);
[re, im, ~, sdre, sdim] = nyquist(sys_p,w);

```
sys_p is an identified transfer function model. sdre and sdim contain 1 - std standard deviation uncertainty values in re and im respectively.

Create a Nyquist plot showing the response and its \(3 \sigma\) uncertainty:
```

re = squeeze(re);
im = squeeze(im);
sdre = squeeze(sdre);
sdim = squeeze(sdim);
plot(re,im,'b', re+3*sdre, im+3*sdim, 'k:', re-3*sdre, im-3*sdim, 'k:

```

\section*{Algorithms See bode.}

See Also bode | evalfr | freqresp | ltiview | nichols | sigma

\section*{nyquistoptions}

\section*{Purpose}

List of Nyquist plot options

Syntax

Description

P = nyquistoptions
P = nyquistoptions('cstprefs')
\(P=\) nyquistoptions returns the default options for Nyquist plots. You can use these options to customize the Nyquist plot appearance using the command line.

P = nyquistoptions('cstprefs') initializes the plot options with the options you selected in the Control System Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor" in the User's Guide documentation.

The following table summarizes the Nyquist plot options.
\begin{tabular}{l|l}
\hline Option & Description \\
\hline Title, XLabel, YLabel & Label text and style \\
\hline TickLabel & Tick label style \\
\hline Grid & \begin{tabular}{l}
Show or hide the grid \\
Specified as one of the following strings: 'off' | 'on' ' \\
Default: 'off'
\end{tabular} \\
\hline XlimMode, YlimMode & Limit modes \\
\hline Xlim, Ylim & Axes limits \\
\hline IOGrouping & \begin{tabular}{l}
Grouping of input-output pairs \\
Specified as one of the following strings: 'none' ' \\
|'inputs ' I output ' | 'all' \\
Default: 'none'
\end{tabular} \\
\hline \begin{tabular}{l}
InputLabels, \\
OutputLabels
\end{tabular} & Input and output label styles \\
\hline \begin{tabular}{l}
InputVisible, \\
OutputVisible
\end{tabular} & Visibility of input and output channels \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Option & Description \\
\hline FreqUnits & \begin{tabular}{l}
Frequency units, specified as one of the following strings: \\
- 'Hz' \\
- 'rad/second' \\
- 'rpm' \\
- 'kHz' \\
- 'MHz' \\
- 'GHz' \\
- 'rad/nanosecond' \\
- 'rad/microsecond' \\
- 'rad/millisecond' \\
- 'rad/minute' \\
- 'rad/hour' \\
- 'rad/day' \\
- 'rad/week' \\
- 'rad/month' \\
- 'rad/year' \\
- 'cycles/nanosecond' \\
- 'cycles/microsecond' \\
- 'cycles/millisecond' \\
- 'cycles/hour' \\
- 'cycles/day' \\
- 'cycles/week' \\
- 'cycles/month'
\end{tabular} \\
\hline
\end{tabular}

\section*{nyquistoptions}
\begin{tabular}{|c|c|}
\hline Option & Description \\
\hline & \begin{tabular}{l}
- 'cycles/year' \\
Default: 'rad/s' \\
You can also specify 'auto' which uses frequency units rad/TimeUnit relative to system time units specified in the TimeUnit property. For multiple systems with different time units, the units of the first system are used.
\end{tabular} \\
\hline MagUnits & \begin{tabular}{l}
Magnitude units \\
Specified as one of the following strings: ' dB ' | 'abs \\
Default: ' dB '
\end{tabular} \\
\hline PhaseUnits & \begin{tabular}{l}
Phase units \\
Specified as one of the following strings: 'deg' | 'rad \\
Default: 'deg'
\end{tabular} \\
\hline ShowFullContour & Show response for negative frequencies Specified as one of the following strings: 'on ' | 'off' Default: ' on' \\
\hline ConfidenceRegionNumb & \begin{tabular}{l}
Ahriblber of standard deviations to use to plotting the response confidence region (identified models only). \\
Default: 1.
\end{tabular} \\
\hline ConfidenceRegionDisp & \begin{tabular}{l}
a才Бథdicemgency spacing of confidence ellipses. For identified models only. \\
Default: 5, which means the confidence ellipses are shown at every 5th frequency sample.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

This example shows how to create a Nyquist plot displaying the full contour (the response for both positive and negative frequencies).
```

P = nyquistoptions;
P.ShowFullContour = 'on';
h = nyquistplot(tf(1,[1,.2,1]),P);

```

See Also
nyquist | nyquistplot | getoptions | setoptions | setoptions showConfidence

\section*{nyquistplot}

\section*{Purpose \\ Nyquist plot with additional plot customization options}

Syntax
Description
```

h = nyquistplot(sys)
nyquistplot(sys,{wmin,wmax})
nyquistplot(sys,w)
nyquistplot(sys1,sys2,...,w)
nyquistplot(AX,...)
nyquistplot(..., plotoptions)

```
h = nyquistplot(sys) draws the Nyquist plot of the dynamic system model sys. It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
help nyquistoptions
for a list of available plot options.
The frequency range and number of points are chosen automatically. See bode for details on the notion of frequency in discrete time.
nyquistplot (sys, \{wmin, wmax\}) draws the Nyquist plot for frequencies between wmin and wmax (in rad/TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys).
nyquistplot(sys,w) uses the user-supplied vector \(w\) of frequencies (in rad/TimeUnit, where TimeUnit is the time units of the input dynamic system, specified in the TimeUnit property of sys) at which the Nyquist response is to be evaluated. See logspace to generate logarithmically spaced frequency vectors.
nyquistplot(sys1, sys2, ...,w) draws the Nyquist plots of multiple models sys 1 ,sys \(2, \ldots\) on a single plot. The frequency vector \(w\) is optional. You can also specify a color, line style, and marker for each system, as in
nyquistplot(sys1,'r',sys2,'y--',sys3,'gx')
nyquistplot (AX,...) plots into the axes with handle AX.
nyquistplot(..., plotoptions) plots the Nyquist response with the options specified in plotoptions. Type
help nyquistoptions
for more details.

Tips

\section*{Examples}

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

\section*{Example 1}

\section*{Customize Nyquist Plot Frequency Units}

Plot the Nyquist frequency response and change the units to rad/s.
```

sys = rss(5);
h = nyquistplot(sys);
% Change units to radians per second.
setoptions(h,'FreqUnits','rad/s');

```

\section*{Example 2}

Compare the frequency responses of identified state-space models of order 2 and 6 along with their 1 -std confidence regions rendered at every 50th frequency sample.
```

load iddata1
sys1 = n4sid(z1, 2) % discrete-time IDSS model of order 2
sys2 = n4sid(z1, 6) % discrete-time IDSS model of order 6

```

Both models produce about \(76 \%\) fit to data. However, sys2 shows higher uncertainty in its frequency response, especially close to Nyquist frequency as shown by the plot:
```

w = linspace(10,10*pi,256);

```
h = nyquistplot(sys1,sys2,w);
setoptions(h, 'ConfidenceRegionDisplaySpacing', 50, 'ShowFullContour'

Right-click to turn on the confidence region characteristic by using the Characteristics-> Confidence Region.

\author{
See Also \\ getoptions | nyquist | setoptions | showConfidence
}

\section*{Purpose}

Syntax
sys \(=o e(d a t a,[n b\) nf nk])
sys \(=0 e(d a t a,[n b\) nf nk],Name, Value)
sys = oe(data,init_sys)
sys \(=o e(d a t a, \ldots, o p t)\)

\section*{Description}

Tips
Estimate Output-Error polynomial model using time or frequency domain data represented by:
\[
y(t)=\frac{B(q)}{F(q)} u(t-n k)+e(t)
\]

Here, \(y(t)\) is the output, \(u(t)\) is the input and \(e(t)\) is the error.
sys is estimated for the time- or frequency-domain, measured estimated polynomial. attributes using additional options specified by one or more Name, Value pair arguments. model (idpoly) init_sys to configure the initial parameterization of sys.
sys = oe(data, __ ,opt) estimates a polynomial model using the option set, opt, to specify estimation behavior.
sys \(=\) oe(data, \([\mathrm{nb} \mathrm{nf} \mathrm{nk}])\) estimates an Output Error model, sys, input-output data, data. The orders, [nb nf nk], parameterize the
sys = oe(data, [nb nf nk],Name, Value) specifies model structure
sys = oe(data,init_sys) uses the Output-Error structure polynomial
- If data represents continuous-time frequency response data and you want to estimate a continuous-time model, omit the nk input argument.

For example, use sys = oe(data,[nb nf]).

\section*{Input Arguments}

\section*{data}

Estimation data.
For time domain estimation, data is an iddata object containing the input and output signal values.

For frequency domain estimation, data can be one of the following:
- recorded frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency'

For multi-experiment data, the sample times and inter-sample behavior of all the experiments must match.

\section*{[\(\mathbf{n b} \mathbf{n f} \mathbf{n k}\)]}

Output error model orders.
For a system represented by:
\[
y(t)=\frac{B(q)}{F(q)} u(t-n k)+e(t)
\]

Where, \(y(t)\) is the output, \(u(t)\) is the input and \(e(t)\) is the error.
- nb - Order of the \(B\) polynomial +1 . nb is an \(N y\)-by- \(N u\) matrix, where \(N y\) is the number of outputs and \(N u\) is the number of inputs.
- nf - Order of the \(F\) polynomial. nf is an \(N y\)-by- \(N u\) matrix, where \(N y\) is the number of outputs and \(N u\) is the number of inputs.
- nk - Input delay, expressed as the number of samples. nk is an \(N y\)-by- \(N u\) matrix, where \(N y\) is the number of outputs and \(N u\) is the number of inputs. The delay appears as leading zeros of the \(B\) polynomial.

For estimation using continuous-time data, only specify [nb nf]. That is, omit nk.

\section*{init_sys}

Polynomial model that configures the initial parameterization of sys.
Specify init_sys as an idpoly model having the Output-Error structure.

Use the Structure property of init_sys to configure initial guesses and constraints for \(B(q)\) and \(F(q)\).

To specify an initial guess for, say, the \(F(q)\) term of init_sys, set init_sys.Structure.f.Value as the initial guess.
To specify constraints for, say, the \(B(q)\) term of init_sys:
- set init_sys.Structure.b.Minimum to the minimum \(B(q)\) coefficient values
- set init_sys.Structure.b.Maximum to the maximum \(B(q)\) coefficient values
- set init_sys.Structure.b.Free to indicate which \(B(q)\) coefficients are free for estimation
If opt is not specified, and init_sys was created by estimation, then the estimation options from init_sys.Report. OptionsUsed are used.

\section*{opt}

Estimation options.
opt is an options set that specifies estimation options. These options include the following:
- estimation objective
- handling of initial conditions
- numerical search method and the associated options

Use oeOptions to create the options set.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{InputDelay}

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay \(=3\) means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

\section*{ioDelay}

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.

For continuous-time systems, specify transport delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify transport delays as integers denoting delay of a multiple of the sampling period Ts. You can specify ioDelay as an alternative to the nk value. Doing so simplifies the model structure by reducing the number of leading zeros the \(B\) polynomial. In particular, you can represent max (nk-1,0) leading zeros as input/output delays using ioDelay instead.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array, where each entry is a numerical value representing the
transport delay for the corresponding input/output pair. You can also set ioDelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

\section*{Output \\ Arguments}

\section*{Definitions}

\section*{Output-Error (OE) Model}

The general Output-Error model structure is:
\[
y(t)=\frac{B(q)}{F(q)} u(t-n k)+e(t)
\]

The orders of the Output-Error model are:
\[
\begin{array}{ll}
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n f: & F(q)=1+f_{1} q^{-1}+\ldots+f_{n f} q^{-n f}
\end{array}
\]

\section*{Continuous-Time Output-Error Model}

If data is continuous-time (frequency-domain) data, oe estimates a continuous-time model with transfer function:
\[
G(s)=\frac{B(s)}{F(s)}=\frac{b_{n b} s^{(n b-1)}+b_{n b-1} s^{(n b-2)}+\ldots+b_{1}}{s^{n f}+f_{n f} s^{(n f-1)}+\ldots+f_{1}}
\]

The orders of the numerator and denominator are nb and nf, similar to the discrete-time case. However, the delay nk has no meaning and you should omit it when specifying model orders for estimation. That is, use model = oe(data, [nb nf]) when you are using continuous-time
frequency domain data. Use the ioDelay model property to specify any input-output delays. For example, use model = oe(data, [nb nf], 'ioDelay', iod) instead.

\section*{Examples Estimating Output-Error (OE) model of the type}
```

$G(s)=\frac{b}{s^{3}+f_{1} s^{2}+f_{2} s+f_{3}}:$
\% Use fast sampled data (Ts $=0.001$ )
\% from a plant with bandwidth of about 500 rad/s.
z = iddata(y,u,0.001);
zf = fft(z);
zf.ts = 0;
opt = oeOptions('Focus',[0 500]);
m = oe(zf,[1 3],opt);

```

Fit continuous-time transfer function to frequency response.
Generate data.
```

sys1 = tf([1 3],[1 2 1 1]); % TF requires Control System Toolbox

```
data \(=\) idfrd(sys1,logspace(-2,2,256)); \% continuous-time FR data

Estimate an OE model to fit the data.
sys = oe(data, [2 3]); \% use syntax OE(DATA, [nb, nf])
bode(data,sys) \% compare data to model

Algorithms
The estimation algorithm minimizes prediction errors.
Alternatives Output Error models are a special configuration of polynomial models, having only two active polynomials - \(B\) and \(F\). For such models, it may be more convenient to use a transfer function (idtf) model and its estimation command tfest.

Also, tfest is the recommended command for estimating continuous-time models.

See Also
oeOptions | tfest | arx | armax | iv4 | n4sid | bj | polyest | idpoly | iddata | idfrd | sim | compare

\section*{Purpose Option set for oe}
Syntax \(\quad\)\begin{tabular}{l}
opt \(=\) oeOptions \\
opt \(=\) oeOptions (Name, Value)
\end{tabular}

Description

Input
Arguments
opt \(=\) oeOptions creates the default options set for oe.
opt \(=\) oeOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{InitialCondition}

Specify how initial conditions are handled during estimation.
InitialCondition takes one of the following values:
- 'zero' - The initial conditions are set to zero.
- 'estimate' - The initial conditions are treated as independent estimation parameters.
- 'backcast' - The initial conditions are estimated using the best least squares fit.
- 'auto' - The software chooses the method to handle initial conditions based on the estimation data.

Default: 'auto'

\section*{Focus}

Defines how the errors \(e\) between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.
Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus can take the following values:
- 'simulation' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input spectrum has the most power.
This method provides a stable model.
- prediction - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. The weighting function minimizes the one-step-ahead prediction. This approach typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this weighting function is optimal. However, this method neglects the approximation aspects (bias) of the fit. Use 'stability' when you want to ensure a stable model.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
```

[wl,wh]
[w1l,w1h;w2l,w2h;w31,w3h;...]

```
where \(w l\) and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system
- The \(\{A, B, C, D\}\) format, which specifies the state-space matrices of the filter
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function
This option calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. You receive an estimation result that is the same as if you had first prefiltered using idfilt.
- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

\section*{EstCovar}

Controls whether parameter covariance data is generated or not.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

Default: true

\section*{Display}

Specifies whether estimation progress should be displayed.
Display requires one of the following strings:
- 'on ' - Information on model structure and estimation results are displayed in a progress viewer window
- 'off' - No progress or results information is displayed

\section*{Default: 'off' \\ InputOffset}

Removes offset from time domain input data during estimation.
Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.

Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a Nu -by- Ne matrix. \(N u\) is the number of inputs, and \(N e\) is the number of experiments.
Each entry specified by Input0ffset is subtracted from the corresponding input data.

Default: []

\section*{OutputOffset}

Removes offset from time domain output data during estimation.
Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a \(N y\)-by- \(N e\) matrix. \(N y\) is the number of outputs, and \(N e\) is the number of experiments. Each entry specified by OutputOffset is subtracted from the corresponding output data.

\section*{Default: []}

\section*{SearchMethod}

Search method used for iterative parameter estimation.
SearchMethod is a string that can take the following values:
- gn - The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max (size(J)) *norm(J)
are discarded when computing the search direction. \(J\) is the Jacobian matrix. The Hessian matrix is approximated by \(J^{T} J\). If there is no improvement in this direction, the function tries the gradient direction.
- gna - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [1]. Eigenvalues less than gamma*max (sv) of the Hessian are ignore, where \(s v\) are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see Advanced for more information). This value is increased by the factor LMStep each time the search fails to find a lower value of the criterion in less than 5 bisections. This value is decreased by the factor 2*LMStep each time a search is successful without any bisections.
- \(1 m\) - Uses the Levenberg-Marquardt method. This means that the next parameter value is - \(\operatorname{pinv}(H+d * I) * g r a d\) from the previous one, where \(H\) is the Hessian, I is the identity matrix, and grad is the gradient. \(d\) is a number that is increased until a lower value of the criterion is found.
- lsqnonlin - Uses lsqnonlin optimizer from Optimization Toolbox software. You must have Optimization Toolbox installed to use this option. This search method can only handle the Trace criterion.
- grad - The steepest descent gradient search method.
- auto - A choice among the above is made in the algorithm. The descent direction is calculated using gn, gna, lm and grad successively, in that order, at each iteration until a sufficient reduction in error is achieved.

Default: 'auto'

\section*{SearchOption}

SearchOption is an options set for the search algorithm with the fields:

\section*{SearchMertrodhOption}
gn, gna,l \(1 \mathrm{\bullet}\), Tolerance - Minimum percentage difference (divided grad by 100) between the current value of the loss function and and its expected improvement after the next iteration.
auto When the percentage of expected improvement is less than Tolerance, the iterations are stopped. The estimate of the expected loss-function improvement at the next iteration is made based on the Gauss-Newton vector computed for the current parameter value.

Default: 0.01
- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter \(=0\) returns the result of the startup procedure.
Use sys.Report.Termination.Iterations to get the actual number of iterations during an estimation, where sys is an idtf model.

Default: 20
- Advanced - Search settings:
- GnPinvConst - Singular values of the Jacobian that are smaller than GnPinvConst*max(size(J)*norm(J)*eps are discarded when computing the search direction and SearchMethod is 'gn'.
GnPinvConst must be a positive real value.
Default: 10000
- InitGnaTol - Initial value of gamma when SearchMethod is 'gna'.
Default: . 0001

\section*{SearchMerthodhOption}
- LMStartValue - Starting value of search-direction length \(d\) in the Levenberg-Marquardt method. Applicable when SearchMethod is ' 1 m '.

Default: . 001
- LMStep - Size of the Levenberg-Marquardt step. The next value of the search-direction length \(d\) in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is 'lm'.

Default: 2
- MaxBisections - Maximum number of bisections used by the line search along the search direction.

Default: 25
- MaxFunEvals - Iterations are stopped if the number of calls to the model file exceeds this value.

MaxFunEvals must be a positive integer value.
Default: Inf
- MinParChange - Smallest parameter update allowed per iteration
MinParChange must be a positive, real value.
Default: 0
- RelImprovement - Iterations are stopped if the relative improvement of the criterion function is less than RelImprovement.

RelImprovement must be a positive integer value.
Default: 0

\section*{SearchMertrodhOption}
- StepReduction - Suggested parameter update is reduced by the factor StepReduction after each try until either MaxBisections tries are completed or a lower value of the criterion function is obtained.

StepReduction must be a positive, real value that is greater than 1.

Default: 2
lsqnonlire TolFun - Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values.

The value of TolFun is the same as that of sys.SearchOption.Advanced.TolFun.

Default: 1e-5
- TolX - Termination tolerance on the estimated parameter values.
The value of TolX is the same as that of sys.SearchOption.Advanced.TolX.
Default: 1e-6
- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as TolFun etc..

The value of MaxIter is the same as that of sys.SearchOption.Advanced.MaxIter.

Default: 20
- Advanced - Options set for lsqnonlin.

For more information, see "Optimization Options".

\section*{SearchMEstrodhOption}

Use optimset('lsqnonlin') to create an options set for lsqnonlin and then modify it to specify its various options.

\section*{Advanced}

Advanced is a structure with the following fields:
- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. (See the section about choosing a robust norm in the chapter "Computing the Estimate" of [2].) ErrorThreshold \(=0\) disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, ErrorThreshold is set to zero. ErrorThreshold \(=1.6\) is a good choice for estimation when data contains outliers.

Default: 0
- MaxSize - Specifies the maximum number of elements in a segment when input-output data is split into segments.
MaxSize must be a positive integer.
Default: 250000
- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:
- s-Specifies the location of the right-most pole to test the stability of continuous-time models. A model is considered stable when its right-most pole is to the left of s.
Default: 0
- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance \(z\) from the origin.

Default: 1+sqrt(eps)
- AutoInitThreshold - Specifies when to automatically estimate the initial conditions.

When InitialCondition = 'Auto', the initial condition is estimated when the ratio of the prediction-error norm with a zero initial condition to the norm with an estimated initial condition exceeds AutoInitialState.

Default: 1.05

\section*{Output opt}

Arguments Option set containing the specified options for oe.

\section*{Examples Create Default Options Set for Output-Error Estimation}

Create a default options set for oe.
```

opt = oeOptions;

```

\section*{Specify Options for Output-Error Estimation}

Create an options set for oe using the 'backcast' algorithm to initialize the state and set the Display to 'on'.
```

opt = oeOptions('InitialState','backcast','Display','on');

```

Alternatively, use dot notation to set the values of opt.
```

opt = oeOptions;
opt.InitialState = 'backcast';
opt.Display = 'on';

```

\section*{oeOptions}
\begin{tabular}{ll}
References & \begin{tabular}{l}
[1] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based \\
Search for Multivariable System Estimates" IFAC World Congress, \\
Prague, 2005.
\end{tabular} \\
& \begin{tabular}{l}
[2] Ljung, L. System Identification: Theory for the User. Upper Saddle \\
River, NJ: Prentice-Hall PTR, 1999.
\end{tabular} \\
See Also & oe | idfilt
\end{tabular}

\section*{Purpose}

Construct operating point specification object for idnlarx model
Syntax \(\quad\) SPEC \(=\) operspec (NLSYS)
Description

\section*{Input \\ Arguments}

\section*{Output Arguments}

SPEC = operspec(NLSYS) creates an operating point specification object for the idnlarx model NLSYS. The object encapsulates constraints on input and output signal values. These specifications are used to determine an operating point of the idnlarx model using findop(idnlarx).
- NLSYS: idnlarx model.
- SPEC: Operating point specification object. SPEC contains the following properties:
- Input: Structure with fields:
- Value: Initial guess for the values of the input signals. Specify a vector of length equal to number of model inputs. Default value: Vector of zeros.
- Min: Minimum value constraint on values of input signals for the model. Default: - Inf for all channels.
- Max: Maximum value constraint on values of input signals for the model. Default: Inf for all channels.
- Known: Specifies when Value is known (fixed) or is an initial guess. Use a logical vector to denote which signals are known (logical 1, or true) and which have to be estimated using findop (logical 0, or false). Default value: true.
- Output: Structure with fields:
- Value: Initial guess for the values of the output signals. Default value: Vector of zeros.
- Min: Minimum value constraint on values of output signals for the model. Default value: - Inf.
- Max: Maximum value constraint on values of output signals for the model. Default value: - Inf.

\section*{See Also \\ findop(idnlarx)}

\section*{Purpose}

Construct operating point specification object for idnlhw model
Syntax \(\quad\) SPEC \(=\) operspec (NLSYS)
Description

\section*{Input \\ Arguments}

\section*{Output Arguments}

SPEC = operspec(NLSYS) creates an operating point specification object for the idnlhw model NLSYS. The object encapsulates constraints on input and output signal values. These specifications are used to determine an operating point of the idnlhw model using findop(idnlhw).
- NLSYS: idnlhw model.
- SPEC: Operating point specification object. SPEC contains the following fields:
- Value: Initial guess for the values of the input signals. Specify a vector of length equal to number of model inputs. Default value: Vector of zeros.
- Min: Minimum value constraint on values of input signals for the model. Default: - Inf for all channels.
- Max: Maximum value constraint on values of input signals for the model. Default: Inf for all channels.
- Known: Specifies when Value is known (fixed) or is an initial guess. Use a logical vector to denote which signals are known (logical 1, or true) and which have to be estimated using findop (logical 0, or false). Default value: true.

\section*{operspec(idnlhw)}

\section*{Note}

1 If the input is completely known ('Known' field is set to true for all input channels), then the initial state values are determined using input values only. In this case, findop (idnlhw) ignores the output signal specifications.

2 If the input values are not completely known, findop(idnlhw) uses the output signal specifications to achieve the following objectives:
- Match target values of known output signals (output channels with Known = true).
- Keep the free output signals (output channels with Known = false) within the specified \(\mathrm{min} / \mathrm{max}\) bounds.

See Also findop(idnlhw)

\section*{Purpose}

Query model order
\[
\text { Syntax } \quad \text { NS }=\operatorname{order}(\text { sys })
\]

NS = order(sys) returns the model order NS. The order of a dynamic system model is the number of poles (for proper transfer functions) or the number of states (for state-space models). For improper transfer functions, the order is defined as the minimum number of states needed to build an equivalent state-space model (ignoring pole/zero cancellations).
order(sys) is an overloaded method that accepts SS, TF, and ZPK models. For LTI arrays, NS is an array of the same size listing the orders of each model in sys.

\section*{Caveat}
order does not attempt to find minimal realizations of MIMO systems. For example, consider this 2-by-2 MIMO system:
```

s=tf('s');
h = [1, 1/(s*(s+1)); 1/(s+2), 1/(s*(s+1)*(s+2))];
order(h)
ans =

```

6
Although h has a 3rd order realization, order returns 6. Use
```

order(ss(h,'min'))

```
to find the minimal realization order.
See Also pole | balred

\section*{Purpose Prediction error for an identified model}
```

Syntax
err = pe(sys,data,K)
err = pe(sys,data,K,__,opt)
[err,x0e,sys_pred] = pe(sys,data, K, __ ,opt)
pe(sys,data, K, __ )

```

\section*{Description}

\section*{Input Arguments}
err \(=\) pe(sys, data, \(K\)) returns the K-step prediction error for the output of the identified model sys. The prediction error is determined by subtracting the K-step ahead predicted response from the measured output. The prediction error is calculated for the time span covered by data. For more information of computation of predicted response, see predict.
err = pe(sys,data,k, \(\qquad\) , opt) returns the prediction error using the option set opt to specify prediction error calculation behavior.
[err, x0e, sys_pred] = pe(sys,data,K,__,opt) also returns the estimated initial state, x 0 e , and a predictor system, sys_pred.
pe(sys,data, K, __) plots the prediction error.

\section*{sys}

Identified model.
data
Measured input-output history.
If sys is a time-series model, which has no input signals, then specify data as an iddata object with no inputs. In this case, you may also specify data as a matrix of the past time-series values.

\section*{K}

Prediction horizon.
Specify K as a positive integer that is a multiple of the data sample-time. Use K = Inf to compute the pure simulation error.

\section*{Default: 1}

\section*{opt}

Prediction options.
opt is an option set that configures the computation of the predicted response. Options that you can specify include:
- handling of initial conditions
- data offsets

Use peOptions to create the options set.

\section*{Output}

Arguments
err
Prediction error.
err is an iddata object.
Outputs up to the time \(t-K\) and inputs up to the time instant \(t\) are used to calculate the prediction error at the time instant \(t\).
When \(\mathrm{K}=\mathrm{Inf}\), the predicted output is a pure simulation of the system.
For multi-experiment data, err contains the prediction error data for each experiment. The time span of the prediction error matches that of the observed data.

\section*{x0e}

Estimated initial states.
\(x 0 e\) is returned only for state-space systems.

\section*{sys_pred}

Predictor system.
sys_pred is a dynamic system. When you simulate sys_pred, using [data.OutputData data. InputData] as the input, it yields an output, \(y p\), such that err. OutputData \(=\) data.OutputData -yp . For
state-space models, xOe is used as the initial condition when simulating sys_pred.
For discrete-time data, sys_pred is always a discrete-time model.
For multi-experiment data, sys_pred is an array of models, with one entry for each experiment.

\section*{Examples Compute Prediction Error for an ARIX Model}

Compute the prediction error for an ARIX model.
Use the error data to compute the variance of the noise source \(e(t)\).
Obtain noisy data.
```

noise = [(1:150)';(151:-1:2)'];

```
load iddata1 z1;
z1.y = z1.y+noise;
noise is a triangular wave that is added to the output signal of \(z 1\), an iddata object.

Estimate an ARIX model for the noisy data.
sys = arx(z1,[2 2 1],'IntegrateNoise',true);
Compute the prediction error of the estimated model.
K = 1;
err = pe(z1,sys,K);
pe computes the 1 -step prediction error for the output of the identified model, sys.

Compute the variance of the noise source, \(e(t)\).
noise_var = err.y'*err.y/(299-nparams(sys)-order(sys));
Compare the computed value with model's noise variance.

\section*{sys.NoiseVariance}

The output of sys.NoiseVariance matches the computed variance.
See Also
```

peOptions | predict | resid | sim | lsim | compare | ar |
arx | n4sid | iddata | idpar

```

\section*{peOptions}

\section*{Purpose Option set for pe}
Syntax \(\quad\)\begin{tabular}{l}
opt \(=\) peOptions \\
opt \(=\) peOptions (Name, Value)
\end{tabular}

\section*{Description}

Input
Arguments
opt \(=\) peOptions creates the default options set for pe.
opt \(=\) peOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{InitialCondition}

Specify the handling of initial conditions.
InitialCondition takes one of the following:
- 'z' - Zero initial conditions.
- 'e' - Estimate initial conditions such that the prediction error for observed output is minimized.
- 'd' - Similar to 'e', but absorbs nonzero delays into the model coefficients.
- x0 - Numerical column vector denoting initial states. For multi-experiment data, use a matrix with \(N e\) columns, where \(N e\) is the number of experiments. Use this option for state-space and nonlinear models only.
- io - Structure with the following fields:
- Input
- Output

Use the Input and Output fields to specify the input/output history for a time interval that starts before the start time of the data used by pe. In case the data used by pe is a time series model, specify Input as []. Use a row vector to denote a constant signal value. The number of columns in Input and Output must always equal the number of input and output channels, respectively. For multi-experiment data, specify io as a struct array of \(N e\) elements, where \(N e\) is the number of experiments.
- x0obj - Specification object created using idpar. Use this object for discrete-time state-space models only. Use xOobj to impose constraints on the initial states by fixing their value or specifying minimum/maximum bounds.

Default: [] (Initial conditions are determined based on how the model was estimated.)

\section*{InputOffset}

Removes offset from time domain input data during prediction error calculation.

Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.
For multi-experiment data, specify InputOffset as an Nu -by- Ne matrix. Here \(N u\) is the number of inputs and \(N e\) is the number of experiments.

Each entry specified by InputOffset will be subtracted from the corresponding input data.

Specify input offset for only time domain data.
Default: []

\section*{OutputOffset}

Removes offset from time domain output data during prediction error calculation.

\section*{peOptions}

Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.

In case of multi-experiment data, specify OutputOffset as a \(N y\)-by- \(N e\) matrix. Here \(N y\) is the number of outputs and \(N e\) is the number of experiments.

Each entry specified by OutputOffset will be subtracted from the corresponding output data.

Specify output offset for only time domain data.

\section*{Default: []}

\section*{OutputWeight}

Weight of output for initial condition estimation.
OutputWeight takes one of the following:
- [] - No weighting is used. This is the same as using eye (Ny) for the output weight, where \(N y\) is the number of outputs.
- 'noise' - Inverse of the noise variance stored with the model.
- matrix - A positive semi-definite matrix of dimension \(N y\)-by- \(N y\), where \(N y\) is the number of outputs.

\section*{Default: []}

\section*{Output Arguments}

\section*{Examples}

\section*{opt}

Option set containing the specified options for pe.

\section*{Create Default Options Set for Prediction Error Calculation}

Create a default options set for pe.
```

opt = peOptions;

```

\section*{Specify Options for Prediction Error Calculation}

Create an options set for pe using zero initial conditions and set the input offset to 5 .
opt = peOptions('InitialCondition','z','InputOffset',5);
Alternatively, use dot notation to set the values of opt.
```

opt = peOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;

```

See Also pe | idpar

\section*{Purpose Prediction error estimate of linear or nonlinear model}
```

Syntax sys = pem(data,init_sys)
sys = pem(data,init_sys,opt)

```

\section*{Description}

Input Arguments
sys = pem(data,init_sys) updates the parameters of init_sys, a linear or nonlinear model, to fit the given estimation data, data. The prediction error minimization algorithm is used to update the free parameters of init_sys.
sys = pem(data,init_sys,opt) configures the estimation options using the option set opt. This syntax is valid for linear models only.

\section*{data}

Estimation data.
Specify data as an iddata or idfrd object containing the measured input/output data.

The input-output dimensions of data and init_sys must match.
You can specify frequency-domain data only when init_sys is a linear model.

\section*{init_sys}

Linear or nonlinear identified model that configures the initial parameterization of sys.
init_sys may be a linear or nonlinear model and must have finite parameter values. You may obtain init_sys by performing an estimation using measured data, or by direct construction. idnlarx and idnlhw models can be obtained only by estimation.

You can configure initial guesses, specify minimum/maximum bounds, and fix or free for estimation any parameter of init_sys.
- For linear models, use the Structure property. For more information, see "Imposing Constraints on the Values of Model Parameters".
- For nonlinear models grey-box models, use the InitialStates and Parameters properties. Parameter constraints cannot be prescribed for nonlinear ARX and Hammerstein-Wiener models.

\section*{opt}

Estimation options.
opt is an option set that specifies:
- estimation algorithm settings
- handling of the estimating focus
- initial conditions
- data offsets.

You can specify an option set only when init_sys is a linear model.
You must create an option set using one of the following functions. The function used to create the option set depends on the initial model type.
\begin{tabular}{l|l}
\hline Model Type & Option Set Function \\
\hline idss & ssestOptions \\
\hline idtf & tfestOptions \\
\hline idproc & procestOptions \\
\hline idpoly & polyestOptions \\
\hline idgrey & greyestOptions \\
\hline
\end{tabular}

\section*{Output \\ Arguments}
sys
Identified model.
sys is obtained by estimating the free parameters of init_sys using the prediction error minimization algorithm.

\section*{Examples Refine Estimated State-Space Model}

Estimate a discrete-time state-space model using the subspace method and refine it by minimizing the prediction error.

Estimate a discrete-time state-space model using n4sid, which applies the subspace method.
```

load iddata7 z7;
z7a = z7(1:300);
opt = n4sidOptions('Focus','simulation');
init_sys = n4sid(z7a,4,opt);

```
init_sys, the estimated state-space model, provides a \(73.85 \%\) fit to the estimation data (see init_sys.Report.Fit.FitPercent). Use pem to improve the closeness of the fit.

Obtain a refined estimated model by using pem.
sys = pem(z7a,init_sys);
Analyze the results.
```

compare(z7a,sys,init_sys);

```

sys refines the estimated model and provides a \(74.54 \%\) fit to the estimation data (see init_sys.Report.Fit.FitPercent).

\section*{Configure Estimation Using Process Model}

Create a process model structure and update its parameter values to minimize prediction error.

Create a process model and initialize its coefficients.
```

init_sys = idproc('P2UDZ');
init_sys.Kp = 10;
init_sys.Tw = 0.4;
init_sys.Zeta = 0.5;
init_sys.Td = 0.1;
init_sys.Tz = 0.01;

```

Use init_sys, a process model created by direct construction, to configure the estimation by pem. The \(K p, T w, Z e t a, T d\) and \(T z\) coefficients of init_sys are configured with their initial guesses.

Estimate a prediction error minimizing model using measured data.
```

load iddata1 z1;
opt = procestOptions('Display','on','SearchMethod','lm');
sys = pem(z1,init_sys,opt);

```

As init_sys is an idproc model, use the corresponding option set command, procestOptions to create an estimation configuring option set. The estimation is set to use the Levenberg-Marquardt search method ('SearchMethod', 'lm') and will display the iterative search results during estimation ('Display', 'on').
sys is an estimated process model, which provides a \(70.63 \%\) fit to the measured data (see sys.Report.Fit.FitPercent).

\section*{Estimate Nonlinear Grey-Box Model}

Estimate the parameters of a nonlinear grey box model to fit DC motor data.

Load the experimental data, and specify the signal attributes such as start time, and units.
```

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotor
data = iddata(y, u, 0.1);
set(data,'Tstart',0,'TimeUnit','s');

```

Configure the nonlinear grey-box model (idnlgrey) model.
For this example, use the shipped file dcmotor_m.m. To view this file, enter edit dcmotor_m.m at the MATLAB command prompt.
```

file_name = 'dcmotor_m';
order = [2 1 2];
parameters = [1; 0.28];
initial_states = [0; 0];

```
```

Ts = 0;
init_sys = idnlgrey(file_name,order,parameters,initial_states,Ts);
set(init_sys,'TimeUnit','s');
setinit(init_sys,'Fixed',{false false});
init_sys is a nonlinear grey-box model with its structure described by
dcmotor_m.m. The model has one input, two outputs and two states, as
specified by order.
setinit(init_sys,'Fixed',{false false}) specifies that the initial
states of init_sys are free estimation parameters.
Estimate the model parameters and initial states.

```
```

sys = pem(data,init_sys);

```
```

sys = pem(data,init_sys);

```
sys is an idnlgrey model, which encapsulates the estimated parameters and their covariance.

Analyze the estimation result.
```

compare(data,sys,init_sys);

```

sys provides a \(98.34 \%\) fit to the estimated data.

\section*{Algorithms}

PEM uses numerical optimization to minimize the cost function, a weighted norm of the prediction error, defined as follows for scalar outputs:
\[
V_{N}(G, H)=\sum_{t=1}^{N} e^{2}(t)
\]
where \(e(t)\) is the difference between the measured output and the predicted output of the model. For a linear model, this error is defined by the following equation:
\[
e(t)=H^{-1}(q)[y(t)-G(q) u(t)]
\]
\(e(t)\) is a vector and the cost function \(V_{N}(G, H)\) is a scalar value. The subscript \(N\) indicates that the cost function is a function of the number of data samples and becomes more accurate for larger values of \(N\). For multiple-output models, the previous equation is more complex.

\section*{Alternatives You can use model type specific estimation commands for all model} types, except for idnlgrey models. These commands achieve the same results as pem when an initial model of matching type is provided as input argument. The following table summarizes the dedicated estimation commands for each model type.
\begin{tabular}{l|l}
\hline Function & Model Type \\
\hline ssest & idss \\
\hline tfest & idtf \\
\hline polyest & idpoly \\
\hline procest & idproc \\
\hline greyest & idgrey \\
\hline nlarx & idnlarx \\
\hline nlhw & idnlhw \\
\hline
\end{tabular}

\section*{See Also}
```

idtf | idpoly | idss | idgrey | idproc | armax | oe | bj |
n4sid | ssest | tfest | procest | greyest | nlhw | nlarx |
resid | compare | idfilt | iddata | idfrd | tfestOptions
procestOptions | polyestOptions | greyestOptions |
ssestOptions

```
Purpose Level of excitation of input signals
```

Syntax
Ped = pexcit(Data)
[Ped.Maxnr] = pexcit(Data,Maxnr,Threshold)

```

Description Data is an iddata object with time- or frequency-domain signals.
Ped is the degree or order of excitation of the inputs in Data. A row vector of integers with as many components as there are inputs in Data. The intuitive interpretation of the degree of excitation in an input is the order of a model that the input is capable of estimating in an unambiguous way.

Maxnr is the maximum order tested. Default is \(\min (N / 3,50)\), where \(N\) is the number of input data.
Threshold is the threshold level used to measure which singular values are significant. Default is 1e-9.

References Section 13.2 in Ljung (1999).
```

See Also advice | iddata | feedback | idnlarx

```
```

Purpose Plot iddata or model objects
Syntax
plot(data)
plot(d1,...,dN)
plot(d1,PlotStyle1,...,dN,PlotStyleN)
plot(model)

```

See Also iddata

Description
data is the output-input data to be graphed, given as an iddata object. A split plot is obtained with the outputs on top and the inputs at the bottom.

One plot for each I/O channel combination is produced. Pressing the Enter key advances the plot. Typing Ctrl+C aborts the plotting in an orderly fashion.

To plot a specific interval, use plot (data (200:300)). To plot specific input/output channels, use plot(data(:,ky,ku)), consistent with the subreferencing of iddata objects.

If data.intersample = 'zoh', the input is piecewise constant between sampling points, and it is then graphed accordingly.

To plot severaliddata sets \(d 1, \ldots, d N\), use \(\operatorname{plot}(d 1, \ldots, d N) . I / O\) channels with the same experiment name, input name, and output name are always plotted in the same plot.

With PlotStyle, the color, line style, and marker of each data set can be specified
plot(d1,'y:*',d2,'b')
just as in the regular plot command.
model is an idnlarx, or idnlhw model.

\section*{Purpose Compute poles of dynamic system}

\section*{Syntax pole(sys)}

Description

Algorithms

Limitations

See Also
pole(sys) computes the poles p of the SISO or MIMO dynamic system model sys.

If sys has internal delays, poles are obtained by first setting all internal delays to zero (creating a zero-order Padé approximation) so that the system has a finite number of zeros. For some systems, setting delays to 0 creates singular algebraic loops, which result in either improper or ill-defined, zero-delay approximations. For these systems, pole returns an error. This error does not imply a problem with the model sys itself.

For state-space models, the poles are the eigenvalues of the \(A\) matrix, or the generalized eigenvalues of \(A-\lambda E\) in the descriptor case.

For SISO transfer functions or zero-pole-gain models, the poles are simply the denominator roots (see roots).

For MIMO transfer functions (or zero-pole-gain models), the poles are computed as the union of the poles for each SISO entry. If some columns or rows have a common denominator, the roots of this denominator are counted only once.

Multiple poles are numerically sensitive and cannot be computed to high accuracy. A pole \(\lambda\) with multiplicity \(m\) typically gives rise to a cluster of computed poles distributed on a circle with center \(\lambda\) and radius of order
\[
\rho \approx \varepsilon^{1 / m}
\]
where \(\varepsilon\) is the relative machine precision (eps).
```

damp | esort | dsort | pzmap | zero

```

\section*{Purpose}

Access polynomial coefficients and uncertainties of identified model

\section*{Syntax}
```

[A,B,C,D,F] = polydata(sys)
[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(sys)
__ = polydata(sys,J1,···,JN)
___ = polydata(___,'cell')

```

\section*{Description}
\([A, B, C, D, F]=\) polydata(sys) returns the coefficients of the polynomials A, B, C, D, and F that describe the identified model sys. The polynomials describe the idpoly representation of sys as follows.
- For discrete-time sys:
\[
A\left(q^{-1}\right) y(t)=\frac{B\left(q^{-1}\right)}{F\left(q^{-1}\right)} u(t-n k)+\frac{C\left(q^{-1}\right)}{D\left(q^{-1}\right)} e(t) .
\]
\(u(t)\) are the inputs to sys. \(y(t)\) are the outputs. \(e(t)\) is a white noise disturbance.
- For continuous-time sys:
\[
A(s) Y(s)=\frac{B(s)}{F(s)} U(s) e^{-\tau s}+\frac{C(s)}{D(s)} E(s) .
\]
\(U(s)\) are the Laplace transformed inputs to sys. \(Y(s)\) are the Laplace transformed outputs. \(E(s)\) is the Laplace transform of a white noise disturbance.

If sys is an identified model that is not an idpoly model, polydata converts sys to idpoly form to extract the polynomial coefficients.
\([A, B, C, D, F, d A, d B, d C, d D, d F]=\) polydata(sys) also returns the uncertainties \(\mathrm{dA}, \mathrm{dB}, \mathrm{dC}, \mathrm{dD}\), and dF of each of the corresponding polynomial coefficients of sys.
___ = polydata(sys,J1, ..., JN) returns the polynomial coefficients for the \(\mathrm{J} 1, \ldots, \mathrm{JN}\) entry in the array sys of identified models.
\(\ldots \quad\) _ polydata(___ , cell') returns all polynomials as cell arrays of double vectors, regardless of the input and output dimensions of sys.

\section*{Input}

Arguments

\section*{Output Arguments}

\section*{sys}

Identified model or array of identified models. sys can be continuous-time or discrete-time. sys can be SISO or MIMO.

\section*{J1,....JN}

Indices selecting a particular model from an N -dimensional array sys of identified models.

\section*{A,B,C,D,F}

Polynomial coefficients of the idpoly representation of sys.
- If sys is a SISO model, each of A, B, C, D, and F is a row vector. The length of each row vector is the order of the corresponding polynomial.
- For discrete-time sys, the coefficients are ordered in ascending powers of \(q^{-1}\). For example, \(B=\left[\begin{array}{lll}1 & -4 & 9\end{array}\right]\) means that \(B\left(q^{-1}\right)=1-4 q^{-1}+9 q^{-2}\).
- For continuous-time sys, the coefficients are ordered in descending powers of \(s\). For example, B \(=\left[\begin{array}{lll}1 & -4 & 9\end{array}\right]\) means that \(B(s)=s^{2}-4 s+9\).
- If sys is a MIMO model, each of \(A, B, C, D\), and F is a cell array. The dimensions of the cell arrays are determined by the input and output dimensions of sys as follows:
- A \(-N_{y}\)-by- \(N_{y}\) cell array
- B, F \(-N_{y}-\mathrm{by}-N_{u}\) cell array
- C, D - \(N_{y}\)-by- 1 cell array
\(N_{y}\) is the number of outputs of sys, and \(N_{u}\) is the number of inputs.
Each entry in a cell array is a row vector that contains the coefficients of the corresponding polynomial. The polynomial coefficients are ordered the same way as the SISO case.

\section*{dA,dB,dC,dD,dF}

Uncertainties in the estimated polynomial coefficients of sys.
\(d A, d B, d C, d D\), and \(d F\) are row vectors or cell arrays whose dimensions exactly match the corresponding \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\), and F outputs.

Each entry in \(\mathrm{dA}, \mathrm{dB}, \mathrm{dC}, \mathrm{dD}\), and dF gives the standard deviation of the corresponding estimated coefficient. For example, dA\{1,1\}(2) gives the standard deviation of the estimated coefficient returned at \(A\{1,1\}(2)\).

\section*{Examples}

\section*{Polynomial Coefficients of Identified Model and Uncertainties}

Extract the polynomial coefficients, and corresponding standard deviations, of a two-input, two-output identified idpoly model.

Load system data and estimate a 2 -input, 2 -output model.
```

load iddata1 z1
load iddata2 z2
data = [z1 z2(1:300)];
nk = [1 1; 1 0];
na = [2 2; 1 3];
nb = [2 3; 1 4];
nc = [2;3];
nd = [1;2];
nf = [2 2;2 1];
sys = polyest(data,[na nb nc nd nf nk]);

```

The data loaded into z 1 and z 2 is discrete-time iddata with a sampling time of 0.1 s . Therefore, sys is a two-input, two-output discrete-time idpoly model of the form:
\[
A\left(q^{-1}\right) y(t)=\frac{B\left(q^{-1}\right)}{F\left(q^{-1}\right)} u(t-n k)+\frac{C\left(q^{-1}\right)}{D\left(q^{-1}\right)} e(t)
\]

The inputs to polyest set the order of each polynomial in sys.
Use polydata to access the estimated polynomial coefficients of sys and the uncertainties in those coefficients.
```

[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(sys);

```

The outputs A, B, C, D, and F are cell arrays of coefficient vectors or arrays. The dimensions of the cell arrays are determined by the input and output dimensions of sys. For example, examine A.

\section*{A}
\(A=\)
\begin{tabular}{ll}
{\([1 \times 3\) double] } & {\([1 \times 3\) double] } \\
{\([1 \times 2\) double] } & {\([1 \times 4\) double] }
\end{tabular}

A is a 2-by-2 cell array because sys has two outputs. Each entry in A is a row vector containing identified polynomial coefficients. For example, examine the second diagonal entry in A .

A\{2,2\}
ans =
```

    1.0000 -0.8682 -0.2244 0.4467
    ```

For discrete-time sys, the coefficients are arranged in order of increasing powers of \(q^{-1}\). Therefore, \(\mathrm{A}\{2,2\}\) corresponds to the polynomial \(1-0.8682 q^{-1}-0.2244 q^{-2}+0.4467 q^{-3}\).

Examine the uncertainties dA in the estimated coefficients of A.
dA
\(d A=\)
[1x3 double] [1x3 double]

\section*{[1x2 double] [1x4 double]}

The dimensions of dA match those in A. Each entry in dA gives the standard deviation of the corresponding estimated polynomial coefficient of A. For example, examine the uncertainties of the second diagonal entry in \(A\).
dA \(\{2,2\}\)
ans =
\[
\begin{array}{llll}
0 & 0.2806 & 0.4204 & 0.2024
\end{array}
\]

The lead coefficient of \(A\{2,2\}\) is fixed at 1 , and therefore has no uncertainty. The remaining entries in \(\mathrm{dA}\{2,2\}\) are the uncertainties in the \(q^{-1}, q^{-2}\), and \(q^{-3}\) coefficients, respectively.
```

See Also
idpoly | iddata | tfdata | zpkdata | idssdata | polyest

```

Purpose
Estimate polynomial model using time or frequency domain data
Syntax
sys = polyest(data,[na nb nc nd nf nk])
sys = polyest(data,[na nb nc nd nf nk],Name, Value)
sys = polyest(data,init_sys)
sys = polyest(data, __, opt)

\section*{Description}

Tips
sys = polyest(data, [na nb nc nd nf nk]) estimates a polynomial model, sys, using the time or frequency domain data, data.
sys is of the form
\[
A(q) y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} e(t)
\]

Here, \(A(q), B(q), F(q), C(q)\) and \(D(q)\) are polynomial matrices; \(u(t)\) is the input; nk is the input delay; \(y(t)\) is the output; and \(e(t)\) is the disturbance signal. na ,nb, nc, nd and nf are the orders of the \(A(q), B(q), C(q), D(q)\) and \(F(q)\) polynomials, respectively.
sys = polyest(data,[na nb nc nd nf nk],Name, Value) estimates a polynomial model with additional attributes of the estimated model structure specified by one or more Name, Value pair arguments.
sys = polyest(data,init_sys) estimates a polynomial model using the dynamic system init_sys to configure the initial parameterization.
sys = polyest(data, __ , opt) estimates a polynomial model using the option set, opt, to specify estimation behavior.
- In most situations, all the polynomials of an identified polynomial model are not simultaneously active. Set one or more of the orders \(\mathrm{na}, \mathrm{nc}, \mathrm{nd}\) and nf to zero to simplify the model structure.
For example, you can create an Output Error (OE) model by specifying na, nc and nd as zero.
- For a simplified polynomial model, you may use a dedicated estimating function, such as oe, bj, arx and armax.

\section*{Input Arguments}

\section*{data}

Estimation data.
For time domain estimation, data is an iddata object containing the input and output signal values.

You can estimate only discrete-time models using time domain data. For estimating continuous-time models using time domain data, see tfest.

For frequency domain estimation, data can be one of the following:
- recorded frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency'

It may be more convenient to use oe or tfest to estimate a model for frequency domain data.

\section*{na}

Order of the polynomial \(A(q)\).
na is an \(N y\)-by- \(N u\) matrix of nonnegative integers. \(N y\) is the number of outputs and \(N u\) is the number of inputs.
na must be zero if you are estimating a model using frequency domain data.

\section*{nb}

Order of the polynomial \(B(q)+1\).
nb is an \(N y\)-by- \(N u\) matrix of nonnegative integers. \(N y\) is the number of outputs and \(N u\) is the number of inputs.
nc
Order of the polynomial \(C(q)\).

\section*{polyest}
nc is a column vector of nonnegative integers of length \(N y . N y\) is the number of outputs.
nc must be zero if you are estimating a model using frequency domain data.
nd
Order of the polynomial \(D(q)\).
nd is a column vector of nonnegative integers of length \(N y . N y\) is the number of outputs.
nd must be zero if you are estimating a model using frequency domain data.
nf
Order of the polynomial \(F(q)\).
nf is an \(N y\)-by- Nu matrix of nonnegative integers. \(N y\) is the number of outputs and \(N u\) is the number of inputs.

\section*{nk}

Input-output delay expressed as fixed leading zeros of the \(B\) polynomial.
Specify nk as a matrix of nonnegative integers.
nk must be zero when estimating a continuous-time model.

\section*{opt}

Estimation options.
opt is an options set that specifies the following:
- estimation objective
- handling of initial conditions
- numerical search method to be used in estimation

Use polyestOptions to create the options set.

\section*{init_sys}

Dynamic system that configures the initial parameterization of sys.
If init_sys is an idpoly model, polyest uses the parameters and constraints defined in init_sys as the initial guess for estimating sys.

If init_sys is not an idpoly model, the software first converts init_sys to an identified polynomial. polyest uses the parameters of the resulting model as the initial guess for estimation.

Use the Structure property of init_sys to configure initial guesses and constraints for \(A(q), B(q), F(q), C(q)\) and \(D(q)\).

To specify an initial guess for, say, the \(A(q)\) term of init_sys, set init_sys.Structure.a.Value as the initial guess.

To specify constraints for, say, the \(B(q)\) term of init_sys:
- set init_sys.Structure.b.Minimum to the minimum \(B(q)\) coefficient values
- set init_sys.Structure.b.Maximum to the maximum \(B(q)\) coefficient values
- set init_sys.Structure.b.Free to indicate which \(B(q)\) coefficients are free for estimation

You can similarly specify the initial guess and constraints for the other polynomials.

If opt is not specified, and init_sys was created by estimation, then the estimation options from init_sys.Report.OptionsUsed are used.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

\section*{ioDelay}

Transport delays. ioDelay is a numeric array specifying a separate transport delay for each input/output pair.
For continuous-time systems, specify transport delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify transport delays as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a Ny-by-Nu array, where each entry is a numerical value representing the transport delay for the corresponding input/output pair. You can also set ioDelay to a scalar value to apply the same delay to all input/output pairs.

Default: 0 for all input/output pairs

\section*{InputDelay}

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay \(=3\) means a delay of three sampling periods.
For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

\section*{IntegrateNoise}

Logical vector specifying integrators in the noise channel.
IntegrateNoise is a logical vector of length \(N y\), where \(N y\) is the number of outputs.

Setting IntegrateNoise to true for a particular output results in the model:
\[
A(q) y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} \frac{e(t)}{1-q^{-1}}
\]

Where, \(\frac{1}{1-q^{-1}}\) is the integrator in the noise channel, \(e(t)\).
Use IntegrateNoise to create an ARIMAX model.
For example,
```

load iddata1 z1;
z1 = iddata(cumsum(z1.y),cumsum(z1.u),z1.Ts,'InterSample','foh');
sys = polyest(z1, [2 2 2 0 0 1],'IntegrateNoise',true);

```

\section*{Output \\ sys}

Arguments
Estimated polynomial model.
sys is an idpoly model.
If data. Ts is zero, sys is a continuous-time model representing:
\[
Y(s)=\frac{B(s)}{F(s)} U(s)+E(s)
\]

Here, \(Y(s), U(s)\) and \(E(s)\) are the Laplace transforms of the time domain signals \(y(t), u(t)\) and \(e(t)\). respectively.

\section*{Examples}

Identify a polynomial model of ARIMAX structure. Use zero values for the orders of the inactive polynomials, \(F\) and \(D\) in this case.
```

load iddata1 z1;
% integrated data
data = iddata(cumsum(z1.y),cumsum(z1.u),z1.Ts,'InterSample','foh');
na = 2; nb = 2; nc = 2; nd = 0; nf = 0; nk = 1;
sys = polyest(data, [na nb nc nd nf nk], true); % "ARIMAX" form

```

Estimate a polynomial model with redundant parameterization; all the polynomials \((A, B, C, D\), and \(F\)) are active.
```

load iddata2 z2
na = 2; nb = 2; nc = 3; nd = 3; nf = 2; nk = 1;
sys = polyest(z2, [na nb nc nd nf nk]);

```

Estimate a multi-output ARMAX model for a data set obtained by concatenating two single-input, single-output data sets.
```

load iddata1 z1
load iddata2 z2
data = [z1, z2(1:300)];

```
data is a data set with 2 inputs and 2 outputs. The first input affects only the first output. Similarly, the second input affects only the second output.

In the estimated ARMAX model, the cross terms, modelling the effect of the first input on the second output and vice-versa, should be negligible. If higher orders are assigned to those dynamics, their estimations will show a high level of uncertainty.
```

na = [2 2; 2 2]; nb = [2 2; 3 4]; nk = [1 1; 0 0];
nc = [2;2]; nd = [0;0]; nf = [0 0; 0 0];
sys = polyest(data, [na nb nc nd nf nk])

```

The \(F\) and \(D\) polynomials of sys are inactive.
Analyze the results.
h = bodeplot(model);
showConfidence (h,3)
The responses from the cross terms show larger uncertainty.

\author{
Alternative \\ \section*{See Also}
}
- To estimate a polynomial model using time-series data, use ar.
- Use polyest to estimate a polynomial of arbitrary structure. If the structure of the estimated polynomial model is known, that is, you know which polynomials will be active, then use the appropriate dedicated estimating function. For examples, for an ARX model, use arx. Other polynomial model estimating functions include, oe, armax, and bj.
- To estimate a continuous-time transfer function, use tfest. You can also use oe, but only with continuous-time frequency-domain data.
```

polyestOptions | idpoly | ar | arx | armax | oe | bj |

```
tfest | procest | ssest | iddata | pem | forecast

\section*{polyestOptions}

\section*{Purpose Option set for polyest}
```

Syntax opt = polyestOptions
opt = polyestOptions(Name,Value)

```

\section*{Description}

\section*{Input \\ Arguments}
opt \(=\) polyestOptions creates the default options set for polyest.
opt \(=\) polyestOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{InitialCondition}

Specify how initial conditions are handled during estimation.
InitialCondition takes one of the following values:
- 'zero' - The initial condition is set to zero.
- 'estimate' - The initial state is treated as an independent estimation parameter.
- 'backcast' - The initial state is estimated using the best least squares fit.
- 'auto ' - The software chooses the method to handle initial states based on the estimation data.

Default: 'auto'

\section*{Focus}

Defines how the errors \(e\) between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus can take the following values:
- 'simulation' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input spectrum has the most power.
This method provides a stable model.
- 'prediction' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. This minimizes the one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this is the optimal weighting function. However, this method neglects the approximation aspects (bias) of the fit. Might not result in a stable model. Use 'stability ' when you want to ensure a stable model.
- 'stability' - Same as 'prediction' but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
[wl,wh]
[w1l,w1h;w2l,w2h;w31,w3h;...]
where \(w l\) and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The \(\{A, B, C, D\}\) format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.
- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

\section*{EstCovar}

Controls whether parameter covariance data is generated or not.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

Default: true

\section*{Display}

Specifies whether estimation progress should be displayed.
Display requires one of the following strings:
- ' on ' - Information on model structure and estimation results are displayed in a progress viewer window
- 'off' - No progress or results information is displayed

\section*{Default: 'off' \\ InputOffset}

Removes offset from time domain input data during estimation.
Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.

Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a Nu -by- Ne matrix. \(N u\) is the number of inputs, and \(N e\) is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

\section*{Default: []}

\section*{OutputOffset}

Removes offset from time domain output data during estimation.
Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.

Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a Ny -by- Ne matrix. \(N y\) is the number of outputs, and \(N e\) is the number of experiments. Each entry specified by OutputOffset is subtracted from the corresponding output data.

\section*{Default: []}

\section*{SearchMethod}

Search method used for iterative parameter estimation.
SearchMethod is a string that can take the following values:
- gn - The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max (size(J)) *norm(J)

\section*{polyestOptions}
are discarded when computing the search direction. \(J\) is the Jacobian matrix. The Hessian matrix is approximated by \(J^{T} J\). If there is no improvement in this direction, the function tries the gradient direction.
- gna - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [2]. Eigenvalues less than gamma*max (sv) of the Hessian are neglected, where su are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see Advanced for more information) and is increased by the factor LMStep each time the search fails to find a lower value of the criterion in less than 5 bisections. It is decreased by the factor 2*LMStep each time a search is successful without any bisections.
- \(1 m\) - Uses the Levenberg-Marquardt method. This means that the next parameter value is - pinv (\(\mathrm{H}+\mathrm{d} * \mathrm{I}\)) *grad from the previous one, where \(H\) is the Hessian, I is the identity matrix, and grad is the gradient. \(d\) is a number that is increased until a lower value of the criterion is found.
- lsqnonlin - Uses lsqnonlin optimizer from Optimization Toolbox software. You must have Optimization Toolbox installed to use this option. This search method can only handle the Trace criterion.
- grad - The steepest descent gradient search method.
- auto - A choice among the above is made in the algorithm. The descent direction is calculated using gn, gna, lm and grad successively, in that order, at each iteration until a sufficient reduction in error is achieved.

\section*{Default: 'auto'}

\section*{SearchOption}

SearchOption is an options set for the search algorithm with the fields:

SearchMestrodhOption
gn, gna,l \(1 \mathrm{\bullet}\), Tolerance - Minimum percentage difference (divided grad by 100) between the current value of the loss function and and its expected improvement after the next iteration.
auto When the percentage of expected improvement is less than Tolerance, the iterations are stopped. The estimate of the expected loss-function improvement at the next iteration is made based on the Gauss-Newton vector computed for the current parameter value.

Default: 0.01
- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter \(=0\) returns the result of the startup procedure.
Use sys.Report.Termination.Iterations to get the actual number of iterations during an estimation, where sys is an idtf model.

Default: 20
- Advanced - Search settings:
- GnPinvConst - Singular values of the Jacobian that are smaller than GnPinvConst*max(size(J)*norm(J)*eps are discarded when computing the search direction and SearchMethod is 'gn'.
GnPinvConst must be a positive real value.
Default: 10000
- InitGnaTol - Initial value of gamma when SearchMethod is 'gna'.
Default: . 0001

\section*{SearchMertrodhOption}
- LMStartValue - Starting value of search-direction length \(d\) in the Levenberg-Marquardt method. Applicable when SearchMethod is ' 1 m '.

Default: . 001
- LMStep - Size of the Levenberg-Marquardt step. The next value of the search-direction length \(d\) in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is 'lm'.

Default: 2
- MaxBisections - Maximum number of bisections used by the line search along the search direction.

Default: 25
- MaxFunEvals - Iterations are stopped if the number of calls to the model file exceeds this value.

MaxFunEvals must be a positive integer value.
Default: Inf
- MinParChange - Smallest parameter update allowed per iteration

MinParChange must be a positive, real value.
Default: 0
- RelImprovement - Iterations are stopped if the relative improvement of the criterion function is less than RelImprovement.

RelImprovement must be a positive integer value.
Default: 0

\section*{SearchMertrodhOption}
- StepReduction - Suggested parameter update is reduced by the factor StepReduction after each try until either MaxBisections tries are completed or a lower value of the criterion function is obtained.

StepReduction must be a positive, real value that is greater than 1.

Default: 2
lsqnonlit TolFun - Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values.

The value of TolFun is the same as that of sys.SearchOption.Advanced.TolFun.

Default: 1e-5
- TolX - Termination tolerance on the estimated parameter values.
The value of TolX is the same as that of sys.SearchOption.Advanced.TolX.
Default: 1e-6
- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as TolFun etc..

The value of Maxiter is the same as that of sys.SearchOption.Advanced.MaxIter.

Default: 20
- Advanced - Options set for lsqnonlin.

For more information, see "Optimization Options".

\section*{SearchMEthoodhOption}

Use optimset('lsqnonlin') to create an options set for lsqnonlin and then modify it to specify its various options.

\section*{Advanced}

Advanced is a structure with the following fields:
- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. (See the section about choosing a robust norm in the chapter "Computing the Estimate" of [1].) ErrorThreshold \(=0\) disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, ErrorThreshold is set to zero. ErrorThreshold = 1.6 is a good choice for estimation when data contains outliers.

Default: 0
- MaxSize - Specifies the maximum number of elements in a segment when input-output data is split into segments.
MaxSize must be a positive integer.
Default: 250000
- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:
- s-Specifies the location of the right-most pole to test the stability of continuous-time models. A model is considered stable when its right-most pole is to the left of \(s\).
Default: 0
- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance \(z\) from the origin.

Default: 1+sqrt(eps)
- AutoInitThreshold - Specifies when to automatically estimate the initial conditions.

When InitialCondition = 'Auto', the initial condition is estimated when the ratio of the prediction-error norm with a zero initial condition to the norm with an estimated initial condition exceeds AutoInitialState.

Default: 1.05

\section*{Output opt}

Arguments Option set containing the specified options for polyest.

\section*{Definitions}

\section*{Examples Create Default Options Set for Polynomial Estimation}

Create a default options set for polyest.
opt = polyestOptions;

\section*{Specify Options for Polynomial Estimation}

Create an options set for polyest using the 'stability' for Focus and set the Display to 'on'.
opt = polyestOptions('Focus','stability','Display','on');
Alternatively, use dot notation to set the values of opt.
```

opt = polyestOptions;
opt.Focus = 'stability';
opt.Display = 'on';

```

\author{
References [1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999. \\ [2] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for Multivariable System Estimates". Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005. Oxford, UK: Elsevier Ltd., 2005.
}

See Also polyest

\section*{Purpose Powers and products of standard regressors}

\section*{Syntax \\ Description}
\(R=\) polyreg(model)
\(R=\) polyreg(model,'MaxPower', \(n\))
\(R\) = polyreg(model,'MaxPower',n,'CrossTerm',CrossTermVal)

\section*{Examples}
\(R=\) polyreg(model) creates an array \(R\) of polynomial regressors up to the power 2 . If a model order has input \(u\) and output \(y, n a=n b=2\), and delay \(n k=1\), polynomial regressors are \(y(t-1)^{2}, u(t-1)^{2}, y(t-2)^{2}, u(t-2)^{2}\). model is an idnlarx object. You must add these regressors to the model by assigning the CustomRegressors model property or by using addreg.
\(R=\) polyreg(model,'MaxPower',\(n\)) creates an array \(R\) of polynomial regressors up to the power \(n\). Excludes terms of power 1 and cross terms, such as \(y(t-1)^{*} u(\mathrm{t}-1)\).
\(R=\) polyreg(model,'MaxPower', \(n, '\) CrossTerm',CrossTermVal) creates an array \(R\) of polynomial regressors up to the power \(n\) and includes cross terms (products of standards regressors) when CrossTermVal is 'on'. By default, CrossTermVal is 'off'.

Create polynomial regressors up to order 2:
```

\% Estimate a nonlinear ARX model with
\% na=nb=2 and nk=1.
\% Nonlinearity estimator is wavenet.
load iddata1
m = nlarx(z1,[2 2 1])
\% Create polynomial regressors:
R = polyreg(m);
\% Estimate model:
m = nlarx(z1,[2 2 1],'wavenet','CustomReg',R);
\% View all model regressors (standard and custom):
getreg(m)

```

Create polynomial regressors up to order 3:
\(R=\) polyreg(m,'MaxPower', 3, 'CrossTerm', \({ }^{\prime}\) on')

If the model \(m\) that has three standard regressors \(a, b\) and \(c, R\) includes \(a^{\wedge} 2, b^{\wedge} 2, c^{\wedge} 2, a^{*} b, a^{*} c, b^{*} c, a^{\wedge} 2^{*} b, a^{\wedge} 2^{*} c, a^{*} b^{\wedge} 2, a^{*} b^{*} c, a^{*} c^{\wedge} 2, b^{\wedge} 2^{*} c\), \(b^{*} c^{\wedge} 2, a^{\wedge} 3, b^{\wedge} 3\), and \(c^{\wedge} 3\).

\section*{See Also \\ addreg | customreg | getreg | idnlarx | nlarx}

How To . "Identifying Nonlinear ARX Models"

Tips
poly1d Properties estimator for Hammerstein-Wiener models. object of \(n\)th degree. estimator object with coefficients C. the poly1d object \(p\) at \(x\). single-variable polynomial function of \(x\) :
\[
F(x)=c(1) x^{n}+c(2) x^{(n-1)}+\ldots+c(n) x+c(n+1)
\] object property values. For example:

\section*{Purpose}

Class representing single-variable polynomial nonlinear estimator for Hammerstein-Wiener models
```

Syntax

```
Syntax
t=poly1d('Degree',n)
t=poly1d('Degree',n)
t=poly1d('Coefficients',C)
t=poly1d('Coefficients',C)
t=poly1d(n)
```

t=poly1d(n)

```
poly1d is an object that stores the single-variable polynomial nonlinear

You can use the constructor to create the nonlinearity object, as follows:
t=poly1d('Degree', n) creates a polynomial nonlinearity estimator
t=poly1d('Coefficients', C) creates a polynomial nonlinearity
\(t=p o l y 1 d(n)\) a polynomial nonlinearity estimator object of \(n\)th degree.
Use evaluate \((p, x)\) to compute the value of the function defined by

Use poly1d to define a nonlinear function \(y=F(x)\), where \(F\) is a

After creating the object, you can use get or dot notation to access the
```

% List all property values
get(p)
% Get value of Coefficients property
p.Coefficients

```
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Degree & \begin{tabular}{l}
Positive integer specifies the degree of the polynomial \\
Default=1.
\end{tabular} \\
& For example: \\
& poly1d('Degree' ' 3)
\end{tabular}

\section*{Examples}

Use poly1s to specify the single-variable polynomial nonlinearity estimator in Hammerstein-Wiener models. For example:
m=nlhw(Data,Orders, poly1d('deg',3), []);
where 'deg' is an abbreviation for the property 'Degree'.

\section*{See Also \\ nlhw}

\section*{Purpose}

K-step ahead prediction

\section*{Syntax}
```

yp = predict(sys,data,K)
yp = predict(sys,data,K,opt)
[yp,x0e,sys_pred] = predict(sys,data,K,___)
predict(sys,data,K___)

```
yp = predict(sys,data,K) predicts the output of an identified model,
sys, K steps ahead using input-output data history from data.
yp = predict(sys,data, K,opt) predicts the output using the option set opt to configure prediction behavior.
[yp,x0e,sys_pred] = predict(sys,data, K, __) also returns the estimated initial state, xOe , and a predictor system, sys_pred. predict(sys,data, K__) plots the predicted output.

An important use of predict is to evaluate a model's properties in the mid-frequency range. Simulation with sim (which conceptually corresponds to \(k=i n f)\) can lead to levels that drift apart, since the low-frequency behavior is emphasized. One step-ahead prediction is not a powerful test of the model's properties, since the high-frequency behavior is stressed. The trivial predictor \(\hat{y}(t)=y(t-1)\) can give good predictions in case the sampling of the data is fast.

Another important use of predict is to evaluate time-series models. The natural way of studying a time-series model's ability to reproduce observations is to compare its \(k\) step-ahead predictions with actual data.

Note that for output-error models, there is no difference between the \(k\) step-ahead predictions and the simulated output, since, by definition, output-error models only use past inputs to predict future outputs.

\section*{Difference between forecast and predict}
predict predicts the response over the time span of data. forecast performs prediction into the unseen future, which is a time range beyond the last instant of measured data. predict is a tool for validating the quality of an estimated model. Use predict to determine if the

\section*{predict}
prediction result matches the observed response in data.OutputData. If sys is a good prediction model, consider using it with forecast (only supports linear models).
Input sysArguments
Identified model.
sys may be a linear or nonlinear identified model.
data
Measured input-output data.
Specify data as an iddata object.
If sys is a time-series model, which has no input signals, then specifydata as an iddata object with no inputs, or a matrix of past (alreadyobserved) time-series data.

\section*{K}
Prediction horizon.
Specify K as a positive integer that is a multiple of the data sample-time.

\section*{Default: 1}

\section*{opt}
Prediction options.
opt is an option set that specifies the following:
- handling of initial conditions
- data offsets
Use predictOptions to create the options set.
Output
Arguments
yp
Predicted output.
yp is an iddata object.
Outputs up to the time \(\mathrm{t}-\mathrm{K}\) and inputs up to the time instant t are used to predict the output at the time instant \(t\). The time variable takes values in the range represented by data. SamplingInstants.
When \(\mathrm{K}=\mathrm{Inf}\), the predicted output is a pure simulation of the system.
For multi-experiment data, yp contains a predicted data set for each experiment. The time span of the predicted outputs matches that of the observed data.

When sys is specified using an idnlhw or idnlgrey model, yp is the same as the simulated response computed using data. InputData as input.

\section*{\(x 0 e\)}

Estimated initial states.

\section*{sys_pred}

Predictor system.
sys_pred is a dynamic system whose simulation, using [data.OutputData data.InputData] as input, yields yp.OutputData as the output.
For discrete-time data, sys_pred is always a discrete-time model.
For multi-experiment data, sys_pred is an array of models, with one entry for each experiment.

When sys is a nonlinear model, sys_pred is [].

\section*{Examples Predict Time-Series Model Response}

Simulate a time-series model.
```

init_sys = idpoly([1 -0.99],[],[1 -1 0.2]);
e = iddata([],randn(400,1));
data = sim(init_sys,e);

```
data is an iddata object containing the simulated response data of a time-series model.

Estimate an ARMAX model for the simulated data.
```

na = 1;
nb = 2;
sys = armax(data(1:200),[na nb]);

```
sys is an idpoly model encapsulating the identified ARMAX model for the simulated data data.

Obtain a 4 step-ahead prediction for the estimated model.
\(\mathrm{K}=4\);
yp = predict(sys,data,K);
Analyze the prediction.
```

plot(data(201:400),yp(201:400));
legend('Simulated data','Predicted data');

```


Use compare to substitute the use of predict and plot here.
For example:
compare(data,sys,K);
See Also
```

predictOptions | compare | pe | lsim | sim | simsd | ar |
arx | n4sid | iddata | idpar | forecast

```

\section*{predictOptions}

\section*{Purpose Option set for predict}
```

Syntax opt = predictOptions
opt = predictOptions(Name,Value)

```

Description

Input
Arguments
opt \(=\) predictOptions creates the default options set for predict.
opt \(=\) predictOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{InitialCondition}

Specify the handling of initial conditions.
InitialCondition takes one of the following:
- 'z' - Zero initial conditions.
- 'e' - Estimate initial conditions such that the prediction error for observed output is minimized.
- 'd' - Similar to 'e', but absorbs nonzero delays into the model coefficients.
- x0 - Numerical column vector denoting initial states. For multi-experiment data, use a matrix with \(N e\) columns, where \(N e\) is the number of experiments. Use this option for state-space and nonlinear models only.
- io - Structure with the following fields:
- Input
- Output

Use the Input and Output fields to specify the history for a time interval that starts before the start time of the data used by predict. In case the data used by predict is a time series model, specify Input as []. Use a row vector to denote a constant signal value. The number of columns in Input and Output must always equal the number of input and output channels, respectively. For multi-experiment data, specify io as a struct array of \(N e\) elements, where \(N e\) is the number of experiments.
- x0obj - Specification object created using idpar. Use this object for discrete-time state-space models only. Use xOobj to impose constraints on the initial states by fixing their value or specifying minimum/maximum bounds.

For an idnlgrey model, InitialCondition can also be one of the following:
- 'fixed' - sys.InitialState determines the values of the initial states, but all the states are considered fixed for estimation.
- 'model' - sys.InitialState determines the values of the initial states, which states to estimate and their minimum/maximum values.

Default: [] (Initial conditions are determined based on how the model was estimated.)

\section*{InputOffset}

Input signal offset.
Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.
Use [] to indicate no offset.
For multi-experiment data, specify InputOffset as a \(N u\)-by- \(N e\) matrix. Here \(N u\) is the number of inputs and \(N e\) is the number of experiments.
Each entry specified by Input0ffset will be subtracted from the corresponding input data before it is used to simulate the model.

\section*{predictOptions}

Default: []

\section*{OutpurOffset}

Output signal offset.
Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.

Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a Ny -by- Ne matrix. Here \(N y\) is the number of outputs and \(N e\) is the number of experiments.

Each entry specified by OutputOffset will be subtracted from the corresponding output data.

\section*{Default: []}

\section*{OutputWeight}

Weight of output for initial condition estimation.
OutputWeight takes one of the following:
- [] - No weighting is used. This is the same as using eye (Ny) for the output weight, where \(N y\) is the number of outputs.
- 'noise' - Inverse of the noise variance stored with the model.
- matrix - A positive semi-definite matrix of dimension \(N y\)-by- \(N y\), where \(N y\) is the number of outputs.

\section*{Default: []}

\section*{Output opt \\ Option set containing the specified options for predict. \\ Examples Create Default Options Set for Model Prediction}

Create a default options set for predict.
```

opt = predictOptions;

```

\section*{Specify Options for Model Prediction}

Create an options set for predict using zero initial conditions and set the input offset to 5 .
opt = predictOptions('InitialCondition','z','InputOffset',5);

Alternatively, use dot notation to set the values of opt.
```

opt = predictOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;

```
```

See Also
predict | absorbdelay | idpar

```

Purpose Display model information, including estimated uncertainty

\section*{Syntax present(m)}

Description The present function displays the model m, together with the estimated standard deviations of the parameters, loss function, and Akaike's Final Prediction Error (FPE) Criterion (which essentially equals the AIC). It also displays information about how m was created.
\(m\) is linear or nonlinear identified model.
present thus gives more detailed information about the model than the standard display function.
```

See Also
getpvec | getcov | tfdata | idssdata | polydata | zpkdata

```

\section*{Purpose}

Estimate process model using time or frequency data
Syntax
```

sys = procest(data,type)
sys = procest(data,type,Name,Value)
sys = procest(data,init_sys)
sys = procest(data,___,opt)

```

\section*{Input Arguments}
sys = procest(data, type) estimates a process model, sys, using time or frequency domain data, data. type defines the structure of sys.
sys = procest(data,type,Name,Value) estimates a process model with additional options specified by one or more Name, Value pair arguments.
sys = procest(data,init_sys) estimates a process model using the dynamic system init sys to configure the initial parameterization.
sys = procest(data, __ ,opt) estimates a polynomial model using an option set, opt, to specify estimation behavior.

\section*{data}

Estimation data.

For time domain estimation, data must be an iddata object containing the input and output signal values.

Time series models, which are models that contain no measured inputs, cannot be estimated using procest. Use ar, arx or armax for time series models instead.

For frequency domain estimation, data can be one of the following:
- recorded frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency’
data must have at least one input and one output.

\section*{type}

Process model structure.
type is an acronym that defines the structure of a process model. The acronym string is made up of:
- P - All 'Type ' acronyms start with this letter.
- 0, 1, 2, or 3 - Number of time constants (poles) to be modeled. Possible integrations (poles in the origin) are not included in this number.
- I — Integration is enforced (self-regulating process).
- D - Time delay (dead time).
- Z - Extra numerator term, a zero.
- U - Under-damped modes (complex-valued poles) permitted. If \(U\) is not included in type, all poles are restricted to be real. The number of poles must be 2 or 3 .

For information regarding how type affects the structure of a process model, see idproc.
For multiple input/output pairs use a cell array of acronyms, with one entry for each input/output pair.

\section*{opt}

Estimation options.
opt is an options set that specifies the following:
- estimation objective
- handling on initial conditions and disturbance component
- numerical search method to be used in estimation

Use procestOptions to create the options set.

\section*{init_sys}

Dynamic system that configures the initial parameterization of sys.
If init_sys is an idproc model, procest uses the parameters and constraints defined in init_sys as the initial guess for estimating sys.
If init_sys is not an idproc model, the software first converts init_sys to an identified process model. procest uses the parameters of the resulting model as the initial guess for estimation.
Use the Structure property of init_sys to configure initial guesses and constraints for \(K p, T_{p 1}, T_{p 2}, T_{p 3}, T_{w}, Z e t a, T_{d}\) and \(T_{z}\).
To specify an initial guess for, say, the \(T_{p, 1}\) parameter of init_sys, set init_sys.Structure.Tp1.Value as the initial guess.
To specify constraints for, say, the \(T_{p 2}\) parameter of init_sys:
- set init_sys.Structure.Tp2.Minimum to the minimum \(T_{p 2}\) value
- set init_sys.Structure.Tp2.Maximum to the maximum \(T_{p 2}\) value
- set init_sys.Structure.Tp2. Free to indicate if \(T_{p 2}\) is a free parameter for estimation
You can similarly specify the initial guess and constraints for the other parameters.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{InputDelay}

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. Specify input delays in the time unit stored in the TimeUnit property.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

\section*{Output Arguments}

\section*{Examples}

\section*{sys}

Identified process model.
sys is an idproc model with a structure defined by type.
Estimate a process model with one pole and dead time for heat exchanger data.
load iddemo_heatexchanger_data
Collect the measured data using iddata and plot it.
```

data = iddata(pt,ct,Ts);
data.InputName = '\Delta CTemp';
data.InputUnit = 'C';
data.OutputName = '\Delta PTemp';
data.OutputUnit = 'C';
data.TimeUnit = 'minutes';

```

Estimate a process model.
sysP1D = procest(data,'P1D')

Detect over-parameterization of process models.
```

load iddata1 z1
load iddata2 z2
data = [z1, z2(1:300)];

```
data is a data set with 2 inputs and 2 outputs. The first input affects only the first output. Similarly, the second input affects only the second output.

In the estimated process model, the cross terms, modelling the effect of the first input on the second output and vice-versa, should be negligible. If higher orders are assigned to those dynamics, their estimations will show a high level of uncertainty.
```

type = 'P2UZ'; % denotes a model with complex-conugate pair of poles,
sys = procest(data,type) % use same orders for all I/O pairs

```

To evaluate the uncertainties, plot the frequency response.
```

w = linspace(0,20*pi,100);
h = bodeplot(sys,w);
showConfidence(h)

```

Estimate a process model by specifying initial guesses for parameter values and bounding them.
```

G = idfrd(idtf([10 2],[1 1.3 1.2],'iod',0.45),logspace(-2,2,256));

```

Create the estimation initializing model.
```

init_sys = idproc('P2UZD');
init_sys.Structure.Kp.Value = 1;
init_sys.Structure.Tw.Value = 2;
init_sys.Structure.Zeta.Value = 0.1;
init_sys.Structure.Td.Value = 0;
init_sys.Structure.Tz.Value = 1;
init_sys.Structure.Kp.Minimum = 0.1;
init_sys.Structure.Kp.Maximum = 10;
init_sys.Structure.Td.Maximum = 1;
init_sys.Structure.Tz.Maximum = 10;

```

Create an option set for specifying the estimation search method.
```

opt = procestOptions('Display','full','InitialCondition','Zero');
opt.SearchMethod = 'lm';
opt.SearchOption.MaxIter = 100;

```

Estimate the process model.
sys \(=\) procest(G,init_sys,opt);
Compare the data to the estimated model.
compare(G,sys,init_sys);
See Also
```

procestOptions | idproc | ssest | tfest | polyest | ar |
arx | oe | bj

```

\section*{Purpose \\ Options set for procest}

Syntax

Description

\section*{Input \\ Arguments}
```

opt = procestOptions
opt = procestOptions(Name,Value)

```
opt \(=\) procestOptions creates the default options set for procest.
opt = procestOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{InitialCondition}

Specify how initial conditions are handled during estimation.
InitialCondition takes one of the following values:
- 'zero' - The initial condition is set to zero.
- 'estimate' - The initial condition is treated as an independent estimation parameter.
- 'backcast' - The initial condition is estimated using the best least squares fit.
- 'auto' - The software chooses the method to handle initial condition based on the estimation data.

Default: 'auto'

\section*{DisturbanceModel}

Specify how the handling of additive noise (\(H\)) during estimation for the model
\[
y=G(s) u+H(s) e
\]

Here, \(e\) is white noise, \(u\) is the input and \(y\) is the output.
\(H(s)\) is stored in the NoiseTF property of the numerator and denominator of idproc models.

DisturbanceModel takes one of the following strings:
- 'none ' - \(H\) is fixed to one.
- 'estimate' - \(H\) is treated as an estimation parameter. The software uses the value of the NoiseTF property as the initial guess.
- 'ARMA1 ' - The software estimates \(H\) as a first-order ARMA model
\[
\frac{1+c s}{1+d s}
\]
- 'ARMA2 ' - The software estimates \(H\) as a second-order ARMA model
\[
\frac{1+c_{1} s+c_{2} s^{2}}{1+d_{1} s+d_{2} s^{2}}
\]
- 'fixed ' - The software fixes the value of the NoiseTF property of the idproc model as the value of \(H\).

Note Noise model cannot be estimated using frequency domain data.

Default: 'estimate'

\section*{Focus}

Defines how the errors \(e\) between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus can take the following values:
- 'simulation ' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.

This method provides a stable model.
- prediction - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. The weighting function minimizes the one-step-ahead prediction. This approach typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this weighting function is optimal. However, this method neglects the approximation aspects (bias) of the fit. Use 'stability' when you want to ensure a stable model.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
```

[wl,wh]
[w1l,w1h;w2l,w2h;w31,w3h;...]

```
where \(w l\) and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system
- The \(\{A, B, C, D\}\) format, which specifies the state-space matrices of the filter
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. You receive an estimation result that is the same as if you had first prefiltered using idfilt.
- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

\section*{EstCovar}

Controls whether parameter covariance data is generated or not.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

Default: true

\section*{Display}

Specifies whether estimation progress should be displayed.
Display requires one of the following strings:
- 'on ' - Information on model structure and estimation results are displayed in a progress viewer window
- 'off' - No progress or results information is displayed

Default: 'off'

\section*{InputOffset}

Removes offset from time domain input data during estimation.

Specify InputOffset as one of the following:
- 'estimate' - The software treats the input offsets as an estimation parameter.
- 'auto' - The software chooses the method to handle input offsets based on the estimation data and the model structure. The estimation either assumes zero input offset or estimates the input offset.

For example, the software estimates the input offset for a model that contains an integrator.
- A column vector of length \(N u\), where \(N u\) is the number of inputs.

Use [] to specify no offsets.
In case of multi-experiment data, specify InputOffset as a \(N u\)-by- \(N e\) matrix. Here \(N u\) is the number of inputs and \(N e\) is the number of experiments.

Each entry specified by Input0ffset will be subtracted from the corresponding input data.
- A parameter object, constructed using param. Continuous, that imposes constraints on how the software will estimate the input offset.

For example, create a parameter object for a 2 -input model estimation. Specify the first input offset as fixed to zero and the second input offset as an estimation parameter.
```

opt = procestOptions;
uO = param.Continuous('uO',[O;NaN]);
u0.Free(1) = false;
opt.Inputoffset = u0;

```

Default: 'auto'

\section*{OutputOffset}

Removes offset from time domain output data during estimation.

Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.
Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a \(N y\)-by- \(N e\) matrix. \(N y\) is the number of outputs, and \(N e\) is the number of experiments. Each entry specified by OutputOffset is subtracted from the corresponding output data.

\section*{Default: []}

\section*{OutputWeight}

Specifies criterion used during minimization.
OutputWeight can have the following values:
- 'noise' - Minimize \(\operatorname{det}\left(E^{\prime *} E\right)\), where \(E\) represents the prediction error. This is the optimal choice in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function.
- positive semi-definite symmetric matrix (W) - Minimize the trace of the weighted prediction error matrix trace (\(E^{\prime *} E^{*} W\)), where \(E\) is the matrix of prediction errors, with one column for each output, and \(W\) is the positive semi-definite symmetric matrix of size equal to the number of outputs. Use \(W\) to specify the relative importance of outputs in multiple-input multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-input, multi-output models.
- [] - The software chooses between the 'noise ' or using the identity matrix for \(W\).

\section*{Default: []}

\section*{SearchMethod}

Search method used for iterative parameter estimation.
SearchMethod is a string that can take the following values:
- gn - The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max (size(J)) *norm(J) are discarded when computing the search direction. \(J\) is the Jacobian matrix. The Hessian matrix is approximated by \(J^{T} J\). If there is no improvement in this direction, the function tries the gradient direction.
- gna - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [2]. Eigenvalues less than gamma*max (sv) of the Hessian are neglected, where sv are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see Advanced for more information) and is increased by the factor LMStep each time the search fails to find a lower value of the criterion in less than 5 bisections. It is decreased by the factor 2*LMStep each time a search is successful without any bisections.
- \(1 m\) - Uses the Levenberg-Marquardt method. This means that the next parameter value is - pinv \((H+d * I) * g r a d\) from the previous one, where \(H\) is the Hessian, I is the identity matrix, and grad is the gradient. \(d\) is a number that is increased until a lower value of the criterion is found.
- lsqnonlin - Uses lsqnonlin optimizer from Optimization Toolbox software. You must have Optimization Toolbox installed to use this option. This search method can only handle the Trace criterion.
- grad - The steepest descent gradient search method.
- auto - A choice among the above is made in the algorithm. The descent direction is calculated using gn, gna, Im and grad successively, in that order, at each iteration until a sufficient reduction in error is achieved.

Default: 'auto'

\section*{SearchOption}

SearchOption is an options set for the search algorithm with the fields:

\section*{SearchMEtwadhOption}
gn,gna,l \({ }^{-}\)• Tolerance - Minimum percentage difference (divided by 100) between the current value of the loss function and auto and its expected improvement after the next iteration. When the percentage of expected improvement is less than Tolerance, the iterations are stopped. The estimate of the expected loss-function improvement at the next iteration is made based on the Gauss-Newton vector computed for the current parameter value.

Default: 0.01
- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter \(=0\) returns the result of the startup procedure.

Use sys.Report.Termination.Iterations to get the actual number of iterations during an estimation, where sys is an idtf model.

Default: 20
- Advanced - Search settings:
- GnPinvConst - Singular values of the Jacobian that are smaller than GnPinvConst*max (size(J)*norm(J)*eps are discarded when computing the search direction and SearchMethod is 'gn'.

GnPinvConst must be a positive real value.
Default: 10000

\section*{SearchMerdrodhOption}
- InitGnaTol - Initial value of gamma when SearchMethod is 'gna'.

Default: . 0001
- LMStartValue - Starting value of search-direction length \(d\) in the Levenberg-Marquardt method. Applicable when SearchMethod is 'lm'.

Default: . 001
- LMStep - Size of the Levenberg-Marquardt step. The next value of the search-direction length \(d\) in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is 'lm'.

Default: 2
- MaxBisections - Maximum number of bisections used by the line search along the search direction.

Default: 25
- MaxFunEvals - Iterations are stopped if the number of calls to the model file exceeds this value.

MaxFunEvals must be a positive integer value.
Default: Inf
- MinParChange - Smallest parameter update allowed per iteration

MinParChange must be a positive, real value.
Default: 0
- RelImprovement - Iterations are stopped if the relative improvement of the criterion function is less than RelImprovement.

\section*{SearchMethoodhOption}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
RelImprovement must be a positive integer value. \\
Default: 0 \\
- StepReduction - Suggested parameter update is reduced by the factor StepReduction after each try until either MaxBisections tries are completed or a lower value of the criterion function is obtained. \\
StepReduction must be a positive, real value that is greater than 1. \\
Default: 2
\end{tabular} \\
\hline lsqnonl & \begin{tabular}{l}
TolFun - Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values. \\
The value of TolFun is the same as that of sys.SearchOption.Advanced.TolFun. \\
Default: 1e-5 \\
- TolX - Termination tolerance on the estimated parameter values. \\
The value of TolX is the same as that of sys.SearchOption.Advanced.TolX. \\
Default: 1e-6 \\
- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as TolFun etc.. \\
The value of MaxIter is the same as that of sys.SearchOption.Advanced.MaxIter. \\
Default: 20 \\
- Advanced - Options set for lsqnonlin.
\end{tabular} \\
\hline
\end{tabular}

\section*{SearchMerdrodhOption}

For more information, see "Optimization Options".
Use optimset('lsqnonlin') to create an options set for lsqnonlin and then modify it to specify its various options.

\section*{Advanced}

Advanced is a structure with the following fields:
- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. (See the section about choosing a robust norm in the chapter "Computing the Estimate" of [1].) ErrorThreshold = 0 disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, ErrorThreshold is set to zero. ErrorThreshold \(=1.6\) is a good choice for estimation when data contains outliers.

Default: 0
- MaxSize - Specifies the maximum number of elements in a segment when input-output data is split into segments.
MaxSize must be a positive integer.
Default: 250000
- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:
- \(s\) - Specifies the location of the right-most pole to test the stability of continuous-time models. A model is considered stable when its right-most pole is to the left of \(s\).

\section*{procestOptions}

Default: 0
- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance \(z\) from the origin.

Default: 1+sqrt(eps)
- AutoInitThreshold - Specifies when to automatically estimate the initial conditions.

When InitialCondition = 'Auto', the initial condition is estimated when the ratio of the prediction-error norm with a zero initial condition to the norm with an estimated initial condition exceeds AutoInitialState.

Default: 1.05

\section*{Output \\ Arguments}

\section*{Examples}
opt
Option set containing the specified options for procest.

\section*{Create Default Options Set for Process Model Estimation}

Create a default options set for procest.
opt = procestOptions;

\section*{Specify Options for Process Model Estimation}

Create an options set for procest using the 'stability' for Focus and set the Display to 'on'.
opt = procestOptions('Focus','stability','Display','on');
Alternatively, use dot notation to set the values of opt.
```

opt = procestOptions;
opt.Focus = 'stability';
opt.Display = 'on';

```
References [1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999.
[2] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for Multivariable System Estimates". Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005. Oxford, UK: Elsevier Ltd., 2005.
See Also procest | idproc | idfilt

\section*{Purpose \\ Class representing piecewise-linear nonlinear estimator for} Hammerstein-Wiener models
```

Syntax
t=pwlinear('NumberOfUnits',N)
t=pwlinear('BreakPoints',BP)
t=pwlinear(Property1,Value1,...PropertyN,ValueN)

```

\section*{Description}

Tips
pwlinear is an object that stores the piecewise-linear nonlinear estimator for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
t=pwlinear('NumberOfUnits',N) creates a piecewise-linear nonlinearity estimator object with N breakpoints.
t=pwlinear('BreakPoints', BP) creates a piecewise-linear nonlinearity estimator object with breakpoints at values BP.
t=pwlinear(Property1, Value1, ...PropertyN, ValueN) creates a piecewise-linear nonlinearity estimator object specified by properties in "pwlinear Properties" on page 2-741.

Use evaluate \((p, x)\) to compute the value of the function defined by the pwlinear object p at x .

Use pwlinear to define a nonlinear function \(y=F(x)\), where \(F\) is a piecewise-linear (affine) function of \(x\) and there are n breakpoints \(\left(x_{k}, y_{k}\right)\), \(k=1, \ldots, n . y_{k}=\mathrm{F}\left(x_{k}\right) . F\) is linearly interpolated between the breakpoints. \(y\) and \(x\) are scalars.
\(F\) is also linear to the left and right of the extreme breakpoints. The slope of these extension is a function of \(x_{i}\) and \(y_{i}\) breakpoints. The breakpoints are ordered by ascending x -values, which is important when you set a specific breakpoint to a different value.

There are minor deviations from the breakpoint values you set and the values actually stored in the object because the toolbox represent breakpoints differently internally.

\section*{pwlinear Properties}

You can include property-value pairs in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:
\% List all property values
get (p)
\% Get value of NumberOfUnits property
p.NumberOfUnits
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline NumberOfUnits & \begin{tabular}{l}
Integer specifies the number of breakpoints. \\
Default=10.
\end{tabular} \\
& For example: \\
& pwlinear('NumberOfUnits ' , 5)
\end{tabular}, \begin{tabular}{l}
2 -by-n matrix containing the breakpoint x and y value, \\
specified using the following format: \\
\\
\hline BreakPoints \\
\\
\\
\\
\\
\hline\(\left.x_{1}, x_{2}, \ldots ., x_{n} ; y_{1}, y_{2}, \ldots, y_{n}\right]\). \\
If set to a 1-by-n vector, the values are interpreted as x-values \\
and the corresponding y-values are set to zero.
\end{tabular}

\section*{Examples}

Use pwlinear to specify the piecewise nonlinearity estimator in Hammerstein-Wiener models. For example:
m=nlhw(Data,Orders, pwlinear('Br',[-1:0.1:1]),[]);
The piecewise nonlinearity is initialized at the specified breakpoints. The breakpoint values are adjusted to the estimation data by nlhw.

See Also
nlhw

\section*{Purpose Pole-zero plot of dynamic system}
```

Syntax pzmap(sys)
pzmap(sys1,sys2,...,sysN)
[p,z] = pzmap(sys)

```

\section*{Description}

Tips

\section*{Examples}

\section*{Example 1}

\section*{Pole-Zero Plot of Dynamic System}

Plot the poles and zeros of the continuous-time system
\[
\begin{aligned}
& \qquad H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3} \\
& H=\operatorname{tf}\left(\left[\begin{array}{lll}
2 & 5 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\right) ; \text { sgrid } \\
& \text { pzmap(H) } \\
& \text { grid on }
\end{aligned}
\]

\section*{Example 2}

Plot the pzmap for a 2 -input-output discrete-time IDSS model.
```

A = [0.1 0; 0.2 0.9]; B = [.1 .2; 0.1 .02]; C = [10 20; 2 -5]; D = [1
sys = idss(A,B,C,D, 'Ts', 0.1);

```
```

Algorithms
pzmap uses a combination of pole and zero.
See Also
damp | esort | dsort | pole | rlocus | sgrid | zgrid | zero | iopzmap

```

Purpose Create list of pole/zero plot options
Syntax \(\quad P=\) pzoptions
P = pzoption('cstprefs')
Description \(\quad P=\) pzoptions returns a list of available options for pole/zero plots (pole/zero, input-output pole/zero and root locus) with default values set.. You can use these options to customize the pole/zero plot appearance from the command line.

P = pzoption('cstprefs') initializes the plot options with the options you selected in the Control System Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor" in the User's Guide documentation.

This table summarizes the available pole/zero plot options.
\begin{tabular}{l|l}
\hline Option & Description \\
\hline Title, XLabel, YLabel & Label text and style \\
\hline TickLabel & Tick label style \\
\hline Grid & \begin{tabular}{l}
Show or hide the grid \\
Specified as one of the following \\
strings: ' off' | 'on' \\
Default: 'off '
\end{tabular} \\
\hline XlimMode, YlimMode & Limit modes \\
\hline Xlim, Ylim & Axes limits \\
\hline IOGrouping & \begin{tabular}{l}
Grouping of input-output pairs \\
Specified as one of the \\
following strings: 'none ' \\
| 'inputs ' | 'output ' I 'all' ' \\
Default: 'none '
\end{tabular} \\
\hline InputLabels, OutputLabels & Input and output label styles \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Option & Description \\
\hline InputVisible, OutputVisible & Visibility of input and output channels \\
\hline FreqUnits & \begin{tabular}{l}
Frequency units, specified as one of the following strings: \\
- 'Hz' \\
- 'rad/second' \\
- 'rpm' \\
- 'kHz' \\
- 'MHz' \\
- 'GHz' \\
- 'rad/nanosecond' \\
- 'rad/microsecond' \\
- 'rad/millisecond' \\
- 'rad/minute' \\
- 'rad/hour' \\
- 'rad/day' \\
- 'rad/week' \\
- 'rad/month' \\
- 'rad/year' \\
- 'cycles/nanosecond' \\
- 'cycles/microsecond' \\
- 'cycles/millisecond' \\
- 'cycles/hour' \\
- 'cycles/day'
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Option & Description \\
\hline & \begin{tabular}{l}
- 'cycles/week' \\
- 'cycles/month' \\
- 'cycles/year' \\
Default: 'rad/s' \\
You can also specify 'auto' which uses frequency units rad/TimeUnit relative to system time units specified in the TimeUnit property. For multiple systems with different time units, the units of the first system are used.
\end{tabular} \\
\hline TimeUnits & \begin{tabular}{l}
Time units, specified as one of the following strings: \\
- 'nanoseconds' \\
- 'microseconds' \\
- 'milliseconds' \\
- 'seconds' \\
- 'minutes' \\
- 'hours' \\
- 'days' \\
- 'weeks' \\
- 'months' \\
- 'years' \\
Default: 'seconds'
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Option & Description \\
\hline & \begin{tabular}{l}
You can also specify ' auto ' which \\
uses time units specified in the \\
TimeUnit property of the input \\
system. For multiple systems \\
with different time units, the \\
units of the first system is used.
\end{tabular} \\
\hline ConfidenceRegionNumberSD & \begin{tabular}{l}
Number of standard deviations \\
to use when displaying the \\
confidence region characteristic \\
for identified models (valid only \\
iopzplot).
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

In this example, you enable the grid option before creating a plot.
\[
\begin{aligned}
& P=\text { pzoptions; \% Create set of plot options } P \\
& P . \text { Grid = on'; \% Set the grid to on in options } \\
& h=\text { rlocusplot(tf(1,[1,.2,1,0]), P); }
\end{aligned}
\]

The following root locus plot is created with the grid enabled.

See Also
getoptions | iopzplot | pzplot | setoptions

\section*{Purpose}

Pole-zero map of dynamic system model with plot customization options

\section*{Syntax}
```

h = pzplot(sys)
pzplot(sys1,sys2,...)
pzplot(AX,...)
pzplot(..., plotoptions)

```

Description
\(\mathrm{h}=\mathrm{pzplot}(\) sys \()\) computes the poles and (transmission) zeros of the dynamic system model sys and plots them in the complex plane. The poles are plotted as x's and the zeros are plotted as o's. It also returns the plot handle h . You can use this handle to customize the plot with the getoptions and setoptions commands. Type
```

help pzoptions

```
for a list of available plot options.
pzplot(sys1, sys2, ...) shows the poles and zeros of multiple models sys 1, sys \(2, \ldots\) on a single plot. You can specify distinctive colors for each model, as in
```

pzplot(sys1,'r',sys2,'y',sys3,'g')

```
pzplot (AX,...) plots into the axes with handle AX.
pzplot(..., plotoptions) plots the poles and zeros with the options specified in plotoptions. Type
help pzoptions
for more detail.
The function sgrid or zgrid can be used to plot lines of constant damping ratio and natural frequency in the \(s\) - or \(z\)-plane.

For arrays sys of dynamic system models, pzmap plots the poles and zeros of each model in the array on the same diagram.

Tips You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

Examples Use the plot handle to change the color of the plot's title.
sys \(=r s s(3,2,2)\);
h = pzplot(sys);
\(\mathrm{p}=\) getoptions(h); \% Get options for plot.
p.Title.Color \(=[1,0,0] ;\) Change title color in options. setoptions(h,p); \% Apply options to plot.

\author{
See Also \\ getoptions | pzmap | setoptions | iopzplot
}

\section*{Purpose}

Estimate recursively parameters of ARMAX or ARMA models

\section*{Syntax}
thm = rarmax \((z, n n, a d m, a d g)\)
[thm, yhat, P,phi,psi] = rarmax(z,nn,adm,adg,th0,PO,phiO,psiO)
Description
The parameters of the ARMAX model structure
\[
A(q) y(t)=B(q) u(t-n k)+C(q) e(t)
\]
are estimated using a recursive prediction error method.
The input-output data is contained in z , which is either an iddata object or a matrix \(z=\left[\begin{array}{ll}y & u\end{array}\right]\) where \(y\) and \(u\) are column vectors. \(n n\) is given as
```

nn = [na nb nc nk]

```
where na, nb, and nc are the orders of the ARMAX model, and nk is the delay. Specifically,
\[
\begin{array}{ll}
n a: & A(q)=1+a_{1} q^{-1}+\ldots+a_{n a} q^{-n a} \\
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n c: & C(q)=1+c_{1} q^{-1}+\ldots+c_{n c} q^{-n c}
\end{array}
\]

See "What Are Polynomial Models?" for more information.
If \(z\) represents a time series \(y\) and \(n n=[n a n c]\), rarmax estimates the parameters of an ARMA model for \(y\).
\[
A(q) y(t)=C(q) e(t)
\]

Only single-input, single-output models are handled by rarmax. Use rpem for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the parameters associated with time k ; that is, they are based on the data in the rows up to and including row kin z. Each row of thm contains the estimated parameters in the following order:
```

thm(k,:) = [a1, a2,..., ana,b1,...,bnb,c1,...,cnc]

```
yhat is the predicted value of the output, according to the current model; that is, row \(k\) of yhat contains the predicted value of \(y(k)\) based on all past data.

The actual algorithm is selected with the two arguments adm and adg. These are described under rarx.

The input argument th0 contains the initial value of the parameters, a row vector consistent with the rows of thm. The default value of th0 is all zeros.

The arguments P0 and \(P\) are the initial and final values, respectively, of the scaled covariance matrix of the parameters. See rarx. The default value of PO is \(10^{4}\) times the unit matrix. The arguments phi0, psio, phi, and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend on the chosen model orders. The normal choice of phiO and psiO is to use the outputs from a previous call to rarmax with the same model orders. (This call could be a dummy call with default input arguments.) The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0 . If you want \(n k=0\), shift the input sequence appropriately and use \(n k=1\).

\footnotetext{
Algorithms

Examples

The general recursive prediction error algorithm (11.44), (11.47) through (11.49) of Ljung (1999) is implemented. See "Algorithms for Recursive Estimation" for more information.

Compute and plot, as functions of time, the four parameters in a second-order ARMA model of a time series given in the vector y. The forgetting factor algorithm with a forgetting factor of 0.98 is applied.
```

thm = rarmax(y,[2 2],'ff',0.98);
plot(thm)

```
}

\section*{Purpose}

Estimate parameters of ARX or AR models recursively

\section*{Syntax}
thm = rarx (z, nn, adm,adg)
[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,PO,phiO)

\section*{Definitions}

Input
Arguments
thm \(=\operatorname{rarx}(z, n n, a d m, a d g)\) estimates the parameters thm of single-output ARX model from input-output data \(z\) and model orders \(n n\) using the algorithm specified by adm and adg. If \(z\) is a time series \(y\) and \(\mathrm{nn}=\mathrm{na}\), rarx estimates the parameters of a single-output AR model.
[thm,yhat, P, phi] = rarx(z,nn,adm,adg,th0, PO, phiO) estimates the parameters thm, the predicted output yhat, final values of the scaled covariance matrix of the parameters \(P\), and final values of the data vector phi of single-output ARX model from input-output data \(z\) and model orders nn using the algorithm specified by adm and adg. If \(z\) is a time series \(y\) and \(n n=n a\), rarx estimates the parameters of a single-output AR model.

The general ARX model structure is:
\[
A(q) y(t)=B(q) u(t-n k)+e(t)
\]

The orders of the ARX model are:
\[
\begin{array}{ll}
n a: & A(q)=1+a_{1} q^{-1}+\ldots+a_{n a} q^{-n a} \\
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1}
\end{array}
\]

Models with several inputs are defined, as follows:
\(A(q) y(t)=B_{1}(q) u_{1}\left(t-n k_{1}\right)+\ldots+B_{\mathrm{nu}} u_{\mathrm{nu}}\left(t-n k_{\mathrm{nu}}\right)+e(t)\)
z
Name of the matrix iddata object that represents the input-output data or a matrix \(z=[y u]\), where \(y\) and \(u\) are column vectors.

For multiple-input models, the \(u\) matrix contains each input as a column vector:
\(u=\left[\begin{array}{ll}u 1 & . . \\ u n u\end{array}\right]\)
nn
For input-output models, specifies the structure of the ARX model as:
\(n n=[n a n b n k]\)
where na and nb are the orders of the ARX model, and nk is the delay.

For multiple-input models, nb and nk are row vectors that define orders and delays for each input.

For time-series models, \(n n=n a\), where na is the order of the AR model.

Note The delay nk must be larger than 0 . If you want nk = 0 , shift the input sequence appropriately and use nk \(=1\) (see nkshift).
adm and adg
adm \(=\) ' ff ' and adg = lam specify the forgetting factor algorithm with the forgetting factor \(\lambda=1\) am. This algorithm is also known as recursive least squares (RLS). In this case, the matrix \(P\) has the following interpretation: \(R_{2} / 2\) * P is approximately equal to the covariance matrix of the estimated parameters. \(R_{2}\) is the variance of the innovations (the true prediction errors \(e(t)\)).
adm ='ug' and adg = gam specify the unnormalized gradient algorithm with gain gamma = gam. This algorithm is also known as the normalized least mean squares (LMS).
adm ='ng' and adg = gam specify the normalized gradient or normalized least mean squares (NLMS) algorithm. In these cases, \(P\) is not applicable.
adm =' kf ' and adg =R1 specify the Kalman filter based algorithm with \(R_{2}=1\) and \(R_{1}=\mathrm{R} 1\). If the variance of the innovations \(e(t)\) is not unity but \(R_{2}\); then \(R_{2}{ }^{*} \mathrm{P}\) is the covariance matrix of the parameter estimates, while \(R_{1}=\mathrm{R} 1 / R_{2}\) is the covariance matrix of the parameter changes.
th0
Initial value of the parameters in a row vector, consistent with the rows of thm.

Default: All zeros.
PO
Initial values of the scaled covariance matrix of the parameters.
Default: \(10^{4}\) times the identity matrix.
phio
The argument phio contains the initial values of the data vector:
\(\varphi(t)=[y(t-1), \ldots, y(t-n a), u(t-1), \ldots, u(t-n b-n k+1)]\)
If \(z=[y(1), u(1) ; \ldots \quad ; y(N), u(N)], p h i 0=\varphi(1)\) and \(p h i=\) \(\varphi(N)\). For online use of rarx, use phiO, th0, and P0 as the previous outputs phi, thm (last row), and P.

Default: All zeros.

\section*{Output \\ Arguments}

\section*{thm}

Estimated parameters of the model. The kth row of thm contains the parameters associated with time \(k\); that is, the estimate parameters are based on the data in rows up to and including row k in z . Each row of thm contains the estimated parameters in the following order:
```

thm(k,:) $=[a 1, a 2, \ldots, a n a, b 1, \ldots, b n b]$

```

For a multiple-input model, the \(b\) are grouped by input. For example, the \(b\) parameters associated with the first input are listed first, and the \(b\) parameters associated with the second input are listed next.
yhat
Predicted value of the output, according to the current model; that is, row \(k\) of yhat contains the predicted value of \(y(k)\) based on all past data.

P
Final values of the scaled covariance matrix of the parameters.
phi
phi contains the final values of the data vector:
\(\varphi(t)=[y(t-1), \ldots, y(t-n a), u(t-1), \ldots, u(t-n b-n k+1)]\)

\section*{Examples}

Adaptive noise canceling: The signal \(y\) contains a component that originates from a known signal \(r\). Remove this component by recursively estimating the system that relates \(r\) to \(y\) using a sixth-order FIR model and the NLMS algorithm.
```

z = [y r];
[thm,noise] = rarx(z,[0 6 1],'ng',0.1);
% noise is the adaptive estimate of the noise
% component of y
plot(y-noise)

```

If this is an online application, you can plot the best estimate of the signal y - noise at the same time as the data \(y\) and \(u\) become available, use the following code:
```

phi = zeros(6,1);
P=1000*eye(6);
th = zeros(1,6);

```
```

axis([0 100 -2 2]);
plot(0,0,'*'), hold on
% Use a while loop
while ~abort
[y,r,abort] = readAD(time);
[th,ns,P,phi] = rarx([y r],'ff',0.98,th,P,phi);
plot(time,y-ns,'*')
time = time + Dt
end

```

This example uses a forgetting factor algorithm with a forgetting factor of 0.98 . readAD is a function that reads the value of an \(A / D\) converter at the indicated time instant.

\section*{See Also \\ nkshift | rarmax | rbj | roe | rpem | rplr}

How To - "Algorithms for Recursive Estimation"

\section*{Purpose}

Estimate recursively parameters of Box-Jenkins models

\section*{Syntax}
thm = rbj(z, nn, adm,adg)
[thm,yhat,P,phi,psi] = rbj(z,nn,adm,adg,th0,PO,phiO,psiO)

\section*{Description}

The parameters of the Box-Jenkins model structure
\[
y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} e(t)
\]
are estimated using a recursive prediction error method.
The input-output data is contained in z , which is either an iddata object or a matrix \(z=\left[\begin{array}{ll}y & u\end{array}\right]\) where \(y\) and \(u\) are column vectors. \(n n\) is given as nn = [nb nc nd nf nk]
where nb, nc, nd, and nf are the orders of the Box-Jenkins model, and \(n k\) is the delay. Specifically,
\[
\begin{array}{ll}
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n c: & C(q)=1+c_{1} q^{-1}+\ldots+c_{n c} q^{-n c} \\
n d: & D(q)=1+d_{1} q^{-1}+\ldots+d_{n d} q^{-n d} \\
n f: & F(q)=1+f_{1} q^{-1}+\ldots+f_{n f} q^{-n f}
\end{array}
\]

See "What Are Polynomial Models?" for more information.
Only single-input, single-output models are handled by rbj. Use rpem for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the parameters associated with time k ; that is, they are based on the data in the rows up to and including row k in z. Each row of thm contains the estimated parameters in the following order.
\[
\operatorname{thm}(k,:)=[b 1, \ldots, b n b, c 1, \ldots, c n c, d 1, \ldots, d n d, f 1, \ldots, f n f]
\]
yhat is the predicted value of the output, according to the current model; that is, row \(k\) of yhat contains the predicted value of \(y(k)\) based on all past data.

The actual algorithm is selected with the two arguments adm and adg. These are described under rarx.

The input argument th0 contains the initial value of the parameters, a row vector consistent with the rows of thm. The default value of tho is all zeros.

The arguments P0 and \(P\) are the initial and final values, respectively, of the scaled covariance matrix of the parameters. See rarx. The default value of PO is \(10^{4}\) times the unit matrix. The arguments phio, psio, phi, and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend on the chosen model orders. The normal choice of phi0 and psi0 is to use the outputs from a previous call to rbj with the same model orders. (This call could be a dummy call with default input arguments.) The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0 . If you want \(n k=0\), shift the input sequence appropriately and use \(n k=1\).

\section*{Algorithms}

See Also

The general recursive prediction error algorithm (11.44) of Ljung (1999) is implemented. See also "Algorithms for Recursive Estimation".
```

nkshift | rarmax | rarx | roe | rpem | rplr

```

Purpose Determine whether iddata is based on real-valued signals

\section*{Syntax realdata(data)}

Description realdata returns 1 if
- data contains only real-valued signals.
- data contains frequency-domain signals, obtained by Fourier transformation of real-valued signals.

Otherwise realdata returns 0 .
Notice the difference with isreal:
load iddata1
isreal(z1); \% returns 1
zf = fft(z1);
isreal(zf) \% returns 0
realdata(zf) \% returns 1
zf = complex(zf) \% adds negative frequencies to zf realdata(zf) \% still returns 1
\begin{tabular}{|c|c|}
\hline Purpose & Replicate and tile models \\
\hline Syntax & rsys = repsys(sys,[M N]) \\
\hline & rsys = repsys(sys,N) \\
\hline & rsys \(=\) repsys(sys,[M N S1,..., Sk]) \\
\hline
\end{tabular}

\section*{Description}

Tips

Input
Arguments

\section*{Output \\ Arguments}
rsys = repsys(sys, [M N]) replicates the model sys into an M-by-N tiling pattern. The resulting model rsys has size(sys,1)*M outputs and size(sys,2)*N inputs.
rsys \(=\) repsys(sys,N) creates an N -by-N tiling.
rsys \(=\) repsys(sys,[M N S1,...,Sk]) replicates and tiles sys along both I/O and array dimensions to produce a model array. The indices S specify the array dimensions. The size of the array is [size(sys,1)*M, size(sys,2)*N, size(sys,3)*S1, ...].
rsys \(=\) repsys(sys, N) produces the same result as rsys \(=\) repsys(sys,[N N]). To produce a diagonal tiling, use rsys = sys*eye(N).

\section*{sys}

Model to replicate.

\section*{M}

Number of replications of sys along the output dimension.

\section*{N}

Number of replications of sys along the input dimension.

\section*{S}

Numbers of replications of sys along array dimensions.
rsys
Model having size(sys,1)*M outputs and size(sys,2)*N inputs.

If you provide array dimensions \(\mathrm{S} 1, \ldots, \mathrm{Sk}\), rsys is an array of dynamic systems which each have size(sys,1)*M outputs and size(sys,2) *N inputs. The size of rsys is [size(sys,1)*M, size (sys,2)*N, size(sys,3)*S1, ...].

\section*{Examples}

Replicate a SISO transfer function to create a MIMO transfer function that has three inputs and two outputs.
```

sys = tf(2,[ll 3]);
rsys = repsys(sys,[2 3]);

```

The preceding commands produce the same result as:
```

sys = tf(2,[$$
\begin{array}{ll}{1}&{3}\end{array}
$$);
rsys = [sys sys sys; sys sys sys];

```

Replicate a SISO transfer function into a 3-by-4 array of two-input, one-output transfer functions.
```

sys = tf(2,[1 3]);
rsys = repsys(sys, [1 2 3 4]);

```

To check the size of rsys, enter:
```

size(rsys)

```

This command produces the result:
\(3 \times 4\) array of transfer functions. Each model has 1 outputs and 2 inputs.

\section*{See Also append}
Purpose Resample time-domain data by decimation or interpolation (requiresSignal Processing Toolbox software)
Syntax

resample(data, P, Q)

resample(data, P, Q,order)
Description
Input
Arguments
Algorithms
Examples
data
Name of time-domain iddata object. Can be input-output or time-series data.

Data must be sampled at equal time intervals.
P, Q
Integers that specify the resampling factor, such that the new sampling interval is Q/P times the original one.
\((Q / P)>1\) results in decimation and \((Q / P)<1\) results in interpolation.
order
Order of the filters applied before interpolation and decimation.
Default: 10

If you have installed the Signal Processing Toolbox software, resample calls the Signal Processing Toolbox resample function. The algorithm takes into account the intersample characteristics of the input signal, as described by data.InterSample.

In this example, you increase the sampling rate by a factor of 1.5 and compare the resampled and the original data signals.
```

plot(u)
ur = resample(u,3,2);
plot(u,ur)

```

\section*{See Also idresamp}
Purpose Change shape of model array
Syntax

sys = reshape(sys,s1,s2,...,sk)

sys = reshape(sys,[s1 s2 ... sk])
sys \(=\) reshape(sys,s1,s2,...,sk) (or, equivalently, sys =
reshape (sys,[s1 s2 ... sk])) reshapes the LTI array sys into an
s1-by-s2-by-...by-sk model array. With either syntax, there must be
s1*s2*...*sk models in sys to begin with.

\section*{Examples Change the shape of a model array from 2 x 3 to 6 x 1 .}
```

% Create a 2x3 model array.
sys = rss(4,1,1,2,3);
% Confirm the size of the array.
size(sys)

```
This input produces the following output:
```

2x3 array of state-space models
Each model has 1 output, 1 input, and 4 states.

```
Change the shape of the array.
```

sys1 = reshape(sys,6,1);
size(sys1)

```
This input produces the following output:
```

6x1 array of state-space models
Each model has 1 output, 1 input, and 4 states.

```
See Also ndims | size

\section*{Purpose \\ Compute and test model residuals (prediction errors)}
```

Syntax resid(m,data)
resid(m,data,Type)
resid(m,data,Type,M)
e = resid(m,data);

```

\section*{Description}
data contains the output-input data as an iddata object. Both time-domain and frequency-domain data are supported. data can also be an idfrd object.
\(m\) is any linear or nonlinear identified model.
In all cases the residuals \(e\) associated with the data and the model are computed. This is done as in the command pe with a default choice of init.

When called without output arguments, resid produces a plot. The plot can be one of three kinds depending on the argument Type:
- Type = 'Corr' (only available for time-domain data): The autocorrelation function of e and the cross correlation between e and the input(s) u are computed and displayed. The \(99 \%\) confidence intervals for these values are also computed and shown as a yellow region. The computation of the confidence region is done assuming \(e\) to be white and independent of \(u\). The functions are displayed up to lag M , which is 25 by default.
- Type = 'ir': The impulse response (up to lag M, which is 25 by default) from the input to the residuals is plotted with a \(99 \%\) confidence region around zero marked as a yellow area. Negative lags up to M/4 are also included to investigate feedback effects. The result is the same as impulse (e, 'sd' \(, 2.58, \mathrm{M}\)).
- Type = 'fr': The frequency response from the input to the residuals (based on a high-order FIR model) is shown as a Bode plot. A 99\% confidence region around zero is also marked as a yellow area.

The default for time-domain data is Type \(=\) 'Corr'. For frequency-domain data, the default is Type = 'fr'.
With an output argument, no plot is produced, and e is returned with the residuals (prediction errors) associated with the model and the data. It is an iddata object with the residuals as outputs and the input in data as inputs. That means that e can be directly used to build model error models, that is, models that describe the dynamics from the input to the residuals (which should be negligible if m is a good description of the system).

\section*{Examples \\ Here are some typical model validation commands.}
```

e = resid(m,data);
plot(e)
compare(data,m);

```
To compute a model error model, that is, a model from the input to the residuals to see if any essential unmodeled dynamics are left, do the following:
```

e = resid(m,data);
me = arx(e,[10 10 0]);
bode(me,'sd',3,'fill')

```
References Ljung (1999), Section 16.6.
See Also compare | predict | sim | simsd
```

Purpose Add offsets or trends to data signals
Syntax data = retrend(data_d,T)
Description data = retrend(data_d,T) returns a data object data by adding the
trend information T to each signal in data_d. data_d is a time-domain
iddata object. T is an TrendInfo object.
Subtract means from input-output signals, estimate a linear model, and retrend the simulated output:

```
```

% Load SISO data containing vectors u2 and y2

```
% Load SISO data containing vectors u2 and y2
load dryer2
load dryer2
% Create data object with sampling time of 0.08 sec
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
data=iddata(y2,u2,0.08)
% Remove the mean from the data
% Remove the mean from the data
[data_d,T] = detrend(data,0)
[data_d,T] = detrend(data,0)
% Estimate a linear ARX model
% Estimate a linear ARX model
m = arx(data_d,[2 2 1])
m = arx(data_d,[2 2 1])
% Simulate the model output
% Simulate the model output
% with zero initial states
% with zero initial states
y_sim = sim(m,data_d(:,[],:));
y_sim = sim(m,data_d(:,[],:));
% Retrend the simulated model output
% Retrend the simulated model output
y_tot = retrend(y_sim,T);
y_tot = retrend(y_sim,T);
See Also getTrend | detrend | TrendInfo
How To . "Handling Offsets and Trends in Data"
```


## Purpose

Estimate recursively output-error models (IIR-filters)

## Syntax

thm $=\operatorname{roe}(z, n n, a d m, a d g)$
[thm, yhat, P, phi,psi] = roe(z,nn,adm,adg,th0,PO,phiO,psi0)
Description
The parameters of the output-error model structure

$$
y(t)=\frac{B(q)}{F(q)} u(t-n k)+e(t)
$$

are estimated using a recursive prediction error method.
The input-output data are contained in $z$, which is either an iddata object or a matrix $z=\left[\begin{array}{ll}y & u\end{array}\right]$ where $y$ and $u$ are column vectors. $n n$ is given as
nn = [nb nf nk]
where nb and nf are the orders of the output-error model, and nk is the delay. Specifically,

$$
\begin{array}{ll}
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n f: & F(q)=1+f_{1} q^{-1}+\ldots+f_{n f} q^{-n f}
\end{array}
$$

See "What Are Polynomial Models?" for more information.
Only single-input, single-output models are handled by roe. Use rpem for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the parameters associated with time k ; that is, they are based on the data in the rows up to and including row k in z .

Each row of thm contains the estimated parameters in the following order.
$\operatorname{thm}(k,:)=[b 1, \ldots, b n b, f 1, \ldots, f n f]$
yhat is the predicted value of the output, according to the current model; that is, row $k$ of yhat contains the predicted value of $y(k)$ based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These are described under rarx.

The input argument th0 contains the initial value of the parameters, a row vector consistent with the rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the scaled covariance matrix of the parameters. See rarx. The default value of PO is $10^{4}$ times the unit matrix. The arguments phio, psi0, phi, and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend on the chosen model orders. The normal choice of phi0 and psi0 is to use the outputs from a previous call to roe with the same model orders. (This call could be a dummy call with default input arguments.) The default values of phiO and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0 . If you want $n k=0$, shift the input sequence appropriately and use $n k=1$.

## Algorithms

The general recursive prediction error algorithm (11.44) of Ljung (1999) is implemented. See also "Algorithms for Recursive Estimation".

[^5]
## Purpose

## Syntax

```
thm = rpem(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rpem(z,nn,adm,adg,th0,PO,phiO,psiO)
```


## Description

The parameters of the general linear model structure

$$
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\ldots+\frac{B_{n u}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t)
$$

are estimated using a recursive prediction error method.
The input-output data is contained in z , which is either an iddata object or a matrix $z=[y u]$ where $y$ and $u$ are column vectors. (In the multiple-input case, $u$ contains one column for each input.) nn is given as

```
nn = [na nb nc nd nf nk]
```

where na, nb, nc, nd, and nf are the orders of the model, and nk is the delay. For multiple-input systems, nb, nf, and nk are row vectors giving the orders and delays of each input. See "What Are Polynomial Models?" for an exact definition of the orders.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the parameters associated with time k; that is, they are based on the data in the rows up to and including row k in z . Each row of thm contains the estimated parameters in the following order.

```
thm(k,:) = [a1,a2,..., ana, b1,..., bnb,...
 c1, ..., cnc, d1, ..., dnd,f1,...,fnf]
```

For multiple-input systems, the $B$ part in the above expression is repeated for each input before the $C$ part begins, and the $F$ part is also repeated for each input. This is the same ordering as in m.par.
yhat is the predicted value of the output, according to the current model; that is, row $k$ of yhat contains the predicted value of $y(k)$ based on all past data.
The actual algorithm is selected with the two arguments adg and adm. These are described under rarx.

The input argument th0 contains the initial value of the parameters, a row vector consistent with the rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the scaled covariance matrix of the parameters. See rarx. The default value of PO is $10^{4}$ times the unit matrix. The arguments phi0, psio, phi, and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend on the chosen model orders. The normal choice of phiO and psi0 is to use the outputs from a previous call to rpem with the same model orders. (This call could be a dummy call with default input arguments.) The default values of phio and psio are all zeros.

Note that the function requires that the delay nk be larger than 0 . If you want $n k=0$, shift the input sequence appropriately and use $n k=1$.

## Algorithms

See Also nkshift \| rarmax | rarx \| rbj \| roe | rplr
The general recursive prediction error algorithm (11.44) of Ljung (1999) is implemented. See also "Algorithms for Recursive Estimation".

For the special cases of ARX/AR models, and of single-input ARMAX/ARMA, Box-Jenkins, and output-error models, it is more efficient to use rarx, rarmax, rbj, and roe.

```
nkshift | rarmax | rarx | rbj | roe | rplr
```


## Purpose

## Syntax

## Description

## References

See Also

Estimate general input-output models using recursive pseudolinear regression method

```
thm = rplr(z,nn,adm,adg)
[thm,yhat,P,phi] = rplr(z,nn,adm,adg,th0,PO,phiO)
```

This is a direct alternative to rpem and has essentially the same syntax. See rpem for an explanation of the input and output arguments.
rplr differs from rpem in that it uses another gradient approximation. See Section 11.5 in Ljung (1999). Several of the special cases are well-known algorithms.

When applied to ARMAX models, ( $\mathrm{nn}=\left[\begin{array}{lll}\mathrm{na} \\ \mathrm{nb} \\ \mathrm{nc} & 0 & 0\end{array} \mathrm{nk}\right.$ ]), rplr gives the extended least squares (ELS) method. When applied to the output-error structure ( $\mathrm{nn}=[0 \mathrm{nb} 00 \mathrm{nf} \mathrm{nk}]$ ), the method is known as HARF in the adm = 'ff' case and SHARF in the adm = 'ng' case.
rplr can also be applied to the time-series case in which an ARMA model is estimated with

```
z = y
nn = [na nc]
```

You can thus use rplr as an alternative to rarmax for this case.
For more information about HARF and SHARF, see Chapter 11 in Ljung (1999).

## Purpose Random sampling of linear identified systems

## Syntax <br> Description

Tips

Input
Arguments
sys_array = rsample(sys,N)
sys_array $=$ rsample(sys,N,sd)
sys_array $=$ rsample (sys, $N$ ) creates $N$ random samples of the identified linear system, sys. sys_array contains systems with the same structure as sys, whose parameters are perturbed about their nominal values, based on the parameter covariance.
sys_array $=$ rsample(sys,N,sd) specifies the standard deviation level, sd, for perturbing the parameters of sys.

- For systems with large parameter uncertainties, the randomized systems may contain unstable elements. These unstable elements may make it difficult to analyze the properties of the identified system. Execution of analysis commands, such as step, bode, sim, etc., on such systems can produce unreliable results. Instead, use a dedicated Monte-Carlo analysis command such as simsd.
sys
Identifiable system.


## N

Number of samples to be generated.

Default: 10

## sd

Standard deviation level for perturbing the identifiable parameters of sys.

Default: 1

## Output Arguments

## Examples

## sys_array

Array of random samples of sys.
If sys is an array of models, then the size of sys_array is equal to [size(sys) N]. There are $N$ randomized samples for each model in sys.

The parameters of the samples in sys_array vary from the original identifiable model within 1 standard deviation of their nominal values.

## Random sample of an Identified System

Estimate a 3rd order discrete-time state-space model and analyze the uncertainty in its time (step) and frequency (bode) responses.

```
load iddata2 z2;
sys = n4sid(z2,3);
N = 20;
sys_array = rsample(sys,N);
opt = bodeoptions; opt.PhaseMatching = 'on';
figure, bodeplot(sys_array,'g',sys,'r.',opt)
figure, stepplot(sys_array,'g',sys,'r.-')
```


## Specify Standard Deviation Level for Parameter Perturbation

```
load iddata2 z2;
sys = n4sid(z2,3);
N = 20;
sd = 2;
sys_array = rsample(sys,N,sd);
figure, bode(sys_array);
```

Estimate an ARMAX model and compare the frequency response confidence region corresponding to 2 -std deviations (asymptotic estimate) to values obtained by random sampling for the same value of standard deviation.

```
load iddata1 z1
sys = armax(z1,[2 2 2 1]);
rsys = rsample(sys,20,2);
```

```
opt = bodeoptions; opt.PhaseMatching = 'on';
opt.ConfidenceRegionNumberSD = 2;
bodeplot(rsys,'g',sys,'r',opt)
```

To view the confidence region, right click on the plot and choose Characteristics > Confidence Region.

See Also
simsd | init | noisecnv | noise2meas | iopzmap | bode |
step

## Purpose

## Syntax

Description

Tips
saturation
Properties

Class representing saturation nonlinearity estimator for Hammerstein-Wiener models

```
s=saturation(LinearInterval,L)
```

saturation is an object that stores the saturation nonlinearity estimator for estimating Hammerstein-Wiener models.
You can use the constructor to create the nonlinearity object, as follows:
$\mathrm{s}=$ saturation(LinearInterval, L) creates a saturation nonlinearity estimator object, initialized with the linear interval L.

Use evaluate $(s, x)$ to compute the value of the function defined by the saturation object $s$ at $x$.

Use saturation to define a nonlinear function $y=F(x)$, where $F$ is a function of $x$ and has the following characteristics:

| $a \leq x<b$ | $F(x)=x$ |
| :--- | :--- |
| $a>x$ | $F(x)=a$ |
| $b \leq x$ | $F(x)=b$ |

$y$ and $x$ are scalars.
You can specify the property value as an argument in the constructor to specify the object.
After creating the object, you can use get or dot notation to access the object property values. For example:

```
% List LinearInterval property value
get(s)
s.LinearInterval
```

You can also use the set function to set the value of particular properties. For example:

## saturation

set(s, 'LinearInterval', [-1.5 1.5])

The first argument to set must be the name of a MATLAB variable.

| Property Name | Description |
| :--- | :--- |
| LinearInterval | $1-b y-2$ row vector that specifies the initial interval of the <br> saturation. <br> Default=[NaN NaN]. <br>  <br>  <br>  <br>  <br> For example: <br> saturation('LinearInterval' , [-1.5 1.5]) |

## Examples Use saturation to specify the saturation nonlinearity estimator in Hammerstein-Wiener models. For example: <br> m=nlhw(Data,Orders, saturation([-1 1]), []); <br> The saturation nonlinearity is initialized at the interval [-1 1]. The interval values are adjusted to the estimation data by nlhw.

## See Also <br> nlhw

## Purpose

Segment data and estimate models for each segment

## Syntax

segm = segment(z,nn)
[segm, V,thm,R2e] = segment(z,nn,R2,q,R1,M,th0,PO,ll,mu)
segment builds models of AR, ARX, or ARMAX/ARMA type,

$$
A(q) y(t)=B(q) u(t-n k)+C(q) e(t)
$$

assuming that the model parameters are piecewise constant over time. It results in a model that has split the data record into segments over which the model remains constant. The function models signals and systems that might undergo abrupt changes.

The input-output data is contained in z , which is either an iddata object or a matrix $z=\left[\begin{array}{ll}y & u\end{array}\right]$ where $y$ and $u$ are column vectors. If the system has several inputs, $u$ has the corresponding number of columns.

The argument nn defines the model order. For the ARMAX model
nn = [na nb nc nk]
where na, nb, and nc are the orders of the corresponding polynomials. See "What Are Polynomial Models?". Moreover, nk is the delay. If the model has several inputs, nb and nk are row vectors, giving the orders and delays for each input.

For an ARX model (nc = 0) enter
nn = [na nb nk]
For an ARMA model of a time series
$z=y$
nn = [na nc]
and for an AR model
$n n=n a$

The output argument segm is a matrix, where the kth row contains the parameters corresponding to time $k$. This is analogous to the output argument thm in rarx and rarmax. The output argument thm of segment contains the corresponding model parameters that have not yet been segmented. That is, they are not piecewise constant, and therefore correspond to the outputs of the functions rarmax and rarx. In fact, segment is an alternative to these two algorithms, and has a better capability to deal with time variations that might be abrupt.

The output argument V contains the sum of the squared prediction errors of the segmented model. It is a measure of how successful the segmentation has been.

The input argument R2 is the assumed variance of the innovations $e(t)$ in the model. The default value of R2, R2 = [ ], is that it is estimated. Then the output argument R2e is a vector whose kth element contains the estimate of R2 at time $k$.

The argument q is the probability that the model exhibits an abrupt change at any given time. The default value is 0.01 .

R1 is the assumed covariance matrix of the parameter jumps when they occur. The default value is the identity matrix with dimension equal to the number of estimated parameters.
$M$ is the number of parallel models used in the algorithm (see below). Its default value is 5 .
th0 is the initial value of the parameters. Its default is zero. P0 is the initial covariance matrix of the parameters. The default is 10 times the identity matrix.

11 is the guaranteed life of each of the models. That is, any created candidate model is not abolished until after at least 11 time steps. The default is $l l=1$. Mu is a forgetting parameter that is used in the scheme that estimates R2. The default is 0.97 .

The most critical parameter for you to choose is R2. It is usually more robust to have a reasonable guess of R2 than to estimate it. Typically, you need to try different values of R2 and evaluate the results. (See the
example below.) sqrt(R2) corresponds to a change in the value $y(t)$ that is normal, giving no indication that the system or the input might have changed.

## Algorithms

## Examples

The algorithm is based on $M$ parallel models, each recursively estimated by an algorithm of Kalman filter type. Each model is updated independently, and its posterior probability is computed. The time-varying estimate thm is formed by weighting together the $M$ different models with weights equal to their posterior probability. At each time step the model (among those that have lived at least 11 samples) that has the lowest posterior probability is abolished. A new model is started, assuming that the system parameters have changed, with probability q , a random jump from the most likely among the models. The covariance matrix of the parameter change is set to R1.

After all the data are examined, the surviving model with the highest posterior probability is tracked back and the time instances where it jumped are marked. This defines the different segments of the data. (If no models had been abolished in the algorithm, this would have been the maximum likelihood estimates of the jump instances.) The segmented model segm is then formed by smoothing the parameter estimate, assuming that the jump instances are correct. In other words, the last estimate over a segment is chosen to represent the whole segment.

Check how the algorithm segments a sinusoid into segments of constant levels. Then use a very simple model $y(t)=b_{1}{ }^{*} 1$, where 1 is a fake input and $b_{1}$ describes the piecewise constant level of the signal $y(t)$ (which is simulated as a sinusoid).

```
y = sin([1:50]/3)';
thm = segment([y,ones(length(y),1)],[0 1 1],0.1);
plot([thm,y])
```

By trying various values of R2 (0.1 in the above example), more levels are created as R2 decreases.

## selstruc

Purpose
Select model order for single-output ARX models
Syntax

## Description

nn = selstruc(v)
[nn, vmod] = selstruc(v,c)

Note Use selstruc for single-output systems only. selstruc supports both single-input and multiple-input systems.
selstruc is a function to help choose a model structure (order) from the information contained in the matrix $v$ obtained as the output from arxstruc or ivstruc.
The default value of $c$ is 'plot'. The plot shows the percentage of the output variance that is not explained by the model as a function of the number of parameters used. Each value shows the best fit for that number of parameters. By clicking in the plot you can examine which orders are of interest. When you click Select, the variable nn is exported to the workspace as the optimal model structure for your choice of number of parameters. Several choices can be made.
c = 'aic ' gives no plots, but returns in nn the structure that minimizes

$$
\begin{aligned}
V_{\mathrm{mod}} & =\log \left(V\left(1+\frac{2 d}{N}\right)\right) \\
& =\log (V)+\frac{2 d}{N}, N \square d
\end{aligned}
$$

where $V$ is the loss function, $d$ is the total number of parameters in the structure in question, and $N$ is the number of data points used for the estimation. $\log (V)+\frac{2 d}{N}$ is the Akaike's Information Criterion (AIC). See aic for more details. $\mathrm{c}=$ 'mdl' returns in nn the structure that minimizes Rissanen's Minimum Description Length (MDL) criterion.

$$
V_{\mathrm{mod}}=V\left(1+\frac{d \log (N)}{N}\right)
$$

When c equals a numerical value, the structure that minimizes
$V_{\text {mod }}=V\left(1+\frac{c d}{N}\right)$
is selected.
The output argument vmod has the same format as v, but it contains the logarithms of the accordingly modified criteria.

```
Examples load iddata5;
data = z5;
V = arxstruc(data(1:200),data(201:400),...
 struc(1:10,1:10,1:10))
nn = selstruc(V,0); %best fit to validation data
m = arx(data,nn)
```

Purpose
Set or modify model properties

## Syntax

set
set(sys,'Property', Value)
set(sys,'Property1',Value1,'Property2',Value2,...)
set(sys,'Property')
set(sys)

## Description

Examples
set is used to set or modify the properties of a dynamic system model. Like its Handle Graphics ${ }^{\circledR}$ counterpart, set uses property name/property value pairs to update property values.
set(sys, 'Property', Value) assigns the value Value to the property of the model sys specified by the string 'Property'. This string can be the full property name (for example, 'UserData') or any unambiguous case-insensitive abbreviation (for example, 'user'). The specified property must be compatible with the model type. For example, if sys is a transfer function, Variable is a valid property but StateName is not. For a complete list of available system properties for any linear model type, see the reference page for that model type.
set(sys,'Property1',Value1,'Property2',Value2,...) sets multiple property values with a single statement. Each property name/property value pair updates one particular property.
set(sys,'Property') displays admissible values for the property specified by 'Property'.
set(sys) displays all assignable properties of sys and their admissible values.

Consider the SISO state-space model created by
sys $=s s(1,2,3,4)$;
You can add an input delay of 0.1 second, label the input as torque, reset the $D$ matrix to zero, and store its DC gain in the 'Userdata' property by

```
set(sys,'inputd',0.1,'inputn','torque','d',0,'user',dcgain(sys))
```

Note that set does not require any output argument. Check the result with get by typing

```
get(sys)
 a: 1
 b: 2
 c: 3
 d: 0
 e: []
 StateName: {''}
 InternalDelay: [0x1 double]
 Ts: 0
 InputDelay: 0.1
 OutputDelay: 0
 InputName: {'torque'}
 OutputName: {''}
 InputGroup: [1x1 struct]
 OutputGroup: [1x1 struct]
 Name: ''
 Notes: {}
 UserData: -2
```

Tips
For discrete-time transfer functions, the convention used to represent the numerator and denominator depends on the choice of variable (see tf for details). Like tf, the syntax for set changes to remain consistent with the choice of variable. For example, if the Variable property is set to ' $z$ ' (the default),

produces the transfer function

$$
h(z)=\frac{z+2}{z^{2}+3 z+4}
$$

However, if you change the Variable to ' $z^{\wedge}-1$ ' by
set(h,'Variable','z^-1'),
the same command

now interprets the row vectors [ 12 2] and [ $\left.\begin{array}{lll}1 & 3 & 4\end{array}\right]$ as the polynomials $1+2 z^{-1}$ and $1+3 z^{-1}+4 z^{-2}$ and produces:

$$
\bar{h}\left(z^{-1}\right)=\frac{1+2 z^{-1}}{1+3 z^{-1}+4 z^{-2}}=z h(z)
$$

Note Because the resulting transfer functions are different, make sure to use the convention consistent with your choice of variable.

## See Also

```
get | frd| ss | tf | zpk | idfrd | idss | idtf | idgrey | idproc |
idpoly | idnlarx | idnlhw | idnlgrey
```

Purpose Set parameter covariance data in identified model
Syntax

sys = setcov(sys0,cov)

Description

## Input Arguments

sys0
Identified model.

## cov

Parameter covariance matrix.
cov is one of the following:

- an $n p$-by- $n p$ semi-positive definite symmetric matrix, where $n p$ is equal to the number of parameters of sys0.
- a structure with the following fields that describe the parameter covariance in a factored form:
- R - usually the Cholesky factor of inverse of covariance.
- T - transformation matrix.
- Free - logical vector of length $n p$ indicating if a parameter is free. Here $n p$ is equal to the number of parameters of sys0.

```
cov(Free,Free) = T*inv(R'*R)*T'.
```


## Output

Arguments

## sys

Identified model.

The values of all the properties of sys are the same as those in sys0, except for the parameter covariance values which are modified as specified by cov.

## Examples

## Raw Covariance

Set raw covariance data for an identified model.
Create a covariance matrix for the transfer function

$$
\text { sys } 0=\frac{4}{s^{2}+2 s+1}
$$

For this example, set the covariance values for only the denominator parameters.

```
sys0 = idtf(4,[1 2 1]);
np = nparams(sys0);
cov = zeros(np);
den_index = 2:3;
cov(den_index,den_index)=diag([0.04 0.001]);
```

sys0 contains np model parameters.
$\operatorname{cov}\left(d e n \_i n d e x, d e n \_i n d e x\right)=d i a g([0.040 .001])$ creates a covariance matrix, cov, with nonzero entries for the denominator parameters.

Set the covariance for syso.
sys = setcov(sys0,cov);
See Also getcov | rsample | sim | setpvec
Purpose Set initial states of idnlgrey model object
Syntax

setinit(model,property,values)
Input Arguments
modelName of the idnlgrey model object.
propertyName of the InitialStates model property field, such as 'Name','Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.
values
Values of the specified property Property. values are an Nx-by-1cell array of values, where $N x$ is the number of states.
Description setinit(model, property, values) sets the values of the property field of the InitialStates model property. property can be 'Name', 'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.
See Also getinit | getpar | idnlgrey | setpar

Purpose Set plot options for response plot

```
Syntax
setoptions(h, PlotOpts)
setoptions(h, 'Property1', 'value1', ...)
setoptions(h, PlotOpts, 'Property1', 'value1', ...)
```


## Description

setoptions(h, PlotOpts) sets preferences for response plot using the plot handle. h is the plot handle, PlotOpts is a plot options handle containing information about plot options.
There are two ways to create a plot options handle:

- Use getoptions, which accepts a plot handle and returns a plot options handle.

```
p = getoptions(h)
```

- Create a default plot options handle using one of the following commands:
- bodeoptions - Bode plots
- hsvoptions - Hankel singular values plots
- nicholsoptions - Nichols plots
- nyquistoptions - Nyquist plots
- pzoptions - Pole/zero plots
- sigmaoptions - Sigma plots
- timeoptions - Time plots (step, initial, impulse, etc.)

For example,
p = bodeoptions
returns a plot options handle for Bode plots.
setoptions(h, 'Property1', 'value1', ...) assigns values to property pairs instead of using PlotOpts. To find out what
properties and values are available for a particular plot, type help <function>options. For example, for Bode plots type
help bodeoptions
For a list of the properties and values available for each plot type, see "Properties and Values Reference".
setoptions(h, PlotOpts, 'Property1', 'value1', ...) first assigns plot properties as defined in @PlotOptions, and then overrides any properties governed by the specified property/value pairs.

## Examples

To change frequency units, first create a Bode plot.

```
sys=tf(1,[\begin{array}{ll}{1}&{1}\end{array});
h=bodeplot(sys) % Create a Bode plot with plot handle h.
```



## setoptions

Now, change the frequency units from rad/s to Hz.

```
p=getoptions(h); % Create a plot options handle p.
p.FreqUnits = 'Hz'; % Modify frequency units.
setoptions(h,p); % Apply plot options to the Bode plot and
 % render.
```

| -4 Figure 1 |
| :--- |
| File Edit View Insert Tools Desktop Window Help $\quad-\|\underline{x}\|$ |
| $\square$ |




The frequency units are now Hz .

To change the frequency units using property/value pairs, use this code.

```
sys=tf(1,[1 1]);
h=bodeplot(sys);
setoptions(h,'FreqUnits','Hz');
```

The result is the same as the first example.

## See Also

getoptions
Purpose Set initial parameter values of idnlgrey model object
Syntax setpar(model, property, values)
Input ArgumentsmodelName of the idnlgrey model object.
propertyName of the Parameters model property field, such as 'Name ','Unit', 'Value', 'Minimum', or 'Maximum'.Default: 'Value'.
valuesValues of the specified property Property. values are an Np-by-1cell array of values, where $N p$ is the number of parameters.
Descriptionsetpar(model, property, values) sets the model parameter values inthe property field of the Parameters model property. property can be'Name', 'Unit', 'Value', 'Minimum', and 'Maximum'.
See Also
getinit | getpar | idnlgrey | setinit
Purpose Set mnemonic parameter names for linear black-box model structures

Note setpname will be removed in a future release. Use the Structure. Info field of a linear model instead.

## Syntax <br> model $=$ setpname(model)

## Description

model is an idmodel object of idarx, idpoly, idproc, or idss type. The returned model has the 'PName' property set to a cell array of strings that correspond to the symbols used in this manual to describe the parameters.

For single-input idpoly models, the parameters are called 'a1', 'a2', ...,'fn'.

For multiple-input idpoly models, the $b$ and $f$ parameters have the output/input channel number in parentheses, as in 'b1 $(1,2)$ ', 'f3(1,2)', etc.

For idarx models, the parameter names are as in ' $-\mathrm{A}(\mathrm{ky}, \mathrm{ku})$ ' for the negative value of the $k y-k u$ entry of the matrix in $A(q)$ polynomial of the multiple-output ARX equation, and similarly for the $B$ parameters.

For idss models, the parameters are named for the matrix entries they represent, such as ' $\mathrm{A}(4,5)^{\prime}$ ', $\mathrm{K}(2,3)$ ', etc.

For idproc models, the parameter names are as described in idproc.
This function is particularly useful when certain parameters are to be fixed.

## Purpose

Syntax

Description

Tips

## Examples

Specify format for B and F polynomials of multi-input polynomial model for backward compatibility

```
model= setPolyFormat(model, 'cell')
model= setPolyFormat(model, 'double')
```

model= setPolyFormat(model, 'cell') converts the B and F polynomials of a multi-input polynomial model, model, from double matrices to cell arrays. Each cell array has Nu-elements of double vectors, where Nu is the number of inputs.
model= setPolyFormat(model, 'double') allows you to continue using double matrices for the B and F polynomials. The model displays a message that it is in backward compatibility mode.

- The $B$ and $F$ polynomials, represented by b and f properties of idpoly object, are currently double matrices. For multi-input polynomial models, these polynomials will be cell arrays in a future version. Using setPolyFormat allows you to either change to using cell arrays immediately or continue using double arrays without errors in a future version.
- After using model = setPolyFormat(model, 'cell'), update your code to use cell array syntax for operations on the $b$ and $f$ properties.
- After using model = setPolyFormat (model, 'double'), you can continue using double matrix syntax for operations on the $b$ and $f$ properties.
- setPolyFormat has no effect on single-input idpoly models, where the b and f properties continue to be represented by double row vectors.

Convert the B and F polynomials of an estimated multi-input ARX model to cell arrays:

1 Estimate a 3-input ARX model.

```
% Load estimation data.
load iddata8
% Estimate model.
m = arx(z8, [3 [2 2 1] [1 1 1]]);
```

The software computes the $B$ and $F$ polynomials and stores their values as double matrices in the b and f properties. Operations on the $B$ and $F$ polynomials, such as m. b, produce an incompatibility warning.

2 Convert the B and F polynomials to cell arrays.
m=setPolyFormat(m, 'cell');
To verify that the $B$ and $F$ polynomials are cell arrays, type class(m.b), which returns:
ans $=$
cell
3 Extract pole and zero information from the model using cell array syntax.

```
Poles1 = roots(m.f{1});
Zeros1 = roots(m.b{1});
```

Continue using double matrices for $B$ and $F$ polynomials of an estimated multi-input ARX model:

1 Estimate a 3-input ARX model.

```
% Load estimation data.
load iddata8
% Estimate model.
m = arx(z8, [3 [2 2 1] [1 1 1]]);
```

The software computes the $B$ and $F$ polynomials, and stores their values in double matrices in the b and f properties. Operations on the $B$ and $F$ polynomials, such as m. b, produce an incompatibility warning.

2 Designate the model to continue using double matrices for the $B$ and $F$ polynomials for backward compatibility.

```
m=setPolyFormat(m,'double')
```

The following message at the MATLAB prompt indicates that the model is backward compatible:
(model configured to operate in backward compatibility mode)
3 Extract pole and zero information from the model using matrix syntax.

Poles1 $=\operatorname{roots}(m . f(1,:))$
Zeros1 $=\operatorname{roots}(m . b(1,:))$
See Also idpoly | get | set | polydata | tfdata
How To

- "Extracting Numerical Model Data"


## Purpose Modify value of model parameters

```
Syntax
sys = setpvec(sys0,par)
sys = setpvec(sys0,par,'free')
sys = setpvec(sys0,par,'free')
```


## Input <br> Arguments

\author{

## Description

 <br> Syntax}
sys = setpvec(sys0, par) modifies the value of the parameters of the identified model sys0 to the value specified by par.
par must be of length nparams(sys0). nparams(sys0) returns a count of all the parameters of sys0.
sys = setpvec(sys0,par,'free') modifies the value of all the free estimation parameters of sys0 to the value specified by par.
par must be of length nparams(sys0,'free'). nparams(sys0,'free') returns a count of all the free parameters of sys0.

## sys0

Identified model containing the parameters whose value is modified to par.

## par

Replacement value for the parameters of the identified model sys0.
For the syntax sys = setpvec(sys0, par), par must be of length nparams (sys0). nparams(sys0) returns a count of all the parameters of sys0.

For the syntax sys = setpvec(sys0,par,'free'), par must be of length nparams(sys0,'free'). nparams(sys0,'free') returns a count of all the free parameters of sys0.

Use NaN to denote unknown parameter values.
If sys0 is an array of models, then specify par as a cell array with an entry corresponding to each model in sys0.

```
Output
Arguments
Examples
sys
Identified model obtained from sys0 by updating the values of the specified parameters.
Modify the parameter values of a transfer function model.
The goal here is to ultimately use the transfer function model to initialize a model estimation.
```

```
sys0 = idtf(1,[1 2]);
```

sys0 = idtf(1,[1 2]);
par = [1; NaN; 0];
par = [1; NaN; 0];
sys = setpvec(sysO,par);

```
sys = setpvec(sysO,par);
```

Modify the value of the free parameters of a transfer function model.

```
sys0 = idtf([1 0],[1 2 0]);
sys0.Structure.den.Free(3) = false
par = [1; 2; 1]
sys = setpvec(sys0,par,'free');
```

See Also getpvec | setcov | nparams

Purpose Set matrix structure for idss model objects

Note setstruc will be removed in a future release. Use setpvec and the Structure property of idss objects instead.

```
Syntax
setstruc (M,As,Bs,Cs,Ds.Ks,XOs)
setstruc (M,Mods)
setstruc (M,As,Bs,Cs,Ds.Ks,XOs)
is the same as
set(M,'As',As,'Bs',Bs,'Cs',Cs,'Ds',Ds,'Ks',Ks,'X0s',X0s)
```

Use empty matrices for structure matrices that should not be changed. You can omit trailing arguments.

In the alternative syntax, Mods is a structure with field names As, Bs, etc., with the corresponding values of the fields.

## See Also <br> idss

## Purpose

## Syntax <br> sgrid

$\operatorname{sgrid}(z, w n)$

Generate s-plane grid of constant damping factors and natural frequencies

## Description

sgrid generates, for pole-zero and root locus plots, a grid of constant damping factors from zero to one in steps of 0.1 and natural frequencies from zero to $10 \mathrm{rad} / \mathrm{sec}$ in steps of one rad $/ \mathrm{sec}$, and plots the grid over the current axis. If the current axis contains a continuous $s$-plane root locus diagram or pole-zero map, sgrid draws the grid over the plot.
sgrid(z,wn) plots a grid of constant damping factor and natural frequency lines for the damping factors and natural frequencies in the vectors $z$ and wn, respectively. If the current axis contains a continuous $s$-plane root locus diagram or pole-zero map, sgrid (z,wn) draws the grid over the plot.
Alternatively, you can select Grid from the right-click menu to generate the same s-plane grid.

## Examples

Plot $s$-plane grid lines on the root locus for the following system.

$$
H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3}
$$

You can do this by typing

```
H = tf([2 5 1],[1 2 3])
Transfer function:
2 s^2 + 5 s + 1

 s^2 + 2 s + 3
rlocus(H)
sgrid
```



See Also pzmap | rlocus | zgrid

## Purpose

Display confidence regions on response plots for identified models
showConfidence(plot_handle) showConfidence(plot_handle,sd)

## Input Arguments

## Examples

showConfidence(plot_handle) displays the confidence region on the response plot, with handle plot_handle, for an identified model.
showConfidence (plot_handle, sd) displays the confidence region for sd standard deviations.

## plot_handle

Response plot handle.
plot_handle is the handle for the response plot of an identified model on which the confidence region is displayed. It is obtained as an output of one of the following plot commands: bodeplot, stepplot, impulseplot, nyquistplot and iopzplot.

## sd

Standard deviation of the confidence region. A common choice is 3 standard deviations, which gives $99.7 \%$ significance.

```
Default:
getoptions(plot_handle,'ConfidenceRegionNumberSD')
```


## View Confidence Region for Identified Model

Show the confidence bounds on the bode plot of an identified ARX model.
Obtain identified model and plot its bode response.

```
load iddata1 z1
sys = arx(z1, [2 2 1]);
h = bodeplot(sys);
```

z1 is an iddata object that contains time domain system response data.

## showConfidence

sys is an idpoly model containing the identified polynomial model.
$h$ is the plot handle for the bode response plot of sys.
Show the confidence bounds for sys.
showConfidence(h);


This plot depicts the confidence region for 1 standard deviation.

## Specify the Standard Deviation of the Confidence Region

Show the confidence bounds on the bode plot of an identified ARX model.
Obtain identified model and plot its bode response.

```
load iddata1 z1
sys = arx(z1, [2 2 1]);
h = bodeplot(sys);
```

z1 is an iddata object that contains time domain system response data. sys is an idpoly model containing the identified polynomial model. $h$ is the plot handle for the bode response plot of sys.

Show the confidence bounds for sys using 2 standard deviations.
sd = 2;
showConfidence(h,sd);
sd specifies the number of standard deviations for the confidence region displayed on the plot.


## Alternatives You may turn on the confidence region display on a response plot interactively. Right-click on the response plot and select Characteristics > Confidence Region.

See Also bodeplot | stepplot | impulseplot | nyquistplot | iopzplot

## sigmoidnet

## Purpose

## Syntax

## Description

Class representing sigmoid network nonlinearity estimator for nonlinear ARX and Hammerstein-Wiener models
s=sigmoidnet('NumberOfUnits', N) s=sigmoidnet(Property1,Value1,...PropertyN,ValueN)
sigmoidnet is an object that stores the sigmoid network nonlinear estimator for estimating nonlinear ARX and Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
s=sigmoidnet('NumberOfUnits', N) creates a sigmoid nonlinearity estimator object with $N$ terms in the sigmoid expansion.
$s=$ sigmoidnet (Property1, Value1, .. PropertyN, ValueN) creates a sigmoid nonlinearity estimator object specified by properties in "sigmoidnet Properties" on page 2-807.
Use evaluate $(s, x)$ to compute the value of the function defined by the sigmoidnet object s at $x$.

Tips
Use sigmoidnet to define a nonlinear function $y=F(x)$, where $y$ is scalar and $x$ is an $m$-dimensional row vector. The sigmoid network function is based on the following expansion:

$$
\begin{aligned}
F(x)=(x-r) P L & +a_{1} f\left((x-r) Q b_{1}+c_{1}\right)+\ldots \\
& +a_{n} f\left((x-r) Q b_{n}+c_{n}\right)+d
\end{aligned}
$$

where $f$ is the sigmoid function, given by the following equation:

$$
f(z)=\frac{1}{e^{-z}+1} .
$$

$P$ and $Q$ are m-by-p and m-by-q projection matrices. The projection matrices $P$ and $Q$ are determined by principal component analysis of estimation data. Usually, $\mathrm{p}=\mathrm{m}$. If the components of $x$ in the estimation data are linearly dependent, then $p<m$. The number of columns of $Q$,
q , corresponds to the number of components of x used in the sigmoid function.

When used in a nonlinear ARX model, q is equal to the size of the NonlinearRegressors property of the idnlarx object. When used in a Hammerstein-Wiener model, $\mathrm{m}=\mathrm{q}=1$ and $Q$ is a scalar.
$r$ is a $1-b y$-m vector and represents the mean value of the regressor vector computed from estimation data.
$d, a$, and $c$ are scalars.
$L$ is a $\mathrm{p}-b y-1$ vector.
$b$ are $q-b y-1$ vectors.
sigmoidnet Properties

You can include property-value pairs in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:

```
% List all property values
get(s)
% Get value of NumberOfUnits property
s.NumberOfUnits
```

You can also use the set function to set the value of particular properties. For example:
set(s, 'LinearTerm', 'on')
The first argument to set must be the name of a MATLAB variable.

## sigmoidnet

| Property Name | Description |
| :---: | :---: |
| NumberOfUnits | Integer specifies the number of nonlinearity units in the expansion. <br> Default=10. <br> For example: <br> sigmoidnet (H, 'NumberOfUnits', 5) |
| LinearTerm | Can have the following values: <br> - ' on '—Estimates the vector $L$ in the expansion. <br> - 'off'-Fixes the vector $L$ to zero. <br> For example: <br> sigmoidnet(H, 'LinearTerm', 'on') |
| Parameters | A structure containing the parameters in the nonlinear expansion, as follows: <br> - Regressormean: 1-by-m vector containing the means of $x$ in estimation data, $r$. <br> - NonLinearSubspace: m-by-q matrix containing $Q$. <br> - LinearSubspace: m-by-p matrix containing $P$. <br> - LinearCoef: p-by-1 vector $L$. <br> - Dilation: $q$-by-n matrix containing the values $b_{n}$. <br> - Translation: $1-b y$-n vector containing the values $c_{n}$. <br> - OutputCoef: n -by-1 vector containing the values $a_{n}$. <br> - OutputOffset: scalar d. <br> Typically, the values of this structure are set by estimating a model with a sigmoidnet nonlinearity. |

## sigmoidnet

Algorithms sigmoidnet uses an iterative search technique for estimating parameters.
Examples Use sigmoidnet to specify the nonlinear estimator in nonlinear ARX and Hammerstein-Wiener models. For example:
m=nlarx(Data,Orders,sigmoidnet('num',5));
See Also nlarx | nlhw

Tips

Purpose
y $=$ sim(sys,data)
y $=$ sim(sys,data,opt)
[y,y_sd] = sim(sys,data,___)
[y,y_sd, x] = sim(sys,data,___)
Simulate response of identified models to arbitrary inputs

Syntax<br>\section*{Description}

$y=\operatorname{sim}($ sys, data) simulates the response an identified model, sys, using the input data, data. y is the simulation output. option set, opt, to specify simulation behavior. deviation, y_sd, for sys. x , for state-space models. identified models:

- simulation of nonlinear models
- simulation with additive noise
- incorporation of signal offsets
- frequency-domain simulation (linear models only) inputs use lsim.
$y=\operatorname{sim}(s y s, d a t a, o p t)$ simulates the system response using the
[y,y_sd] = sim(sys,data, __ ) also returns the estimated standard
$\left[y, y \_s d, x\right]=\operatorname{sim}(s y s, d a t a, \ldots$ ) also returns the state trajectory,
- sim extends lsim to facilitate additional features relevant to
- computation of response standard deviation (linear models only)
- simulations using different intersample behavior for different

To obtain the simulated response without any of the above operations,

- You can specify initial conditions for simulation by creating an option set using simOptions and then setting the InitialCondition option appropriately.

For multi-experiment data, you can configure each experiment's initial conditions individually.

- You can simulate the initial condition response of time-series models (models with no inputs) using sim. To do this, specify data as an $N s$-by- 0 signal, where $N s$ is the number of samples. As with input-output models, you can study the effect of noise on the response by using the AddNoise and NoiseData simulation options. For more information regarding these simulation options, see simOptions.

For example:

```
load iddata9 z9;
sys = ar(z9,4,'ls');
data = iddata([],zeros(512,0),z9.Ts);
opt = simOptions('AddNoise',true);
y = sim(sys,data,opt);
```

- You can specify a custom noise signal to be added to the simulated response by creating an option set using simOptions and then setting the NoiseData option appropriately.


## Input Arguments

## sys

Identified model.
sys may be a linear or nonlinear identified model.

## data

Simulation input data.
Specify data as an iddata object, using only the input channels.
If sys is a linear model, you can use either time- or frequency-domain data. If sys is a nonlinear model, you can use only time-domain data.

For time-domain simulation of discrete-time systems, data may also be specified as a matrix whose columns correspond to each input channel.

If you do not have data from an experiment, use idinput to generate signals of various characteristics.

## opt

Simulation options.
opt is an option set that specifies the following:

- signal offsets
- initial condition handling
- additive noise

Use simOptions to create the options set.

## Output <br> Arguments

y
Simulated response.
y is an iddata model representing the simulated response for sys using data as the simulation input.

If data represents time-domain data, then $y$ is the simulated response for the time vector corresponding to data.

If data represents frequency-domain data, then y contains the Fourier transform of the corresponding sampled time-domain output signal obtained by the multiplication of the frequency response of sys, $G(w)$ and $U(w)$.

For multi-experiment data, y is a corresponding multi-experiment iddata object.
y_sd
Estimated standard deviation of the simulated response for linear models.
y_sd is derived using first order sensitivity considerations (Gauss approximation formula).

For nonlinear models, y_sd is [].

## $\mathbf{x}$

Estimated state trajectory for state-space models.
Relevant only if sys is a state-space model (idss, idgrey or idnlgrey).
x is an $N s$-by- $N x$ matrix, where $N s$ is the number of samples and $N x$ is the number of states.

## Examples Simulate Model Response

Simulate the response of an identified model.
Obtain the identified model.
load iddata2 z2;
sys = tfest(z2,3);
sys is an idtf model that encapsulates the third-order transfer function estimated for the measured data z2.

Simulate the model.
sim(sys,z2);


## Specify Simulation Option

Simulate the model response of an identified model. Specify simulation options to study the contribution of noise to the simulated model response.

Obtain the identified model.
load iddata2 z2;
sys = tfest(z2,3);
sys is an idtf model that encapsulates the third-order transfer function estimated for the measured data $z 2$.

Create a simulation option set that adds noise to the simulated model response.

```
e = randn(length(z2.u),1);
opt = simOptions('AddNoise',true,'NoiseData',e);
```

e represents white, Gaussian noise.
opt is an option set that specifies the addition of noise data, e, to the simulated model response. You specify the noise data vector, e, that is added to the simulated model response by using the option NoiseData.

Obtain the simulated model response.
sim(sys,z2,opt);


Alternatives

See Also

- Use simsd for a Monte-Carlo method of computing the standard deviation of the response.


## Purpose

Syntax
YS $=\operatorname{sim}(M O D E L, U)$
YS = sim(MODEL, U,'Noise')
YS $=$ sim(MODEL, U,'InitialState', INIT)
Simulate nonlinear ARX model

Input
Arguments
$Y S=\operatorname{sim}(M O D E L, U)$ simulates a dynamic system with an idnlarx model.

YS = sim(MODEL, U, 'Noise') produces a noise corrupted simulation with an additive Gaussian noise scaled according to the value of the NoiseVariance property of MODEL.
$Y S=\operatorname{sim}(M O D E L, U, ' I n i t i a l S t a t e ', I N I T)$ specifies the initial conditions for simulation using various options, such as numerical initial state vector or past I/O data.

To simulate the model with user-defined noise, set the input $U=$ [UIN $E$ ], where UIN is the input signal and $E$ is the noise signal. UIN and $E$ must both be one of the following:

- iddata objects: E stores the noise signals as inputs, where the number of inputs matches the number of model outputs.
- Matrices: E has as many columns as there are noise signals, corresponding to the number of model outputs.
- MODEL: idnlarx model object.
- U: Input data for simulation, an iddata object (where only the input channels are used) or a matrix. For simulations with noisy data, U contains both input and noise channels.
- INIT: Initial condition specification. INIT can be one of the following:
- A real column vector X0, for the state vector corresponding to an appropriate number of output and input data samples prior to the simulation start time. To build an initial state vector from a given set of input-output data or to generate equilibrium states, see data2state(idnlarx), findstates(idnlarx) and


## sim(idnlarx)

## Output Arguments

findop(idnlarx). For multi-experiment data, XO may be a matrix whose columns give different initial states for different experiments.

- 'z': (Default) Zero initial state, equivalent to a zero vector of appropriate size.
- iddata object containing output and input data samples prior to the simulation start time. If it contains more data samples than necessary, only the last samples are taken into account. This syntax is equivalent to sim(MODEL, U,'InitialState', data2state(MODEL, INIT)), where data2state(idnlarx) transforms the iddata object INIT to a state vector.
- YS: Simulated output. An iddata object if $U$ is an iddata object, a matrix otherwise.

Note If sim is called without an output argument, MATLAB software displays the simulated output(s) in a plot window.

## Examples Simulation of a SISO idnlarx model

In this example you simulate a single-input single-output idnlarx model M around a known equilibrium point, with an input level of 1 and output level of 10 .

1 Load the sample data.
load iddata2;
2 Estimate an idnlarx model from the data.
M = nlarx(z2, [2 2 1], 'tree');

3 Estimate current states of model based on past data.

```
x0 = data2state(M, struct('Input',1, 'Output', 10));
```

4 Simulate the model using the initial states returned by data2state.

```
sim(M, z2, 'init', x0);
```


## Continuing from End of Previous Simulation

In this example you continue the simulation of a model from the end of a previous simulation run.

1 Estimate the idnlarx model from data.

```
load iddata2
```

M = nlarx(z2, [2 2 1], 'tree'); \% idnlarx model

2 Simulate the model using first half of input data of z2

```
u1 = z2(1:200,[]);
% Simulate starting from zero initial states
ys1 = sim(M, u1, 'init', 'z');
```

3 Start another simulation, using the same states of the model from when the first simulation ended. For the second simulation, you use the second half of the input data of $z 2$.

```
u2 = z2(201:end, []);
```

4 In order to set the initial states for second simulation correctly, package input u1 and output ys 1 from the first simulation into one iddata object.

```
firstSimData = [ys1,u1];
```

5 Pass this data as initial conditions for the next simulation.

```
ys2 = sim(M, u2, 'init', firstSimData);
```

6 Verify the two simulations by comparing to a complete simulation using all the input data of $z 2$.

```
uTotal = z2(:,[]); % extract the whole input data
ysTotal = sim(M, uTotal, 'init', 'z');
% Compare the values of ys1, ys2 and ysTotal.
% ys1 should be equal to first half of ysTotal.
% ys2 should be equal to the second half of ysTotal
%
% plot the three responses
plot(ys1,'b', ys2, 'g', ysTotal, 'k*')
```

MATLAB software responds with a plot showing the three responses, with ysTotal overlaying ys1 and ys2 to verify that they match.


## Matching Model Response to Output Data

In this example, you estimate initial states of model $M$ such that the response best matches the output in data set $z 2$.

1 Load the sample data and create data object z2.

```
load iddata2;
z2 = z2(1:50);
```

2 Estimate idnlarx model from data.

```
M = nlarx(z2,[4 3 2],'wave');
```

3 Estimate initial states of $M$ to best fit $z 2 . y$ in the simulated response.

```
x0 = findstates(M,z2,[],'sim');
```

4 Simulate the model.

```
ysim = sim(M, z2.u, 'init', x0)
```

5 Compare ysim with the output signal in z2:
time = z2.SamplingInstants;
plot(time, ysim, time, z2.y,'.')

## Simulation Near Steady State with Known Input and Unknown Output

In this example you start simulation of a model near steady state, where the input is known to be 1 , but the output is unknown.

- Load sample data and create data object z2.
load iddata2
z2 = z2(1:50);
- Estimate idnlarx model from data.

```
M = nlarx(z2, [4 3 2], 'wave');
```

- Determine equilibrium state values for input 1 and the unknown target output.

```
x0 = findop(M, 'steady', 1, NaN);
```

- Simulate the model using initial states x0.

```
sim(M, z2.u, 'init', xO)
```

See Also
predict | findop(idnlarx) | data2state(idnlarx) | findstates(idnlarx)

## Purpose <br> Syntax <br> Description

Simulate nonlinear ODE model

```
YS = sim(NLSYS,DATA)
YS = sim(NLSYS,DATA,'Noise');
YS = sim(NLSYS,DATA,XOINIT);
YS = sim(NLSYS,DATA,'Noise',XOINIT);
YS = sim(NLSYS,DATA,'Noise','InitialState',XOINIT);
[YS, YSD, XFINAL] = sim(NLSYS,DATA,'Noise','InitialState',
 XOINIT);
```

YS = sim(NLSYS,DATA, 'Noise'); simulates the model with Gaussian
noise added to YS.
YS = sim(NLSYS,DATA,XOINIT); simulates the model with the
specified initial states.
YS = sim(NLSYS,DATA, 'Noise' ,XOINIT) ; simulates the model with
the specified initial states and with Gaussian noise added.
YS = sim(NLSYS, DATA, 'Noise','InitialState',XOINIT);
simulates the model with the specified initial states.
[YS, YSD, XFINAL] =
sim(NLSYS,DATA,'Noise','InitialState',XOINIT); performs
simulation starting with the specified initial states and with
Gaussian noise added, and returns the final states of the model
after the simulation is completed.

To simulate the model with user-defined noise, set the input DATA = [UIN E], where UIN is the input signal and $E$ is the noise signal. UIN and $E$ must both be one of the following:

- iddata objects: E stores the noise signals as inputs, where the number of inputs matches the number of model outputs.
- Matrices: E has as many columns as there are noise signals, corresponding to the number of model outputs.


## sim(idnlgrey)

## Input <br> Arguments

- NLSYS: idnlgrey model object.
- DATA: Input-noise data [U E]. If E is omitted and 'Noise' is not given as an input argument, then a noise-free simulation is obtained. If $E$ is omitted and 'Noise' is given as an input argument, then Gaussian noise created by randn(size(YS)) *sqrtm (NLSYS.NoiseVariance) will be added to YS. If both E and 'Noise' are given, then E specifies the noise to add to YS. For time-continuous idnlgrey objects, DATA passed as a matrix will lead to that the data sample interval, Ts, is set to one.
- XOINIT: Initial states. Can have the following values:
- 'zero' : Zero initial state $x(0)$ with all states fixed (nlsys.InitialStates.Fixed is thus ignored).
- 'fixed ' (default): Struct array (NLSYS.InitialState) determines the values of the model initial states and all states are fixed. (NLSYS.InitialStates.Fixed is ignored). Same as 'model'.
- vector/matrix: Column vector of initial state values. For multiple experiment DATA, XOINIT may be a matrix whose columns give different initial states for each experiment. All initial states are kept fixed (nlsys. InitialStates. Fixed is thus ignored).
- struct array : Nx-by-1 structure array with fields:
- Name: Name of the state (a string).
- Unit: Unit of the state (a string).
- Value: Value of the states (a finite real 1-by-Ne vector, where Ne is the number of experiments.)
- Minimum: Minimum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same minimum value).
- Maximum: Maximum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same maximum value).


## Output Arguments

- YS: Simulated output. If DATA is an iddata object, then YS will also be an iddata object. Otherwise, YS will be a matrix where the $k$ :th output is found in the $k$ :th column of YS. If DATA is a multiple-experiment iddata object, then YS will be a multiple experiment object as well.
- YSD: Empty vector ([].) In the future, it will contain the estimated standard deviation of the simulated output.
- XFINAL: Final states computed. In the single experiment case it is a column vector of length Nx. For multi-experiment data, XFINAL is an Nx-by-Ne matrix with the ith column specifying the initial state of experiment i.

Note If sim is called without an output argument, MATLAB software displays the simulated output(s) in a plot window.

## Examples

In this example you simulate an idnlgrey model for a data set $z$. This

- Fixed: True (or a 1-by-Ne vector of True values). Any false value is ignored. example uses the nlgr model created in idnlgreydemo2.

1 Load the data set and create an idnlgrey model.

```
load twotankdata;
```

2 Estimate the idnlgrey model.

```
% Specify file.
FileName = 'twotanks_c';
% Specify model orders [ny nu nx].
Order = [1 1 2];
% Specify initial parameters.
Parameters = {0.5; 0.0035; 0.019; ...
 9.81; 0.25; 0.016};
```


## sim(idnlgrey)

```
% Specify initial states.
InitialStates = [0; 0.1];
Ts = 0;
nlgr = idnlgrey(FileName, Order, Parameters, ...
 InitialStates, Ts, ...
 'Name', 'Two tanks');
```

3 Create an iddata object $z$ from data $z$ (from twotankdata.mat).

```
z = iddata([], u, 0.2, 'Name', 'Two tanks');
```

4 Simulate the model using the input signal from the data z .

```
sim(nlgr,z)
```

See Also
findstates(idnlgrey) | pe | pem | predict

## Purpose

Simulate Hammerstein-Wiener model
Syntax
YS $=\operatorname{sim}(M O D E L, U)$
YS = sim(MODEL,U,'Noise')
YS = sim(MODEL,U,'InitialState',INIT)

## Description

Input
Arguments
YS $=\operatorname{sim}(M O D E L, U)$ simulates the output of an idnlhw model.
YS = sim(MODEL, U, 'Noise') simulates the model output with an additive Gaussian noise scaled according to the value of the NoiseVariance property of MODEL. for starting the simulation. $E$ ], where UIN is the input signal and $E$ is the noise signal. UIN and $E$ must both be one of the following:

- iddata objects: E stores the noise signals as inputs, where the number of inputs matches the number of model outputs.
- Matrices: E has as many columns as there are noise signals, corresponding to the number of model outputs.
- MODEL: idnlhw model object.
- U: Input data for simulation, which is an iddata object (where only

YS = sim(MODEL,U,'InitialState',INIT) specifies initial conditions

To simulate the model with user-defined noise, set the input $U=$ [UIN the input channels are used) or a matrix. For simulations with noisy data, $U$ contains both input and noise channels.

- INIT: Initial condition for simulation. INIT has one of the following values:
- Vector of initial state values. To estimate an initial state vector from input-output data or to generate equilibrium states, see the findstates(idnlhw) and findop(idnlhw) reference pages. For multiple-experiment data, enter a matrix with the same number of columns as the number of experiments.


## sim(idnlhw)

- 'z': (Default) Vector containing zeros and corresponding to a system starting from rest.


## Output Arguments

- YS: Simulated output, which is an iddata object when U is an iddata object, or a matrix otherwise.

Note If sim is called without an output argument, MATLAB software displays the simulated output(s) in a plot window.

## Examples

## Simulation Using Initial States to Best Fit Model Response to Measured Output

In this example you simulate the model output using initial states that minimize the error between the simulated and the measured output. $z 2$ is the measured data.

1 Load the sample data.
load iddata2
2 Create a Hammerstein-Wiener model.

```
M = nlhw(z2,[4 3 2],'wave','pwl');
```

3 Compute the initial states that best fit the model response to the measured output.
x0 = findstates(M,z2);
4 Simulate the model using the estimated initial states.

```
ysim = sim(M,z2.u,'init',x0)
```

5 Compare ysim to output signal in z2:
t = z2.samp;

```
plot(t, ysim, t, z2.y)
```


## Simulating a Hammerstein-Wiener Model at Steady-State with Known Input and Unknown Output

In this example, you simulate a single-input single-output idnlhw model about a steady-state operating point, where the input level is known to be 1 and the output level is unknown.

1 Load the sample data.
load iddata2
2 Create a Hammerstein-Wiener model.
M = nlhw(z2,[4 3 2],'wave','pwl');

3 Compute steady-state operating point values corresponding to an input level of 1 and an unknown output level.

```
x0 = findop(M,'steady',1,NaN);
```

4 Simulate the model using the estimated initial states.
sim(M,z2.u,'init',x0)

See Also
findop(idnlhw) | findstates(idnlhw) | predict

## simOptions

## Purpose Option set for sim

```
Syntax opt = simOptions
opt = simOptions(Name,Value)
```

Description

## Input <br> Arguments

opt $=$ simOptions creates the default options set for sim.
opt $=$ simOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

## InitialCondition

Specify initial conditions.
InitialCondition takes one of the following:

- 'z' - Zero initial conditions.
- x0 - Numerical column vector denoting initial states. For multi-experiment data, use a matrix with $N e$ columns, where $N e$ is the number of experiments. Use this option for state-space models (idss and idgrey) only.
- io - Structure with the following fields:
- Input
- Output

Use the Input and Output fields to specify the history for a time interval that starts before the start time of the data used by compare. In case the data used by compare is a time series model, specify Input as []. Use a row vector to denote a constant signal

## simOptions

value. The number of columns in Input and Output must always equal the number of input and output channels, respectively. For multi-experiment data, specify io as a struct array of Ne elements, where $N e$ is the number of experiments.

Default: []

## InputOffset

Input signal offset.
Specify as a column vector of length $N u$, where $N u$ is the number of inputs.

Use [ ] to indicate no offset.
For multi-experiment data, specify InputOffset as a Nu -by- Ne matrix.
Here $N u$ is the number of inputs and $N e$ is the number of experiments.
Each entry specified by InputOffset will be subtracted from the corresponding input data before it is used to simulate the model.

## Default: []

## OutputOffset

Output signal offset.
Specify as a column vector of length $N y$, where $N y$ is the number of outputs.

Use [] to indicate no offset.
For multi-experiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. Here $N y$ is the number of outputs and $N e$ is the number of experiments.

Each entry specified by OutputOffset will be added to the corresponding simulated response of the model.

Default: []

## simOptions

## AddNoise

Specify whether noise should be added to the response model or not.
Default: false

## NoiseData

Noise signal data.
Specify the noise signal, $e$, for the model

$$
y(t)=G u(t)+H e(t)
$$

Where $G$ is the transfer function from the input, $u(t)$, to the output, $y(t)$.
NoiseData is used for simulation only when AddNoise is true.
NoiseData takes one of the following:

- matrix - $N s$-by- $N y$ matrix, where $N s$ is the number of input data samples and $N y$ is the number of outputs. Each entry of this matrix is added to the corresponding output data point. Before addition, the noise is scaled according to the NoiseVariance property of the identified model used in simsd.

To obtain the right noise level, specify NoiseData as white noise with zero mean and unit covariance.

- cell array - For multi-experiment data, specify NoiseData as a cell array of $N e$ matrices. Here $N e$ is the number of experiments.
- [ ] - Gaussian noise is automatically specified as NoiseData.


## Default: []

## Output <br> Arguments

## opt

Option set containing the specified options for sim.

## simOptions

Examples Create Default Options Set for Model Simulation<br>Create a default options set for sim.<br>opt = simOptions;<br>\section*{Specify Options for Model Simulation}<br>Create an options set for sim using zero initial conditions and set the input offset to 5 .<br>opt = simOptions('InitialCondition','z','InputOffset',5);<br>Alternatively, use dot notation to set the values of opt.<br>opt = simOptions;<br>opt.InitialCondition = 'z';<br>opt.InputOffset = 5;

[^6]Purpose
Simulate linear models with uncertainty using Monte Carlo method
Syntax

```
simsd(sys,data)
simsd(sys,data,N)
simsd(sys,data,N,opt)
y = simsd(sys,data,N,opt)
[y,y_sd] = simsd(sys,data,N,opt)
```


## Description

Tips
simsd(sys, data) simulates and plots the response of 10 perturbed realizations of the identified model sys. Simulation input data, data, is used to compute the simulated response.

The parameters of the perturbed realizations are consistent with the parameter covariance of the original model, sys.
simsd(sys, data, $N$ ) simulates and plots the response of $N$ perturbed realizations of the identified model sys.
simsd(sys, data, $N$, opt) simulates the system response using the option set, opt, to specify simulation behavior.
$y=$ simsd(sys,data, $N$,opt) returns the simulation result as a cell array, $y$. No simulated response plot is produced.
[y,y_sd] = simsd(sys,data, $N$,opt) also returns the estimated standard deviation, y_sd, for the simulated response.
The parameter changes in the randomly selected models are scaled to be small (ca $0.1 \%$ ) compared to the parameter values. The response changes are then scaled up to correspond to one standard deviation. The scaling does not apply to free delays of idproc or idtf models.

- You can specify initial conditions for simulation by creating an option set using simsdOptions and then setting the InitialCondition option appropriately.
- simsd yields meaningful results only when sys contains information regarding parameter uncertainty. Use getcov to examine the parameter uncertainty for sys. For models with no parameter uncertainty data, the results of simsd match that of sim.


## Input Arguments

## data

Simulation input data.
Specify data as a time- or frequency-domain iddata object, with input channels only.

For time-domain simulation of discrete-time systems, data may also be specified as a matrix whose columns correspond to each input channel.

## N

Number of perturbed realizations for simulation.
Specify N as a positive integer.
Default: 10

## opt

Simulation options.
opt is an option set that specifies the following:

- signal offsets
- initial condition handling
- additive noise

Use simsdOptions to create the options set.

## Output <br> Arguments <br> $y$

Simulated response.
y is a cell array of $N+1$ elements, where $N$ is the number of perturbed realizations. y $\{1\}$ contains the nominal response for sys. The remaining elements contain the simulated response for the $N$ perturbed realizations.

## y_sd

Estimated standard deviation of the simulated response.
y _sd is derived by averaging the simulations results in y .

## Examples

## Simulate Estimated Model Using Monte-Carlo Method

Simulate an estimated model using the Monte-Carlo method for a specified number of model perturbations.

Obtain an identified model.

```
load iddata3
sys = ssest(z3,2)
```

sys is an idss model that encapsulates the estimated second-order state-space model for the measured data, z3.

Simulate the estimated model using the Monte-Carlo method. Specify the number of random model perturbations.
$\mathrm{N}=20$;
simsd(sys,z3,N)


[^7]
## simsdOptions

## Purpose Option set for simsd

Syntax $\quad$| opt | $=$ simsdOptions |
| ---: | :--- |
| opt | $=$ simsdOptions (Name, Value) |

Description opt $=$ simsdOptions creates the default options set for simsd.
opt $=$ simsdOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

## Input <br> Arguments

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

## InitialCondition

Specify initial conditions.
InitialCondition takes one of the following:

- 'z' - Zero initial conditions.
- x0 - Numerical column vector denoting initial states. For multi-experiment data, use a matrix with $N e$ columns, where $N e$ is the number of experiments. Use this option for state-space models (idss and idgrey) only.
- io - Structure with the following fields:
- Input
- Output

Use the Input and Output fields to specify the history for a time interval that starts before the start time of the data used by compare. In case the data used by compare is a time series model, specify Input as []. Use a row vector to denote a constant signal
value. The number of columns in Input and Output must always equal the number of input and output channels, respectively. For multi-experiment data, specify io as a struct array of Ne elements, where $N e$ is the number of experiments.

## InputOffset

Input signal offset.
Specify as a column vector of length $N u$, where $N u$ is the number of inputs.

Use [] to indicate no offset.
For multi-experiment data, specify InputOffset as a $N u$-by- $N e$ matrix. Here $N u$ is the number of inputs and $N e$ is the number of experiments.
Each entry specified by InputOffset will be subtracted from the corresponding input data before it is used to simulate the model.

Default: []

## OutputOffset

Output signal offset.
Specify as a column vector of length $N y$, where $N y$ is the number of outputs.

Use [] to indicate no offset.
For multi-experiment data, specify OutputOffset as a $N y$-by- $N e$ matrix. Here $N y$ is the number of outputs and $N e$ is the number of experiments.

Each entry specified by OutputOffset is added to the simulated response of the model.

Default: []

## AddNoise

## simsdOptions

Specify whether noise should be added to the response model or not.

> Default: false

## NoiseData

Noise signal data.
Specify the noise signal, $e$, for the model

$$
y(t)=G u(t)+H e(t)
$$

Where $G$ is the transfer function from the input, $u(t)$, to the output, $y(t)$.
NoiseData is used for simulation only when AddNoise is true.
NoiseData takes one of the following:

- matrix - Ns-by-Ny matrix, where $N s$ is the number of input data samples and $N y$ is the number of outputs. Each entry of this matrix is added to the corresponding output data point. Before addition, the noise is scaled according to the NoiseVariance property of the identified model used in simsd.

To obtain the right noise level, specify NoiseData as white noise with zero mean and unit covariance.

- cell array - For multi-experiment data, specify NoiseData as a cell array of $N e$ matrices. Here $N e$ is the number of experiments.
- [ ] - Gaussian noise is automatically specified as NoiseData.

Default: []

## Output Arguments

## opt

Option set containing the specified options for simsd.

## Examples Create Default Options Set for Model Simulation

Create a default options set for simsd.

```
opt = simsdOptions;
```


## Specify Options for Model Simulation

Create an options set for simsd using zero initial conditions and set the input offset to 5 .
opt = simsdOptions('InitialCondition','z','InputOffset',5);

Alternatively, use dot notation to set the values of opt.

```
opt = simsdOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;
```


## See Also simsd

## Purpose

Syntax

## Description

## Examples

 number of frequencies of FRD model```
size(sys)
```

size(sys)
d = size(sys)
d = size(sys)
Ny = size(sys,1)
Ny = size(sys,1)
Nu = size(sys,2)
Nu = size(sys,2)
Sk = size(sys,2+k)
Sk = size(sys,2+k)
Nf = size(sys,'frequency')

```
Nf = size(sys,'frequency')
``` a model array.
d = size(sys) returns: Ny outputs and Nu inputs inputs when sys is a model array. length of sys.frequency.

\section*{Example 1}

Query output/input/array dimensions of input-output model and

When invoked without output arguments, size(sys) returns a description of type and the input-output dimensions of sys. If sys is a model array, the array size is also described. For identified models, the number of free parameters is also displayed. The lengths of the array dimensions are also included in the response to size when sys is
- The row vector \(d=[\mathrm{Ny} \mathrm{Nu}]\) for a single dynamic model sys with
- The row vector \(d=\left[\begin{array}{ll}\text { Ny } & \text { Nu S1 S2 ... Sp] for an }\end{array}\right.\) S1-by-S2-by-...-by-Sp array of dynamic models with Ny outputs and Nu
\(N y=\) size (sys,1) returns the number of outputs of sys.
\(\mathrm{Nu}=\operatorname{size}(\mathrm{sys}, 2)\) returns the number of inputs of sys.
Sk = size(sys,2+k) returns the length of the \(k\)-th array dimension

Nf = size(sys,'frequency') returns the number of frequencies when sys is a frequency response data model. This is the same as the

Consider the model array of random state-space models
sys \(=\operatorname{rss}(5,3,2,3) ;\)
Its dimensions are obtained by typing
```

size(sys)
3x1 array of state-space models
Each model has 3 outputs, 2 inputs, and 5 states.

```

\section*{Example 2}

Consider the process model:
```

sys = idproc({'p1d', 'p2'; 'p3uz', 'p0'});

```

It's input-output dimensions and number of free parameters are obtained by typing:
```

size(sys)

```

Process model with 2 outputs, 2 inputs and 12 free parameters.
isempty | issiso | ndims | nparams

Purpose

Syntax

Description

\section*{Definitions}

\section*{Frequency Response Function}

Frequency response function describes the steady-state response of a system to sinusoidal inputs. For a linear system, a sinusoidal input of a specific frequency results in an output that is also a sinusoid with the same frequency, but with a different amplitude and phase. The frequency response function describes the amplitude change and phase shift as a function of frequency.
To better understand the frequency response function, consider the following description of a linear, dynamic system:
\[
y(t)=G(q) u(t)+v(t)
\]
where \(u(t)\) and \(y(t)\) are the input and output signals, respectively. \(G(q)\) is called the transfer function of the system-it captures the system
dynamics that take the input to the output. The notation \(G(q) u(t)\) represents the following operation:
\[
G(q) u(t)=\sum_{k=1}^{\infty} g(k) u(t-k)
\]
\(q\) is the shift operator, defined by the following equation:
\[
G(q)=\sum_{k=1}^{\infty} g(k) q^{-k} \quad q^{-1} u(t)=u(t-1)
\]
\(G(q)\) is the frequency-response function, which is evaluated on the unit circle, \(G\left(q=e^{i w}\right)\).

Together, \(G\left(q=e^{i w}\right)\) and the output noise spectrum \(\hat{\Phi}_{v}(\omega)\) are the frequency-domain description of the system.
The frequency-response function estimated using the Blackman-Tukey approach is given by the following equation:
\[
\hat{G}_{N}\left(e^{i \omega}\right)=\frac{\hat{\Phi}_{y u}(\omega)}{\hat{\Phi}_{u}(\omega)}
\]

In this case, ^ represents approximate quantities. For a derivation of this equation, see the chapter on nonparametric time- and frequency-domain methods in System Identification: Theory for the User, Second Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

\section*{Output Noise Spectrum}

The output noise spectrum (spectrum of \(v(t)\)) is given by the following equation:
\[
\hat{\Phi}_{v}(\omega)=\hat{\Phi}_{y}(\omega)-\frac{\left|\hat{\Phi}_{y u}(\omega)\right|^{2}}{\hat{\Phi}_{u}(\omega)}
\]

This equation for the noise spectrum is derived by assuming the linear relationship \(y(t)=G(q) u(t)+v(t)\), that \(u(t)\) is independent of \(v(t)\), and the following relationships between the spectra:
\[
\begin{aligned}
& \Phi_{y}(\omega)=\left|G\left(e^{i \omega}\right)\right|^{2} \Phi_{u}(\omega)+\Phi_{v}(\omega) \\
& \Phi_{y u}(\omega)=G\left(e^{i \omega}\right) \Phi_{u}(\omega)
\end{aligned}
\]
where the noise spectrum is given by the following equation:
\[
\Phi_{v}(\omega) \equiv \sum_{\tau=-\infty}^{\infty} R_{v}(\tau) e^{-i w \tau}
\]
\(\hat{\Phi}_{y u}(\omega)\) is the output-input cross-spectrum and \(\hat{\Phi}_{u}(\omega)\) is the input spectrum.

Alternatively, the disturbance \(v(t)\) can be described as filtered white noise:
\[
v(t)=H(q) e(t)
\]
where \(e(t)\) is the white noise with variance \(\lambda\) and the noise power spectrum is given by the following equation:
\[
\Phi_{v}(\omega)=\lambda\left|H\left(e^{i \omega}\right)\right|^{2}
\]

\section*{Examples}

Estimate frequency response with fixed resolution at 128 equally spaced, logarithmic frequency values between 0 (excluded) and п:
```

load iddata3;
z = z3; % z is an iddata object with Ts=1
g = spa(z);
bode(g)

```

Estimate frequency response with fixed resolution at logarithmically spaced frequencies:
```

% Define frequency vector
w = logspace(-2,pi,128);
% Compute frequency response
g= spa(z,[],w); % [] specifies the default lag window size
h = bodeplot(g);
showConfidence(h,3)
figure
h = spectrumplot(g);
showConfidence(h,3)
% The plots include confidence interval
% of 3 standard deviations

```

\section*{Algorithms}
spa applies the Blackman-Tukey spectral analysis method by following these steps:

1 Computes the covariances and cross-covariance from \(u(t)\) and \(y(t)\) :
\[
\begin{aligned}
& \hat{R}_{y}(\tau)=\frac{1}{N} \sum_{t=1}^{N} y(t+\tau) y(t) \\
& \hat{R}_{u}(\tau)=\frac{1}{N} \sum_{t=1}^{N} u(t+\tau) u(t) \\
& \hat{R}_{y u}(\tau)=\frac{1}{N} \sum_{t=1}^{N} y(t+\tau) u(t)
\end{aligned}
\]

This portion of the algorithm uses the covf function.

2 Computes the Fourier transforms of the covariances and the cross-covariance:
\[
\begin{aligned}
& \hat{\Phi}_{y}(\omega)=\sum_{\tau=-M}^{M} \hat{R}_{y}(\tau) W_{M}(\tau) e^{-i \omega \tau} \\
& \hat{\Phi}_{u}(\omega)=\sum_{\tau=-M}^{M} \hat{R}_{u}(\tau) W_{M}(\tau) e^{-i \omega \tau} \\
& \hat{\Phi}_{y u}(\omega)=\sum_{\tau=-M}^{M} \hat{R}_{y u}(\tau) W_{M}(\tau) e^{-i \omega \tau}
\end{aligned}
\]
where \(W_{M}(\tau)\) is the Hann window with a width (lag size) of \(M\). You can specify \(M\) to control the frequency resolution of the estimate, which is approximately equal \(2 \Pi / \mathrm{Mrad} /\) sampling interval.

By default, this operation uses 128 equally spaced frequency values between 0 (excluded) and n, where w = [1:128]/128*pi/Ts and Ts is the sampling interval of that data set. The default lag size of the Hann window is \(M=\min (\) length (data) \(/ 10,30)\). For default frequencies, uses fast Fourier transforms (FFT)-which is more efficient than for user-defined frequencies.

Note \(M=Y\) is in Table 6.1 of Ljung (1999). Standard deviations are on pages 184 and 188 in Ljung (1999).

3 Compute the frequency-response function \(\hat{G}_{N}\left(e^{i \omega}\right)\) and the output noise spectrum \(\hat{\Phi}_{v}(\omega)\).
\[
\hat{G}_{N}\left(e^{i \omega}\right)=\frac{\hat{\Phi}_{y u}(\omega)}{\hat{\Phi}_{u}(\omega)}
\]
\[
\Phi_{v}(\omega) \equiv \sum_{\tau=-\infty}^{\infty} R_{v}(\tau) e^{-i w \tau}
\]
spectrum is the spectrum matrix for both the output and the input channels. That is, if \(z=\) [data.OutputData, data.InputData], spectrum contains as spectrum data the matrix-valued power spectrum of z .
\[
S=\sum_{m=-M}^{M} E z(t+m) z(t)^{\prime} W_{M}\left(T_{s}\right) \exp (-i \omega m)
\]
' is a complex-conjugate transpose.

\author{
References \\ See Also \\ etfe | freqresp | idfrd | spafdr | bode | spectrum \\ How To \\ - "Identifying Frequency-Response Models" \\ - "Spectrum Normalization"
}

\section*{Purpose \\ Estimate frequency response and spectrum using spectral analysis with} frequency-dependent resolution

\section*{Syntax}
g = spafdr(data)
g = spafdr(data, Resol,w)

\section*{Description}
spafdr estimates the idfrd object containing transfer function and the noise spectrum \(\Phi_{v}\) of the general linear model
\[
y(t)=G(q) u(t)+v(t)
\]
where \(\Phi_{v}(\omega)\) is the spectrum of \(v(t)\).
data contains the output-input data as an iddata object. The data can be complex valued, and either time or frequency domain. It can also be an idfrd object containing frequency-response data.
\(g\) is returned as an idfrd object (see idfrd) with the estimate of
\(G\left(e^{i \omega}\right)\) at the frequencies \(\omega\) specified by row vector \(\mathrm{w} . \mathrm{g}\) also includes information about the spectrum estimate of \(\Phi_{v}(\omega)\) at the same frequencies. Both results are returned with estimated covariances, included in g. See idfrd. The normalization of the spectrum is the same as described under spa.

\section*{Frequencies}

The frequency variable \(w\) is either specified as a row vector of frequencies, or as a cell array \{wmin, wmax\}. In the latter case the covered frequencies will be 50 logarithmically spaced points from wmin to wmax. You can change the number of points to NP by entering \{wmin, wmax, NP\}.

Omitting w or entering it as an empty matrix gives the default value, which is 100 logarithmically spaced frequencies between the smallest and largest frequency in data. For time-domain data, this means from \(1 / N *\) Ts to \(\mathrm{pi}^{*}\) Ts, where Ts is the sampling interval of data and \(N\) is the number of data.

\section*{Resolution}

The argument Resol defines the frequency resolution of the estimates. The resolution (measured in \(\mathrm{rad} / \mathrm{s}\)) is the size of the smallest detail in the frequency function and the spectrum that is resolved by the estimate. The resolution is a tradeoff between obtaining estimates with fine, reliable details, and suffering from spurious, random effects: The finer the resolution, the higher the variance in the estimate. Resol can be entered as a scalar (measured in \(\mathrm{rad} / \mathrm{s}\)), which defines the resolution over the whole frequency interval. It can also be entered as a row vector of the same length as w. Then Resol(k) is the local, frequency-dependent resolution around frequency \(w(k)\).

The default value of Resol, obtained by omitting it or entering it as the empty matrix, is Resol \((k)=2(w(k+1)-w(k))\), adjusted upwards, so that a reasonable estimate is guaranteed. In all cases, the resolution is returned in the variable g.EstimationInfo.WindowSize.

\section*{Algorithms}

See Also

If the data is given in the time domain, it is first converted to the frequency domain. Then averages of \(Y(w) \operatorname{Conj}(U(w))\) and \(U(w) \operatorname{Conj}(U(w))\) are formed over the frequency ranges \(w\), corresponding to the desired resolution around the frequency in question. The ratio of these averages is then formed for the frequency-function estimate, and corresponding expressions define the noise spectrum estimate.

Purpose Output power spectrum of time series models

\section*{Syntax}
```

spectrum(sys)
spectrum(sys,{wmin, wmax})
spectrum(sys,w)
spectrum(sys1,...,sysN,w)
ps = spectrum(sys,w)
[ps,w] = spectrum(sys)
[ps,w,sdps] = spectrum(sys)

```

\section*{Description}
spectrum(sys) creates an output power spectrum plot of the identified
time series model sys. The frequency range and number of points are chosen automatically.
sys is a time series model, which represents the system:
\[
y(t)=H e(t)
\]

Where, \(e(t)\) is a Gaussian white noise and \(y(t)\) is the observed output.
spectrum plots abs \(\left(H^{\prime} H\right)\), scaled by the variance of \(e(t)\) and the sample time.

If sys is an input-output model, it represents the system:
\[
y(t)=G u(t)+H e(t)
\]

Where, \(u(t)\) is the measured input, \(e(t)\) is a Gaussian white noise and \(y(t)\) is the observed output.

In this case, spectrum plots the spectrum of the disturbance component \(\mathrm{He}(\mathrm{t})\).
spectrum(sys, \{wmin, wmax\}) creates a spectrum plot for frequencies ranging from wmin to wmax.
spectrum(sys,w) creates a spectrum plot using the frequencies specified in the vector \(w\).
spectrum(sys1,..., sysN,w) creates a spectrum plot of several identified models on a single plot. The w argument is optional.

You can specify a color, line style and marker for each model. For example:
```

spectrum(sys1,'r',sys2,'y--',sys3,'gx');

```
ps = spectrum(sys,w) returns the power spectrum amplitude of sys for the specified frequencies, w. No plot is drawn on the screen.
[ps,w] = spectrum(sys) returns the frequency vector, \(w\), for which the output power spectrum is plotted.
[ps,w,sdps] = spectrum(sys) returns the estimated standard deviations of the power spectrum.

For discrete-time models with sampling time Ts, spectrum uses the transformation \(z=\exp \left(j^{*} w^{*} T s\right)\) to map the unit circle to the real frequency axis. The spectrum is only plotted for frequencies smaller than the Nyquist frequency pi/Ts, and the default value 1 (time unit) is assumed when Ts is unspecified.

\section*{Input Arguments}

\section*{sys}

Identified model.
If sys is a time series model, it represents the system:
\[
y(t)=H e(t)
\]

Where, \(e(t)\) is a Gaussian white noise and \(y(t)\) is the observed output.
If sys is an input-output model, it represents the system:
\[
y(t)=G u(t)+H e(t)
\]

Where, \(u(t)\) is the measured input, \(e(t)\) is a Gaussian white noise and \(y(t)\) is the observed output.

\section*{wmin}

Minimum frequency of the frequency range for which the output power spectrum is plotted.

Specify wmin in rad/TimeUnit, where TimeUnit is sys.TimeUnit.

\section*{wmax}

Maximum frequency of the frequency range for which the output power spectrum is plotted.

Specify wmax in rad/TimeUnit, where TimeUnit is sys.TimeUnit.

\section*{w}

Frequencies for which the output power spectrum is plotted.
Specify w in rad/TimeUnit, where TimeUnit is sys.TimeUnit.

\section*{sys \(1, \ldots\), sysN}

Identified systems for which the output power spectrum is plotted.

\section*{Output Arguments}

\section*{ps}

Power spectrum amplitude.
If sys has Ny outputs, then ps is an array of size [Ny Ny length(w)]. Where ps(:,:,k) corresponds to the power spectrum for the frequency at \(w(k)\).

For amplitude values in dB , type \(\mathrm{psdb}=10 * \log 10(\mathrm{ps})\).
w
Frequency vector for which the output power spectrum is plotted.

\section*{sdps}

Estimated standard deviation of the power spectrum.
Examples Noise Spectrum of SISO Linear Identified ModelPlot the noise spectrum of a single-input, single-output linear identifiedmodel.
Obtain the identified model.
```

load iddata1 z1;
sys = n4sid(z1,2);

```
Plot the noise spectrum for the identified model.
```

spectrum(sys);

```

\section*{Output Spectrum of AR Model for 2-Mode Impulse Response}
Plot the output spectrum of an AR model, computed for a 2 -mode impulse response of a dynamic system.
Obtain the identified model.
```

load iddata9 z9
sys = ar(z9,4,'ls');

```
Plot the output spectrum of the identified model.
```

spectrum(sys);

```
See Also
bode | freqresp | ar | arx | armax | nlarx | forecast

Purpose
Syntax
```

spectrumplot(sys)
spectrumplot(sys,line_spec)
spectrumplot(sys1,line_spec1,...,sysN,line_specN)
spectrumplot(ax, ___)
spectrumplot(___, plot_options)
spectrumplot(sys,w)
h = spectrumplot(

```
\(\qquad\)
spectrumplot(sys) plots the disturbance spectrum of the model, sys. The software chooses the number of points on the plot and the plot frequency range.

If sys is a time-series model, its disturbance spectrum is the same as the model output spectrum. You generally use this function with time-series models.
spectrumplot(sys,line_spec) uses line_spec to specify the line type, marker symbol, and color.
spectrumplot(sys1,line_spec1,...,sysN,line_specN) plots the disturbance spectrum for one or more models on the same axes.

You can mix sys,line_spec pairs with sys models as in spectrumplot(sys1, sys2,line_spec2, sys3). spectrumplot automatically chooses colors and line styles in the order specified by the ColorOrder and LineStyleOrder properties of the current axes.
spectrumplot (ax, __) plots into the axes with handle ax. All input arguments described for the previous syntaxes also apply here.
spectrumplot(__, plot_options) uses plot_options to specify options such as plot title, frequency units, etc. All input arguments described for the previous syntaxes also apply here.
spectrumplot (sys,w) uses w to specify the plot frequencies.
- If \(w\) is specified as a 2 -element cell array, \{wmin, wmax\}, the plot spans the frequency range \{wmin, wmax\}.
- If \(w\) is specified as vector, the spectrum is plotted for the specified frequencies.

Specify w as radians/time_unit, where time_unit must equal sys.TimeUnit.
\(\mathrm{h}=\) spectrumplot (__) returns the handle to the spectrum plot. You use the handle to customize the plot. All input arguments described for the previous syntaxes also apply here.

\section*{Input \\ Arguments}
sys
Identified linear model.

\section*{line_spec}

Line style, marker, and color of both the line and marker.
Specify as one-, two-, or three-part string. The elements of the string can appear in any order. The string can specify only the line style, the marker, or the color.

For more information, see Lineseries Properties.
ax
Plot axes handle.
Specify as a double-precision value.
You can obtain the current axes handle by using the function, gca.

\section*{plot_options}

Plot customization options.
Specify as a plot options object.
You use the command, spectrumoptions, to create plot_options. For more information, type help spectrumoptions.

\section*{w}

Frequency range.
Specify in radians/time_unit, where time_unit must equal sys.TimeUnit.

\section*{Output \\ h}

Arguments
Plot handle for spectrum plot, returned as a double-precision value.

\section*{Examples}

\section*{Plot Model Output Spectrum for Identified Model}

Obtain the identified model.
load iddata9 z9
sys = ar(z9,4);
Plot the output spectrum for the model.
spectrumplot(sys);

\section*{Specify Line Width and Marker Style on Spectrum Plot}

Obtain the identified model.
load iddata9 z9
sys \(=\operatorname{ar}(z 9,4)\);
Specify the line width and marker style for the spectrum plot.
spectrumplot(sys,'k*--');
The three-part string, ' \(\mathrm{k}^{*}-\mathrm{-}^{\prime}\), specifies a dashed line (--). This line is black (k) with star markers (*).

\section*{Plot Multiple Models on the Same Axes}

Obtain multiple identified models.
load iddata9 z9
sys1 = ar(z9,4);
sys2 = ar(z9,2);
Plot the output spectrum for both models.
```

spectrumplot(sys1,'b*-',sys2,'g^:');
legend('sys1','sys2');

```


\section*{Specify Plot Axes for Spectrum Plot}

Obtain the axes handle for a plot.
```

load iddata9 z9
sys1 = ar(z9,4);
spectrumplot(sys1);
ax = gca;

```
ax is the handle for the spectrum plot axes.
Plot the output spectrum for another model on the specified axes.
sys2 = ar(z9,2);
```

hold on;
spectrumplot(ax,sys2,'r*--');
legend('sys1','sys2');

```


\section*{Specify Plot Options on Spectrum Plot}

Obtain the identified model.
load iddata9 z9
sys = ar(z9,4);
Specify the plot options.
plot_options = spectrumoptions;
```

plot_options.FreqUnits = 'Hz';
plot_options.FreqScale = 'linear';
plot_options.Xlim = {[0 20]};
plot_options.MagUnits = 'abs';

```

Plot the output spectrum for the model.
spectrumplot(sys, plot_options);

\section*{Specify Spectrum Plot Frequency Range}

Obtain the identified model.
```

load iddata9 z9

```
sys \(=\operatorname{ar}(z 9,4) ;\)

Specify the frequency range for the output spectrum plot for the model. spectrumplot(sys,\{1,1000\});

The 2 -element cell array \(\{1,1000\}\) specifies the frequency range from 1 \(\mathrm{rad} / \mathrm{s}\) to \(1000 \mathrm{rad} / \mathrm{s}\).

\section*{Get Plot Handle for Spectrum Plot Customization}

Obtain the identified model.
```

load iddata9 z9
sys = ar(z9,4);

```

Get the plot handle for the model spectrum plot.
h = spectrumplot(sys);
(Optional) Specify the plot options, using the plot handle.
setoptions(h,'FreqUnits','Hz','FreqScale','linear','Xlim', \{[0 20]\},'Ma

See Also
spectrum | getoptions | setoptions | showConfidenceAxes PropertiesLineseries Properties

\section*{Purpose State coordinate transformation for state-space model}

\section*{Syntax syst \(=\) ss2ss (sys, \(T\))}

Description Given a state-space model sys with equations
\[
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
\]
or the innovations form used by the identified state-space (IDSS) models:
\[
\begin{aligned}
\frac{d x}{d t} & =A x+B u+K e \\
y & =C x+D u+e
\end{aligned}
\]
(or their discrete-time counterpart), ss2ss performs the similarity transformation \(\bar{x}=T x\) on the state vector \(x\) and produces the equivalent state-space model sysT with equations.
\[
\begin{aligned}
& \dot{\bar{x}}=T A T^{-1} \bar{x}+T B u \\
& y=C T^{-1} \bar{x}+D u
\end{aligned}
\]
or, in the case of an IDSS model:
\[
\begin{aligned}
& \dot{\bar{x}}=T A T^{-1} \bar{x}+T B u+T K e \\
& y=C T^{-1} \bar{x}+D u+e
\end{aligned}
\]
sysT = ss2ss(sys, \(T\)) returns the transformed state-space model sys \(T\) given sys and the state coordinate transformation T. The model sys must be in state-space form and the matrix T must be invertible. ss2ss is applicable to both continuous- and discrete-time models.

\section*{Examples}

Perform a similarity transform to improve the conditioning of the \(A\) matrix.
\[
\begin{aligned}
& T=\text { balance(sys.a) } \\
& \text { sysb = ss2ss(sys,inv(T)) }
\end{aligned}
\]

See Also balreal | canon
\begin{tabular}{ll}
Purpose & Access state-space model data \\
Syntax & {\([a, b, c, d]=\) ssdata(sys) } \\
& {\([a, b, c, d, T s]=\) ssdata(sys) }
\end{tabular}

\section*{Description}

See Also
\([a, b, c, d]=\operatorname{ssdata}(s y s)\) extracts the matrix (or multidimensional array) data A, B, C, D from the state-space model (LTI array) sys. If sys is a transfer function or zero-pole-gain model (LTI array), it is first converted to state space. See ss for more information on the format of state-space model data.

If sys appears in descriptor form (nonempty E matrix), an equivalent explicit form is first derived.
If sys has internal delays, A, B, C, D are obtained by first setting all internal delays to zero (creating a zero-order Padé approximation). For some systems, setting delays to zero creates singular algebraic loops, which result in either improper or ill-defined, zero-delay approximations. For these systems, ssdata cannot display the matrices and returns an error. This error does not imply a problem with the model sys itself.
[a,b,c,d,Ts] = ssdata(sys) also returns the sample time Ts.
You can access the remaining LTI properties of sys with get or by direct referencing. For example:
sys.statename
For arrays of state-space models with variable numbers of states, use the syntax:
[a,b,c,d] = ssdata(sys,'cell')
to extract the state-space matrices of each model as separate cells in the cell arrays a, b, c, and d.
dssdata | get \| getdelaymodel | idssdata \| set \| ss | tfdata | zpkdata

\section*{Purpose}

Estimate state-space model using time or frequency domain data
Syntax
```

sys = ssest(data,nx)
sys = ssest(data,nx,Name,Value)
sys = ssest(data,init_sys)
sys = ssest(data,___,opt)

```

Description

\section*{Input Arguments}
sys \(=\) ssest (data, \(n x\)) estimates a state-space model, sys, using time or frequency domain data, data. sys is a state-space model of order nx and represents:
\[
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t)+K e(t) \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
\]

Here, \(A, B, C, D\) and \(K\) are state-space matrices. \(u(t)\) is the input, \(y(t)\) is the output, \(e(t)\) is the disturbance and \(x(t)\) is the vector of nx states. All the entries of \(A, B, C\), and \(K\) are free estimation parameters. The elements of the \(D\) matrix, however, are fixed to zero. That is, there is no feedthrough.
sys = ssest(data, nx, Name, Value) estimates the model using the additional options specified by one or more Name, Value pair arguments.
sys = ssest(data,init_sys) estimates a state-space model using the dynamic system init_sys to configure the initial parameterization.
sys = ssest(data, __ , opt) estimates the model using an option set, opt.

\section*{data}

Estimation data.
For time domain estimation, data must be an iddata object containing the input and output signal values.

For frequency domain estimation, data can be one of the following:
- recorded frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency’

\section*{nx}

Order of estimated model.
Specify \(n x\) as a positive integer. \(n x\) may be a scalar or a vector. If \(n x\) is a vector, then ssest creates a plot which you can use to choose a suitable model order. The plot shows the Hankel singular values for models of different orders. States with relatively small Hankel singular values can be safely discarded. A default choice is suggested in the plot.
opt
Estimation options.
opt is an options set that specifies, among others, the following:
- estimation objective
- handling of initial conditions
- numerical search method to be used in estimation

Use ssestOptions to create the options set.

\section*{init_sys}

Dynamic system that configures the initial parameterization of sys.
If init_sys is an idss model, ssest uses the parameter values of init_sys as the initial guess for estimating sys. Constraints on the parameters of init_sys, such as fixed coefficients and minimum/maximum bounds are honored in estimating sys.

If init_sys is not an idss model, the software first converts init_sys to an idss model. ssest uses the parameters of the resulting model as the initial guess for estimation.

Use the Structure property of init_sys to configure initial guesses and constraints for the \(A, B, C, D\) and \(K\) matrices.
To specify an initial guess for, say, the \(A\) matrix of init_sys, set init_sys.Structure.a.Value as the initial guess.
To specify constraints for, say, the \(B\) matrix of init_sys:
- set init_sys.Structure.b.Minimum to the minimum \(B\) matrix value
- set init_sys.Structure.b.Maximum to the maximum \(B\) matrix value
- set init_sys.Structure.b.Free to indicate if entries of the \(B\) matrix are free parameters for estimation
You can similarly specify the initial guess and constraints for the other matrices.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{Ts}

Sampling time.
For continuous-time models, use Ts \(=0\). For discrete-time models, specify Ts as a positive scalar whose value is equal to the data sampling time.

Default: 0 (continuous-time)

\section*{InputDelay}

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period

Ts. For example, InputDelay \(=3\) means a delay of three sampling periods.
For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

\section*{Form}

Type of canonical form of sys.
Form is a string that takes one of the following values:
- 'modal' - obtainsys in modal form.
- 'companion' - obtain sys in companion form.
- 'free' - all entries of the \(A, B\) and \(C\) matrices are treated as free.
- 'canonical' - obtain sys in the observable canonical form [1].

Default: 'free'

\section*{Feedthrough}

Logical specifying direct feedthrough from input to output.
Feedthrough is a logical vector of length \(N u\), where \(N u\) is the number of inputs.

If Feedthrough is specified as a logical scalar, it is applied to all the inputs.

\section*{DisturbanceModel}

Specifies if the noise component, the \(K\) matrix, is to be estimated.
DisturbanceModel takes one of the following values:
- 'none' - Noise component is not estimated. The value of the \(K\) matrix, is fixed to zero value.
- 'estimate' - The \(K\) matrix is treated as a free parameter.

DisturbanceModel must be 'none' when using frequency domain data.

Default: 'estimate' (For time domain data)

\section*{Output Arguments}

\section*{Definitions}

\section*{Modal Form}

In modal form, \(A\) is a block-diagonal matrix. The block size is typically 1-by-1 for real eigenvalues and 2-by-2 for complex eigenvalues. However, if there are repeated eigenvalues or clusters of nearby eigenvalues, the block size can be larger.

For example, for a system with eigenvalues \(\left(\lambda_{1}, \sigma \pm j \omega, \lambda_{2}\right)\), the modal \(A\) matrix is of the form
\[
\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \sigma & \omega & 0 \\
0 & -\omega & \sigma & 0 \\
0 & 0 & 0 & \lambda_{2}
\end{array}\right]
\]

\section*{Companion Form}

In the companion realization, the characteristic polynomial of the system appears explicitly in the rightmost column of the \(A\) matrix. For a system with characteristic polynomial
\[
p(s)=s^{n}+\alpha_{1} s^{n-1}+\ldots+\alpha_{n-1} s+\alpha_{n}
\]
the corresponding companion \(A\) matrix is
\[
A=\left[\begin{array}{cccccc}
0 & 0 & . . & . . & 0 & -\alpha_{n} \\
1 & 0 & 0 & . . & 0 & -\alpha_{n}-1 \\
0 & 1 & 0 & . & : & : \\
: & 0 & . & . & : & : \\
0 & . & . & 1 & 0 & -\alpha_{2} \\
0 & . . & . . & 0 & 1 & -\alpha_{1}
\end{array}\right]
\]

The companion transformation requires that the system be controllable from the first input. The companion form is poorly conditioned for most state-space computations; avoid using it when possible.

\section*{Examples}

\section*{Determine Optimal Estimated Model Order}

Estimate a state-space model for measured input-output data. Determine the optimal model order within a given range.

Obtain measured input-output data.
load icEngine.mat;
data \(=\) iddata(y, u, 0.04);
data is an iddata object containing 1500 input-output data samples. The data sampling time is 0.04 seconds.

Estimate a state-space model for measured input-output data. Determine the optimal model order within a given model order range.
```

nx = 1:10;
sys = ssest(data,nx);

```

A plot appears:

The plot shows the Hankel singular values (SVD) for models of the orders specified by nx. States with relatively small Hankel singular values can be safely discarded. The default order choice is 2 .

At the MATLAB command prompt, you are prompted to select the model order for the estimated state-space model. Specify the model order or press Enter to use the default order value.

\section*{Identify State-Space Model With Input Delay}

Identify a state-space model containing an input delay for given data.
Load time domain system response data and use it to identify a state-space model for the system. Specify a known input delay for the model.
load iddata7 z7
nx = 4;
sys = ssest(z7(1:300),nx,'InputDelay',[2;0])
z7 is an iddata object that contains time domain system response data. nx specifies a fourth order identified state-space model.

The name-value input argument pair 'InputDelay ', [2;0] specifies an input delay of 2 seconds for the first input and 0 seconds for the second output.
sys is an idss model containing the identified state-space model.

\section*{Estimate State-Space Model for Partially Known Model (Structured Estimation)}

Estimate a state-space model using measured input-output data. Configure the parameter constraints and initial values for estimation using a state-space model.

Create an idss model to specify the initial parameterization for estimation.

For this example, configure an idss model so that it has no state-disturbance element and only the non-zero entries of the \(A\) matrix are estimable. Additionally, fix the values of the \(B\) matrix.
```

A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];
C = [1 1 1 1 1];
D = 0;
K = zeros(4,1);

```
```

x0 = [0.1,0.1,0.1,0.1];
Ts = 0;
init_sys = idss(A,B,C,D,K,xO,Ts);

```

Setting all entries of \(\mathrm{K}=0\) creates an idss model with no state disturbance element.

Use the Structure property of init_sys to fix the values of some of the parameters.
```

init_sys.Structure.a.Free = (A~=0);
init_sys.Structure.b.Free = false;
init_sys.Structure.k.Free = false;

```

The entries in init_sys.Structure.a.Free determine whether the corresponding entries in init_sys.a are free (identifiable) or fixed. The first line sets init_sys.Structure.a. Free to a matrix that is true wherever A is non-zero, and false everywhere else. Doing so fixes the value of the zero entries in init_sys.a.

The remaining lines fix all the values in init_sys.b and init_sys. \(k\) to the values you specified when you created the model.

Load the measured data and estimate a state-space model using the parameter constraints and initial values specified by init_sys.
```

load iddata2 z2;
sys = ssest(z2,init_sys);

```
sys is an idss model that encapsulates the fourth-order state-space model estimated for the measured data z2. The estimated parameters of sys successfully satisfy the constraints specified by init_sys.

\section*{Model Order Reduction by Estimation}

This example shows how to reduce the order of a model by estimation.
For this example, consider the Simulink \({ }^{\circledR}\) model idF14Model.
Linearizing this model gives a 9th order model. However, the dynamics
of the model can be captured, without compromising the fit quality too much, using a lower order model.

Obtain the linearized model.
```

open_system('idF14Model');
io = getlinio('idF14Model');
sys_lin = linearize('idF14Model',io);

```
sys_lin is a 9th order state-space model with two outputs and one input. It represents the linearization of the Simulink model idF14Model.

Simulate the step response of the linearized model and create an iddata object.

Ts = 0.0444;
t = (0:Ts:4.44)';
y = step(sys_lin,t);
data \(=\) iddata([zeros(20,2);y],[zeros(20,1); ones(101,1)],Ts);
data is an iddata object that encapsulates the step response of sys_lin.
Compare the data to the model linearization.
compare(data, sys_lin)

Given that the data was obtained by simulating the linearized model, there is a \(100 \%\) match between the data and model linearization response.

Identify a state-space model with a reduced order that adequately fits the data.
```

nx = 1:9;
sys1 = ssest(data,nx,'DisturbanceModel','none');

```

As the model order input for ssest, nx , is specified as a vector, a plot appears. The plot shows the Hankel singular values (SVD) for models of the orders specified by nx. States with relatively small Hankel singular values can be safely discarded. The plot suggests using a fifth-order model. At the MATLAB command prompt, you are prompted to select
the model order for the estimated state-space model. Specify the model order as 5, or press Enter to use the default order value.
sys1 provides a \(98.6 \%\) fit for the first output and a \(97.2 \%\) fit for the second output.
Examine the stopping condition for the search algorithm.
sys1.Report.Termination.WhyStop
ans =
Maximum number of iterations reached

Create an estimation option set that uses the 'lm' search method and allows 50 search iterations at most.
```

opt = ssestOptions('SearchMethod','lm');
opt.SearchOption.MaxIter = 50;
opt.Display = 'on';

```

Identify a state-space model using the estimation option set and sys1 as the estimation initialization model.
sys2 = ssest(data, sys1, opt);
Compare the response of the linearized and the estimated models.
```

compare(data,sys_lin,sys2);

```


\section*{Algorithms}

\section*{References}

See Also
ssestOptions | idss | n4sid | tfest | procest | polyest |
iddata | idfrd | canon | idgrey | pem

\section*{Purpose Option set for ssest}
Syntax \(\quad\)\begin{tabular}{rl}
opt & \(=\) ssestOptions \\
opt & \(=\) ssestOptions (Name, Value)
\end{tabular}

Description

\section*{Input \\ Arguments}
opt \(=\) ssestOptions creates the default options set for ssest.
opt \(=\) ssestOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{InitialState}

Specify handling of initial states during estimation.
InitialState takes one of the following values:
- 'zero' - The initial state is set to zero.
- 'estimate' - The initial state is treated as an independent estimation parameter.
- 'backcast' - The initial state is estimated using the best least squares fit.
- 'auto' - ssest chooses the initial state handling method based on the estimation data. The possible initial state handling methods are 'zero', 'estimate' and 'backcast'.
- vector of doubles - Specify a column vector of length \(N x\), where \(N x\) is the number of states. For multi-experiment data, specify a matrix with \(N e\) columns, where \(N e\) is the number of experiments. The specified values are treated as fixed values during the estimation process.
- a parametric initial condition object (xO 0 bj) - Specify initial conditions by using xOpar to create a parametric initial condition object. You can specify minimum/maximum bounds and fix the values of specific states using the parametric initial condition object. The free entries of x 0 obj are estimated together with the idss model parameters.

Use this option only for discrete-time state-space models.
Default: 'auto'

\section*{N4Weight}

Weighting scheme used for singular-value decomposition by the N4SID algorithm.
'N4Weight' takes one of the following values:
- 'MOESP' - Uses the MOESP algorithm by Verhaegen [2].
- 'CVA' - Uses the Canonical Variable Algorithm by Larimore [1].
- 'auto' - The estimating function chooses between the MOESP and CVA algorithms.

Default: 'auto'

\section*{N4Horizon}

Forward and backward prediction horizons used by the N4SID algorithm.
'N4Horizon' takes one of the following values:
- A row vector with three elements - [r sy su], where \(r\) is the maximum forward prediction horizon. That is, the algorithm uses up to \(r\) step-ahead predictors. sy is the number of past outputs, and su is the number of past inputs that are used for the predictions. See pages 209 and 210 in [4] for the exact meaning of this. These numbers can have a substantial influence on the quality of the resulting model, and there are no simple rules for choosing them. Making
> 'N4Horizon' a k-by-3 matrix means that each row of 'N4Horizon' is tried, and the value that gives the best (prediction) fit to data is selected. \(k\) is the number of guesses of [\(r\) sy su] combinations. If you specify N4Horizon as a single column, \(r=s y=s u\) is used.
- 'auto' - The software uses an Akaike Information Criterion (AIC) for the selection of sy and su.

Default: auto

\section*{Focus}

Defines how the errors \(e\) between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus can take the following values:
- 'simulation' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.

This method provides a stable model.
- 'prediction' - Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. This minimizes the one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this is the optimal weighting function. However, this method neglects the approximation aspects (bias) of the fit. It might not result in a stable model. Use 'stability' when you want to ensure a stable model.
- 'stability' - Same as 'prediction' but with model stability enforced.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
```

[wl,wh]
[w1l,w1h;w2l,w2h;w31,w3h;...]

```
where \(w l\) and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The \(\{A, B, C, D\}\) format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function
This calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.
- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'prediction'

\section*{EstCovar}

Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

Default: true

\section*{Display}

Specifies whether estimation progress should be displayed.
Display requires one of the following strings:
- 'on ' - Information on model structure and estimation results are displayed in a progress viewer window
- 'off' - No progress or results information is displayed

Default: 'off'

\section*{InputOffset}

Removes offset from time domain input data during estimation.
Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.

Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a \(N u\)-by- \(N e\) matrix. \(N u\) is the number of inputs, and \(N e\) is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

\section*{Default: []}

\section*{OutputOffset}

Removes offset from time domain output data during estimation.
Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a \(N y\)-by- \(N e\) matrix. \(N y\) is the number of outputs, and \(N e\) is the number of experiments. Each entry specified by OutputOffset is subtracted from the corresponding output data.

Default: []

\section*{OutputWeight}

Specifies criterion used during minimization.
OutputWeight can have the following values:
- 'noise' - Minimize \(\operatorname{det}\left(E^{*} E\right)\), where \(E\) represents the prediction error. This is the optimal choice in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function.

Note OutputWeight must not be 'noise' if SearchMethod is 'lsqnonlin'.
- positive semi-definite symmetric matrix (W) - Minimize the trace of the weighted prediction error matrix trace (\(E^{\prime *} E^{*} W\)), where \(E\) is the matrix of prediction errors, with one column for each output, and \(W\) is the positive semi-definite symmetric matrix of size equal to the number of outputs. Use \(W\) to specify the relative importance of outputs in multiple-input multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-input, multi-output models.
- [] - The software chooses between the 'noise ' or using the identity matrix for \(W\).

Default: []

\section*{SearchMethod}

Search method used for iterative parameter estimation.
SearchMethod is a string that can take the following values:
- gn - The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max (size (J)) *norm(J) are discarded when computing the search direction. \(J\) is the Jacobian matrix. The Hessian matrix is approximated by \(J^{T} J\). If there is no improvement in this direction, the function tries the gradient direction.
- gna - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [3]. Eigenvalues less than gamma*max (sv) of the Hessian are neglected, where sv are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see Advanced for more information) and is increased by the factor LMStep each time the search fails to find a lower value of the criterion in less than 5 bisections. It is decreased by the factor 2*LMStep each time a search is successful without any bisections.
- Im - Uses the Levenberg-Marquardt method. This means that the next parameter value is - pinv \((H+d * I) * g r a d ~ f r o m ~ t h e ~ p r e v i o u s ~ o n e, ~\) where \(H\) is the Hessian, I is the identity matrix, and grad is the gradient. \(d\) is a number that is increased until a lower value of the criterion is found.
- lsqnonlin - Uses lsqnonlin optimizer from Optimization Toolbox software. You must have Optimization Toolbox installed to use this option. This search method can only handle the Trace criterion.
- grad - The steepest descent gradient search method.
- auto - A choice among the above is made in the algorithm. The descent direction is calculated using gn, gna, lm and grad successively, in that order, at each iteration until a sufficient reduction in error is achieved.

Default: 'auto'

\section*{SearchOption}

SearchOption is an options set for the search algorithm with the fields:

\section*{SearchMetsoadhOption}
gn,gna,l \(\boldsymbol{\prime}, \bullet\) Tolerance - Minimum percentage difference (divided by 100) between the current value of the loss function When the percentage of expected improvement is less than Tolerance, the iterations are stopped. The estimate of the expected loss-function improvement at the next iteration is made based on the Gauss-Newton vector computed for the current parameter value.

Default: 0.01
- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter \(=0\) returns the result of the startup procedure.

Use sys.Report.Termination.Iterations to get the actual number of iterations during an estimation, where sys is an idtf model.

Default: 20
- Advanced - Search settings:
- GnPinvConst - Singular values of the Jacobian that are smaller than GnPinvConst*max(size(J)*norm(J)*eps are discarded when computing the search direction and SearchMethod is 'gn'.

GnPinvConst must be a positive real value.
Default: 10000

\section*{SearchMethoodhOption}
- InitGnaTol - Initial value of gamma when SearchMethod is 'gna'.

Default: . 0001
- LMStartValue - Starting value of search-direction length \(d\) in the Levenberg-Marquardt method. Applicable when SearchMethod is ' 1 m '.

Default: . 001
- LMStep - Size of the Levenberg-Marquardt step. The next value of the search-direction length \(d\) in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is 'lm'.

Default: 2
- MaxBisections - Maximum number of bisections used by the line search along the search direction.

Default: 25
- MaxFunEvals - Iterations are stopped if the number of calls to the model file exceeds this value.

MaxFunEvals must be a positive integer value.
Default: Inf
- MinParChange - Smallest parameter update allowed per iteration

MinParChange must be a positive, real value.
Default: 0
- RelImprovement - Iterations are stopped if the relative improvement of the criterion function is less than RelImprovement.

\section*{SearchMertrodhOption}

RelImprovement must be a positive integer value.
Default: 0
- StepReduction - Suggested parameter update is reduced by the factor StepReduction after each try until either MaxBisections tries are completed or a lower value of the criterion function is obtained.

StepReduction must be a positive, real value that is greater than 1.

Default: 2
lsqnonlit TolFun - Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values.
The value of TolFun is the same as that of sys.SearchOption.Advanced.TolFun.

Default: 1e-5
- TolX - Termination tolerance on the estimated parameter values.
The value of TolX is the same as that of sys.SearchOption.Advanced.TolX.
Default: 1e-6
- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as TolFun etc..

The value of Maxiter is the same as that of sys.SearchOption.Advanced.MaxIter.

Default: 20
- Advanced - Options set for lsqnonlin.

\section*{SearchMEstrodhOption}

For more information, see "Optimization Options".
Use optimset('lsqnonlin') to create an options set for lsqnonlin and then modify it to specify its various options.

\section*{Advanced}

Advanced is a structure with the following fields:
- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. (See the section about choosing a robust norm in the chapter "Computing the Estimate" of [4].) ErrorThreshold = 0 disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, ErrorThreshold is set to zero.

Default: 0
- MaxSize - Specifies the maximum number of elements in a segment when input-output data is split into segments.

MaxSize must be a positive integer.
Default: 250000
- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:
- s-Specifies the location of the right-most pole to test the stability of continuous-time models. A model is considered stable when its right-most pole is to the left of s.

Default: 0
- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance \(z\) from the origin.

Default: 1+sqrt(eps)
- AutoInitThreshold - Specifies when to automatically estimate the initial conditions.

When InitialCondition = 'Auto', the initial condition is estimated when the ratio of the prediction-error norm with a zero initial condition to the norm with an estimated initial condition exceeds AutoInitialState.

Default: 1.05
- DDC - Specifies if the Data Driven Coordinates algorithm [5] is used to estimate freely parameterized state-space models.

Specify DDC as one of the following values:
- 'on' - The free parameters are projected to a reduced space of identifiable parameters using the Data Driven Coordinates algorithm.
- 'off' - All the entries of \(A, B\), and \(C\) updated directly using the chosen SearchMethod.

Default: 'on'

\section*{Output \\ Arguments}

\section*{Examples}

\section*{opt}

Option set containing the specified options for ssest.

\section*{Create Default Options Set for State Space Estimation}

Create a default options set for ssest.
```

opt = ssestOptions;

```

\section*{Specify Options for State Space Estimation}

Create an options set for ssest using the 'backcast' algorithm to initialize the state and set the Display to 'on'.
```

opt = ssestOptions('InitialState','backcast','Display','on');

```

Alternatively, use dot notation to set the values of opt.
```

opt = ssestOptions;
opt.InitialState = 'backcast';
opt.Display = 'on';

```

References [1] Larimore, W.E. "Canonical variate analysis in identification, filtering and adaptive control." Proceedings of the 29th IEEE Conference on Decision and Control, pp. 596-604, 1990.
[2] Verhaegen, M. "Identification of the deterministic part of MIMO state space models." Automatica, Vol. 30, No. 1, 1994, pp. 61-74.
[3] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for Multivariable System Estimates". Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005. Oxford, UK: Elsevier Ltd., 2005.
[4] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR, 1999.
[5] McKelvey, T., A. Helmersson,, and T. Ribarits.. "Data driven local coordinates for multivariable linear systems and their application to system identification." Automatica, Volume 40, No. 9, 2004, pp. 1629-1635.

\section*{Purpose}

Quick configuration of state-space model structure

\section*{Syntax}

Description

\section*{Input} Arguments
```

sys1 = ssform(sys,Name,Value)

```
sys1 = ssform(sys,Name, Value) specifies the type of parameterization and whether feedthrough and disturbance dynamics are present for the state-space model sys using one or more Name, Value pair arguments.

\section*{sys}

State-space model

\section*{Name-Value Pair Arguments}

Specify comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{Form}

Specify structure of A, B and C matrices. Must be one of the following strings:
- 'free'

All entries of \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) are set free
- 'companion'

Companion form of the model where the characteristic polynomial appears in the far-right column of the state matrix \(A\)
- 'modal'

Modal decomposition form, where the state matrix A is block diagonal. Each block corresponds to a real or complex-conjugate pair of poles.

You cannot use this value for models with repeated poles.
- 'canonical'

Observability canonical form of A, B, and C matrices, as described in [1].

\section*{Feedthrough}

Specify whether the model has direct feedthrough from the input \(u(t)\) to the output \(y(t)\), (whether the elements of the matrix D are nonzero).

Must be a logical vector (true or false) of length equal to the number of inputs (\(N u\)).

Feedthrough(i) = false sets sys.Structure.d.Value(:,i) to zero and sys.Structure.d.Free(:,i) to false.

Feedthrough(i) = true sets sys.Structure.d.Free(:,i) to true.

Note Specifying this option for a previously estimated model causes the model parameter covariance information to be lost. Use translatecov to recompute the covariance.

\section*{DisturbanceModel}

Specify whether to estimate the noise component of the model. Must be one of the following strings:
- 'none'

The value of the K matrix is fixed to zero.
- 'estimate'

The K matrix is treated as a free parameter

Note Specifying this option for a previously estimated model causes the model parameter covariance information to be lost. Use translatecov to recompute the covariance.

\section*{Output \\ Arguments}

\section*{sys 1}

State-space model with configured parameterization, feedthrough, and disturbance dynamics

\section*{Examples}

\section*{Convert a State-Space Model to Canonical Form}

Create a state-space model.
```

rng('default');
A = randn(2)-2*eye(2);
B = randn(2,1);
C = randn(1,2);
D = 0;
K = randn(2,1);
model = idss(A,B,C,D,K,'Ts',0);

```

The state-space model has free parameterization and no feedthrough.
Convert the model to observability canonical form.
```

model1 = ssform(model, 'Form', 'canonical');

```

\section*{Estimate State-Space Model Parameters in Canonical Form with Feedthrough}

Load the estimation data.
```

load iddata1 z1;

```

Create a state-space model.
```

rng('default');
A = randn(2)-2*eye(2);
B = randn(2,1);
C = randn(1,2);
D = 0;
K = randn(2,1);
model = idss(A,B,C,D,K,'Ts',0);

```

The state-space model has free parameterization and no feedthrough.
Convert the model to observability canonical form and specify to estimate its feedthrough behavior.
model1 = ssform(model, 'Form', 'canonical', 'Feedthrough', true);
Estimate the parameters of the model.
model2 \(=\) ssest(z1, model1);

\section*{References}

Alternatives
Use the Structure property of an idss model to specify the parameterization, feedthrough, and disturbance dynamics by modifying the Value and Free attributes of the A, B, C, D and K parameters.

\section*{See Also}
idss | ssest | n4sid

\section*{Related Examples}
[1] Ljung, L. System Identification: Theory For the User, Second Edition, Appendix 4A, pp 132-134, Upper Saddle River, N.J: Prentice Hall, 1999.

\section*{Concepts}
- "Supported State-Space Parameterizations"

\section*{Purpose}

\section*{Syntax}

\section*{Description}

\section*{Examples}

Build model array by stacking models or model arrays along array dimensions
```

sys = stack(arraydim,sys1,sys2,...)

```
sys = stack(arraydim,sys1,sys2,...) produces an array of dynamic system models sys by stacking (concatenating) the models (or arrays) sys1,sys2,... along the array dimension arraydim. All models must have the same number of inputs and outputs (the same I/O dimensions), but the number of states can vary. The I/O dimensions are not counted in the array dimensions. For more information about model arrays and array dimensions, see "Model Arrays".

For arrays of state-space models with variable order, you cannot use the dot operator (e.g., sys.a) to access arrays. Use the syntax
```

[a,b,c,d] = ssdata(sys,'cell')

```
to extract the state-space matrices of each model as separate cells in the cell arrays \(a, b, c\), and d.

\section*{Example 1}

If sys1 and sys2 are two models:
- stack(1, sys1, sys2) produces a 2 -by- 1 model array.
- stack(2,sys1, sys2) produces a 1-by-2 model array.
- stack(3, sys1, sys2) produces a 1-by-1-by-2 model array.

\section*{Example 2}

Stack identified state-space models derived from the same estimation data and compare their bode responses.
```

load iddata1 z1
sysc = cell(1,5);
opt = ssestOptions('Focus','simulation');
for i = 1:5

```
```

sysc{i} = ssest(z1,i-1,opt);
end
sysArray = stack(1, sysc{:});
bode(sysArray);

```

\section*{Purpose}

Step response plot of dynamic system
```

step(sys)
step(sys,Tfinal)
step(sys,t)
step(sys1,sys2,...,sysN)
step(sys1,sys2,...,sysN,Tfinal)
step(sys1, sys2,...,sysN,t)
y = step(sys,t)
[y,t] = step(sys)
[y,t] = step(sys,Tfinal)
[y,t,x] = step(sys)
[y,t,x,ysd] = step(sys)
[y,...] = step(sys,...,options)

```

\section*{Description}
step calculates the step response of a dynamic system. For the state space case, zero initial state is assumed. When it is invoked with no output arguments, this function plots the step response on the screen.
step(sys) plots the step response of an arbitrary dynamic system model sys. This model can be continuous or discrete, and SISO or MIMO. The step response of multi-input systems is the collection of step responses for each input channel. The duration of simulation is determined automatically, based on the system poles and zeros.
step(sys,Tfinal) simulates the step response from \(t=0\) to the final time \(t=\) Tfinal. Express Tfinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sampling time (\(\mathrm{Ts}=-1\)), step interprets Tfinal as the number of sampling periods to simulate.
step(sys,t) uses the user-supplied time vector \(t\) for simulation. Express \(t\) in the system time units, specified in the TimeUnit property of sys. For discrete-time models, t should be of the form Ti:Ts:Tf, where Ts is the sample time. For continuous-time models, \(t\) should be of the form Ti:dt:Tf, where \(d t\) becomes the sample time of a discrete approximation to the continuous system (see "Algorithms" on
page 2-907). The step command always applies the step input at \(t=0\), regardless of Ti.

To plot the step response of several modelssys \(1, \ldots\), sysN on a single figure, use
step(sys1,sys2,...,sysN)
step(sys1,sys2,...,sysN,Tfinal)
step(sys1,sys2,...,sysN,t)
All of the systems plotted on a single plot must have the same number of inputs and outputs. You can, however, plot a mix of continuous- and discrete-time systems on a single plot. This syntax is useful to compare the step responses of multiple systems.

You can also specify a distinctive color, linestyle, marker, or all three for each system. For example,
step(sys1,'y:',sys2,'g--')
plots the step response of sys1 with a dotted yellow line and the step response of sys2 with a green dashed line.

When invoked with output arguments:
```

y = step(sys,t)
[y,t] = step(sys)
[y,t] = step(sys,Tfinal)
[y,t,x] = step(sys)

```
step returns the output response \(y\), the time vector \(t\) used for simulation (if not supplied as an input argument), and the state trajectories x (for state-space models only). No plot generates on the screen. For single-input systems, y has as many rows as time samples (length of \(t\)), and as many columns as outputs. In the multi-input case, the step responses of each input channel are stacked up along the third dimension of \(y\). The dimensions of \(y\) are then

\section*{(length of \(t) \times(\) number of outputs \() \times(\) number of inputs \()\)}
and \(y(:,:, j)\) gives the response to a unit step command injected in the \(j\) th input channel. Similarly, the dimensions of \(x\) are
(length of \(t) \times(\) number of states \() \times(\) number of inputs \()\)
For identified models (see idlti and idnlmodlel) [y,t,x,ysd] = step(sys) also computes the standard deviation ysd of the response y (ysd is empty if sys does not contain parameter covariance information).
[y,...] = step(sys,..., options) specifies additional options for computing the step response, such as the step amplitude or input offset. Use stepDataOptions to create the option set options.

\section*{Tips}

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

\section*{Examples Example 1}

\section*{Step Response Plot of Dynamic System}

Plot the step response of the following second-order state-space model.
\[
\begin{aligned}
& \quad\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-0.5572 & -0.7814 \\
0.7814 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
& y=\left[\begin{array}{ll}
1.9691 & 6.4493
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& \mathrm{a}=\left[\begin{array}{ll}
-0.5572 & -0.7814 ; 0.7814 \\
\mathrm{~b}=[
\end{array}\right] ; \\
& \mathrm{c}=\left[\begin{array}{ll}
1 & -1 ; 0
\end{array}\right] ; \\
& \text { sys } 1.9691 \quad \text { ss }(\mathrm{a}, \mathrm{~b}, \mathrm{c}, 0) ; \\
& \text { step(sys) }
\end{aligned}
\]

The left plot shows the step response of the first input channel, and the right plot shows the step response of the second input channel.

\section*{Example 2}

\section*{Step Response Plot of Feedback Loop with Delay}

Create a feedback loop with delay and plot its step response by typing
```

G = exp(-s) * (0.8*s^2+s+2)/(s^2+s);
T = feedback(ss(G),1);
step(T)

```


Note The system step response displayed is chaotic. The step response of systems with internal delays may exhibit odd behavior, such as recurring jumps. Such behavior is a feature of the system and not software anomalies.

\section*{Example 3}

Compare the step response of a parametric identified model to a non-parametric (empirical) model/ Also view their 3- \(\sigma\) confidence regions.
load iddata1 z1
sys1 \(=\operatorname{ssest}(z 1,4)\);
parametric model
```

sys2 = impulseest(z1);
non-parametric model

```
```

[y1, ~, ~, ysd1] = step(sys1,t);

```
[y1, ~, ~, ysd1] = step(sys1,t);
[y2, ~, ~, ysd2] = step(sys2,t);
[y2, ~, ~, ysd2] = step(sys2,t);
plot(t, y1, 'b', t, y1+3*ysd1, 'b:', t, y1-3*ysd1, 'b:')
plot(t, y1, 'b', t, y1+3*ysd1, 'b:', t, y1-3*ysd1, 'b:')
hold on
hold on
plot(t, y2, 'g', t, y2+3*ysd2, 'g:', t, y2-3*ysd2, 'g:')
```

plot(t, y2, 'g', t, y2+3*ysd2, 'g:', t, y2-3*ysd2, 'g:')

```

\section*{Example 4}

Validation the linearization of a nonlinear ARX model by comparing their small amplitude step responses.
```

nlsys = nlarx(z2,[4 3 10],'tree','custom',...
{'sin(y1(t-2)*u1(t))+y1(t-2)*u1(t)+u1(t).*u1(t-13)',...
'y1(t-5)*y1(t-5)*y1(t-1)'},'nlr',[1:5, 7 9]);

```

Determine an equilibrium operating point for nlsys corresponding to a steady-state input value of 1 :
```

u0 = 1;
[X,~,r] = findop(nlsys, 'steady', 1);
yO = r.SignalLevels.Output;

```

Obtain a linear approximation of nlsys at this operating point.
```

sys = linearize(nlsys,u0,X)

```

Now validate the usefulness of sys by comparing its small-amplitude step response to that of nlsys. The nonlinear system nlsys is operating an equilibrium level dictated by (\(\mathrm{u} 0, \mathrm{y} 0\)). About this steady-state, we introduce a step perturbation of size 0.1 . The corresponding response is computed as follows:
```

opt = stepDataOptions;
opt.InputOffset = u0;
opt.StepAmplitude = 0.1;

```
```

t = (0:0.1:10)';
ynl = step(nlsys, t, opt);

```

The linear system sys expresses the relationship between the perturbations in input to the corresponding perturbation in output. It is unaware of nonlinear system's equilibrium values. The step response of the linear system is:
```

opt = stepDataOptions;
opt.StepAmplitude = 0.1;
yl = step(sys, t, opt);

```

To compare, add the steady-state offset, y0, to the response of the linear system:
plot(t, ynl, t, yl+y0)
legend('Nonlinear', 'Linear with offset')

\section*{Example 5}

Compute the step response of an identified time series model.
A time series model, also called a signal model, is one without measured input signals. The step plot of this model uses its (unmeasured) noise channel as the input channel to which the step signal is applied.
```

load iddata9
sys = ar(z9, 4);

```
ys is a model of the form \(A y(t)=e(t)\), where \(e(t)\) represents the noise channel. For computation of step response, \(e(t)\) is treated as an input channel, and is named "e@y1".
step(sys)

\section*{Algorithms}

Continuous-time models without internal delays are converted to state space and discretized using zero-order hold on the inputs. The sampling period, dt , is chosen automatically based on the system dynamics, except when a time vector \(t=0: d t: T f\) is supplied (\(d t\) is
then used as sampling period). The resulting simulation time steps \(t\) are equisampled with spacing dt .

For systems with internal delays, Control System Toolbox software uses variable step solvers. As a result, the time steps t are not equisampled.

\section*{References \\ [1] L.F. Shampine and P. Gahinet, "Delay-differential-algebraic equations in control theory," Applied Numerical Mathematics, Vol. 56, Issues 3-4, pp. 574-588.}

See Also impulse | stepDataOptions | initial \| lsim | ltiview

\section*{stepDataOptions}

\section*{Purpose}

Options set for step
opt = stepDataOptions opt = stepDataOptions(Name,Value)

Description

Input Arguments
opt \(=\) stepDataOptions creates the default options for step.
opt = stepDataOptions(Name, Value) creates an options set with the options specified by one or more Name, Value pair arguments.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{InputOffset}

Input signal level for all time \(\mathrm{t}<0\), as shown in the next figure.

Default: 0

\section*{stepDataOptions}

\section*{StepAmplitude}

Change of input signal level which occurs at time \(t=0\), as shown in the previous figure.

\section*{Default: 1}

\section*{Output \\ Arguments}
```

Specify
Input
Offset
and Step
Amplitude
Level

```

See Also step

\section*{Purpose}

Syntax

Description

Rise time, settling time, and other step response characteristics
```

S = stepinfo(y,t,yfinal)
S = stepinfo(y,t)
S = stepinfo(y)
S = stepinfo(sys)
S = stepinfo(...,'SettlingTimeThreshold',ST)
S = stepinfo(...,'RiseTimeLimits',RT)

```

S = stepinfo(y,t,yfinal) takes step response data (\(\mathrm{t}, \mathrm{y}\)) and a steady-state value yfinal and returns a structure \(S\) containing the following performance indicators:
- RiseTime - Rise time
- SettlingTime - Settling time
- SettlingMin - Minimum value of y once the response has risen
- SettlingMax - Maximum value of y once the response has risen
- Overshoot - Percentage overshoot (relative to yfinal)
- Undershoot - Percentage undershoot
- Peak - Peak absolute value of y
- PeakTime - Time at which this peak is reached

For SISO responses, \(t\) and \(y\) are vectors with the same length NS. For systems with NU inputs and NY outputs, you can specify y as an NS-by-NY-by-NU array (see step) and yfinal as an NY-by-NU array. stepinfo then returns a NY-by-NU structure array S of performance metrics for each I/O pair.
\(S=\) stepinfo(\(y, t)\) uses the last sample value of \(y\) as steady-state value yfinal. \(S=\) stepinfo(y) assumes \(t=1: n s\).

S = stepinfo(sys) computes the step response characteristics for an LTI model sys (see tf, zpk, or ss for details).

S = stepinfo(...,'SettlingTimeThreshold', ST) lets you specify the threshold ST used in the settling time calculation. The response
has settled when the error \(\mid \mathrm{y}(\mathrm{t})\) - yfinal| becomes smaller than a fraction ST of its peak value. The default value is \(\mathrm{ST}=0.02(2 \%)\).

S = stepinfo(...,'RiseTimeLimits', RT) lets you specify the lower and upper thresholds used in the rise time calculation. By default, the rise time is the time the response takes to rise from 10 to \(90 \%\) of the steady-state value (\(\mathrm{RT}=\left[\begin{array}{ll}0.1 & 0.9\end{array}\right]\)). Note that \(\mathrm{RT}(2)\) is also used to calculate SettlingMin and SettlingMax.

\section*{Examples \\ Step Response Characteristics of Fifth-Order System}

Create a fifth order system and ascertain the response characteristics.
```

sys = tf([1 5],[1 2 5 7 2]);
S = stepinfo(sys,'RiseTimeLimits',[0.05,0.95])

```

These commands return the following result:
```

S =
RiseTime: 7.4454
SettlingTime: 13.9378
SettlingMin: 2.3737
SettlingMax: 2.5201
Overshoot: 0.8032
Undershoot: 0
Peak: 2.5201
PeakTime: 15.1869

```

\section*{See Also \\ step | lsiminfo}

\section*{Purpose}

Plot step response and return plot handle
Syntax
h = stepplot(sys)
stepplot(sys,Tfinal)
stepplot (sys,t)
stepplot(sys1, sys2,..., sysN)
stepplot(sys1, sys2,..., sysN,Tfinal)
stepplot(sys1, sys2,...,sysN,t)
stepplot (AX,...)
stepplot(..., plotoptions)

\section*{Description}
\(\mathrm{h}=\) stepplot(sys) plots the step response of the dynamic system model sys. It also returns the plot handle h. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
help timeoptions
for a list of available plot options.
For multiinput models, independent step commands are applied to each input channel. The time range and number of points are chosen automatically.
stepplot(sys,Tfinal) simulates the step response from \(t=0\) to the final time \(\mathrm{t}=\) Tfinal. Express Tfinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sampling time (Ts = -1), stepplot interprets Tfinal as the number of sampling intervals to simulate.
stepplot (sys, \(t\)) uses the user-supplied time vector \(t\) for simulation. Express \(t\) in the system time units, specified in the TimeUnit property of sys. For discrete-time models, \(t\) should be of the form Ti:Ts:Tf, where Ts is the sample time. For continuous-time models, \(t\) should be of the form Ti:dt:Tf, where \(d t\) becomes the sample time of a discrete approximation to the continuous system (see step). The stepplot command always applies the step input at \(t=0\), regardless of Ti .

\section*{stepplot}

To plot the step responses of multiple models sys 1, sys \(2, \ldots\) on a single plot, use:
stepplot(sys1,sys2,...,sysN)
stepplot(sys1, sys2,...,sysN,Tfinal)
stepplot(sys1,sys2,...,sysN,t)
You can also specify a color, line style, and marker for each system, as in
stepplot(sys1,'r',sys2,'y--',sys3,'gx')
stepplot (AX,...) plots into the axes with handle AX.
stepplot(..., plotoptions) plots the step response with the options specified in plotoptions. Type
help timeoptions
for more details.

Tips

\section*{Examples}

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

\section*{Example 1}

Use the plot handle to normalize the responses on a step plot.
```

sys = rss(3);
h = stepplot(sys);
% Normalize responses.
setoptions(h,'Normalize','on');

```

\section*{Example 2}

Compare the step response of a parametric identified model to a non-parametric (empirical) model, and view their \(3-\sigma\) confidence regions.
```

load iddata1 z1

```
for parametric model
sys1 = ssest(z1,4);
non-parametric model
```

sys2 = impulseest(z1);
t = -1:0.1:5;
h = stepplot(sys1,sys2,t);
showConfidence(h, true, 3)

```

The non-parametric model sys2 shows higher uncertainty.

\section*{Example 3}

Plot the step response of a nonlinear (Hammerstein-Wiener) model using a starting offset of 2 and step amplitude of 0.5 .

\section*{load twotankdata}
z = iddata(y, u, 0.2, 'Name', 'Two tank system'); sys = nlhw(z, [1 5 3], pwlinear, poly1d);
step(sys, 60, stepDataOptions('InputOffset', 2, 'StepAmplitude', 0.5)
See Also
getoptions | setoptions | showConfidence | step

Purpose Create sequence of indexed strings

\section*{Syntax strvec = strseq(STR,INDICES)}

Description strvec \(=\) strseq(STR, INDICES) creates a sequence of indexed strings in the string vector strvec by appending the integer values INDICES to the string STR.

Note You can use strvec to aid in system interconnection. For an example, see the sumblk reference page.
```

Examples
Create a string vector by indexing the string 'e' at 1,2 , and 4.

```
```

strseq('e',[1 2 4])

```
```

strseq('e',[1 2 4])

```

This command returns the following result:
```

ans =
'e1'
'e2'
'e4'

```

See Also strcat | connect

\section*{Purpose}

\section*{Syntax}
\(n n=\) struc (na, nb, nk)
\(n n=\operatorname{struc}\left(n a, n b _1, \ldots, n b _n u, n k _1, \ldots, n k _n u\right)\)
Generate model-order combinations for single-output ARX model estimation

Tips

Examples
\(n n=\) struc (na, \(n b, n k\)) generates model-order combinations for single-input ARX model estimation. na and \(n b\) are row vectors that specify range of model orders. \(n k\) is a row vector that specifies range of model delays. \(n n\) is a matrix that contains all combinations of the orders and delays.
\(n n=\operatorname{struc}\left(n a, n b _1, \ldots, n b _n u, n k _1, \ldots, n k _n u\right)\) generates model-order combinations for ARX model with nu input channels.
- Use with arxstruc or ivstruc to compute loss functions for ARX models, one for each model order combination returned by struc.

Generate model-order combinations for single-input ARX model estimation:
\% na and nb vary between 1 and 2, nk varies between 4 and 5. NN = struc(1:2,1:2,4:5);

Generate model-order combinations, and estimate multi-input ARX model:
```

% Create estimation and validation data sets.
load co2data;
Ts = 0.5; % Sampling interval is 0.5 min
ze = iddata(Output_exp1,Input_exp1,Ts);
zv = iddata(Output_exp2,Input_exp2,Ts);
% Generate model-order combinations for na=2:4,
% nb=2:5 for the first input and 1 or 4 for the second input,
% nk=1:4 for the first input and 0 for the second input.

```
```

NN = struc(2:4, 2:5, [1 4], 1:4, 0);
% Estimate an ARX model for each model order.
V = arxstruc(ze, zv, NN);
% Select a model order.
order=selstruc(V,0);
% Estimate an ARX model of selected order.
M=arx(ze,order);

```
See Also arxstruc | ivstruc | selstruc
Tutorials - "Estimating Model Orders Using an ARX Model Structure"
How To - "Preliminary Step - Estimating Model Orders and Input Delays"

\section*{Purpose \\ Syntax \\ Description}

Access transfer function data
[num, den] = tfdata(sys)
[num, den,Ts] = tfdata(sys)
[num, den, Ts, sdnum, sdden]=tfdata(sys)
[num, den,Ts,...]=tfdata(sys,J1, ...,Jn)
[num, den] = tfdata(sys) returns the numerator(s) and denominator(s) of the transfer function for the TF, SS or ZPK model (or LTI array of TF, SS or ZPK models) sys. For single LTI models, the outputs num and den of tfdata are cell arrays with the following characteristics:
- num and den have as many rows as outputs and as many columns as inputs.
- The (\(i, j\)) entries num \(\{i, j\}\) and den \(\{i, j\}\) are row vectors specifying the numerator and denominator coefficients of the transfer function from input \(j\) to output \(i\). These coefficients are ordered in descending powers of \(s\) or \(z\).
For arrays sys of LTI models, num and den are multidimensional cell arrays with the same sizes as sys.

If sys is a state-space or zero-pole-gain model, it is first converted to transfer function form using tf. For more information on the format of transfer function model data, see the tf reference page.
For SISO transfer functions, the syntax
```

[num,den] = tfdata(sys,'v')

```
forces tfdata to return the numerator and denominator directly as row vectors rather than as cell arrays (see example below).
[num, den, Ts] = tfdata(sys) also returns the sample time Ts.
[num, den, Ts, sdnum, sdden]=tfdata(sys) also returns the uncertainties in the numerator and denominator coefficients of identified system sys. \(\operatorname{sdnum}\{\mathrm{i}, \mathrm{j}\}(\mathrm{k})\) is the 1 standard uncertainty
in the value num \(\{\mathrm{i}, \mathrm{j}\}(\mathrm{k})\) and \(\operatorname{sdden}\{\mathrm{i}, \mathrm{j}\}(\mathrm{k})\) is the 1 standard uncertainty in the value den \(\{i, j\}(k)\). If sys does not contain uncertainty information, sdnum and sdden are empty ([]).
[num, den, Ts, ...]=tfdata(sys, J1, ..., Jn) extracts the data for the (\(\mathrm{J} 1, \ldots, \mathrm{JN}\)) entry in the model array sys.

You can access the remaining LTI properties of sys with get or by direct referencing, for example,
sys.Ts
sys.variable

\section*{Examples}

\section*{Example 1}

Given the SISO transfer function
```

h = tf([1 1],[1 2 5])

```
you can extract the numerator and denominator coefficients by typing
```

[num,den] = tfdata(h, 'v')
num =
$\begin{array}{lll}0 & 1 & 1\end{array}$
den $=$
125

```

This syntax returns two row vectors.
If you turn h into a MIMO transfer function by typing
\(H=[h ; t f(1,[11])]\)
the command
[num,den] = tfdata(H)
now returns two cell arrays with the numerator/denominator data for each SISO entry. Use celldisp to visualize this data. Type
```

celldisp(num)

```

This command returns the numerator vectors of the entries of H .
```

num{1} =
0 1 1
num{2} =
0 1

```
Similarly, for the denominators, type
celldisp(den)
den\{1\} =
 125
\(\operatorname{den}\{2\}=\)
 11

\section*{Example 2}

Extract the numerator, denominator and their standard deviations for a 2 -input, 1 output identified transfer function.
load iddata7
transfer function model
```

sys1 = tfest(z7, 2, 1, 'InputDelay',[1 0]);

```
an equivalent process model
```

sys2 = procest(z7, {'P2UZ', 'P2UZ'}, 'InputDelay',[1 0]);

```
[num1, den1, ~, dnum1, dden1] = tfdata(sys1);
[num2, den2, ~, dnum2, dden2] = tfdata(sys2);

\section*{See Also}
```

get | ssdata | tf | zpkdata

```
\begin{tabular}{|c|c|}
\hline Purpose & Transfer function estimation \\
\hline Syntax & ```
sys = tfest(data,np)
sys = tfest(data,np,nz)
sys = tfest(data,np,nz,iodelay)
sys = tfest(___,Name,Value)
sys = tfest(data,init_sys)
sys = tfest(___,opt)
``` \\
\hline Description & \begin{tabular}{l}
sys = tfest(data, np) estimates a continuous-time transfer function, sys, using time- or frequency-domain data, data, and contains np poles. The number of zeros in the sys is max ( \(n p-1,0\) ). \\
sys = tfest(data, np, nz) estimates a transfer function containing nz zeros. \\
sys = tfest(data, np, nz,iodelay) estimates a transfer function with transport delay for input/output pairs iodelay. \\
sys = tfest( \(\qquad\) , Name, Value) uses additional options specified by one or more Name, Value pair arguments. \\
sys = tfest(data,init_sys) uses the dynamic system init_sys to configure the initial parameterization of sys. \\
sys = tfest( \(\qquad\) , opt) specifies the estimation behavior using the option set opt.
\end{tabular} \\
\hline Input Arguments & \begin{tabular}{l}
data \\
Estimation data. \\
For time domain estimation, data is an iddata object containing the input and output signal values. \\
Time series models, which are models that contain no measured inputs, cannot be estimated using tfest. Use ar, arx or armax for time series models instead. \\
For frequency domain estimation, data can be one of the following:
\end{tabular} \\
\hline
\end{tabular}
- Recorded frequency response data (frd or idfrd)
- iddata object with its properties specified as follows:
- InputData - Fourier transform of the input signal
- OutputData - Fourier transform of the output signal
- Domain - 'Frequency'

For multi-experiment data, the sample times and inter-sample behavior of all the experiments must match.

\section*{np}

Number of poles in the estimated transfer function.
\(n p\) is a nonnegative number.
For systems that are multiple-input, or multiple-output, or both:
- To use the same number of poles for all the input/output pairs, specify np as a scalar.
- To use different number of poles for the input/output pairs, specify np as an \(n y\)-by- \(n u\) matrix. Here \(n y\) is the number of outputs and \(n u\) is the number of inputs.

\section*{nz}

Number of zeros in the estimated transfer function.
nz is a nonnegative number.
For systems that are multiple-input, or multiple-output, or both:
- To use the same number of zeros for all the input/output pairs, specify nz as a scalar.
- To use a different number of zeros for the input/output pairs, specify nz as an \(n y\)-by- \(n u\) matrix. Here \(n y\) is the number of outputs and \(n u\) is the number of inputs.

For a continuous-time model, estimated using discrete-time data, set nz <= np.

\section*{iodelay}

Transport delay.
For continuous-time systems, specify transport delays in the time unit stored in the TimeUnit property of data. For discrete-time systems, specify transport delays as integers denoting delay of a multiple of the sampling period Ts.

For a MIMO system with \(n y\) outputs and \(n u\) inputs, set iodelay to an \(n y\)-by-nu array, where each entry is a numerical value representing the transport delay for the corresponding input/output pair. You can also set iodelay to a scalar value to apply the same delay to all input/output pairs.

The specified values are treated as fixed delays.
iodelay must contain either nonnegative numbers or NaNs. Use NaN in the iodelay matrix to denote unknown transport delays.

Use [] or 0 to indicate that there is no transport delay.

\section*{opt}

Estimation options.
opt is an options set that specifies the following:
- Estimation objective
- Handling of initial conditions
- Numerical search method to be used in estimation

Use tfestOptions to create the options set.

\section*{init_sys}

Dynamic system that configures the initial parameterization of sys.
If init_sys is an idtf model, tfest uses the parameters and constraints defined in init_sys as the initial guess for estimating sys.

Use the Structure property of init_sys to configure initial guesses and constraints for the numerator, denominator and transport lag.
To specify an initial guess for, say, the numerator of init_sys, set init_sys.Structure.num. Value to the initial guess.
To specify constraints for, say, the numerator of init_sys:
- Set init_sys.Structure.num.Minimum to the minimum numerator coefficient values
- Set init_sys.Structure.num. Maximum to the maximum numerator coefficient values
- Set init_sys.Structure.num. Free to indicate which numerator coefficients are free for estimation

You can similarly specify the initial guess and constraints for the denominator and transport lag.

If init_sys is not an idtf model, the software first converts init_sys to a transfer function. tfest uses the parameters of the resulting model as the initial guess for estimation.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{Ts}

Sampling time.
Use the following values for Ts:
- 0 - Continuous-time model.
- data.Ts - Discrete-time model. In this case, np and nz refer to the number of roots of \(z^{\wedge}-1\) for the numerator and denominator polynomials.

Default: 0

\section*{InputDelay}

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sampling period Ts. For example, InputDelay \(=3\) means a delay of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical value representing the input delay for the corresponding input channel. You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

\section*{Feedthrough}

Feedthrough for discrete-time transfer function. Must be a \(N y\)-by- \(N u\) logical matrix. Use a scalar to specify a common value across all channels.

A discrete-time model with 2 poles and 3 zeros takes the following form:
\[
H z^{-1}=\frac{b 0+b 1 z^{-1}+b 2 z^{-2}+b 3 z^{-3}}{1+a 1 z^{-1}+a 2 z^{-2}}
\]

When the model has direct feedthrough, bo is a free parameter whose value is estimated along with the rest of the model parameters b1, b2, b3, a1, a2. When the model has no feedthrough, b0 is fixed to zero.

Default: false ( \(N y, N u\) )

\section*{Output sys \\ Arguments \\ Identified transfer function.}
is an idtf model which encapsulates the identified transfer function.

\section*{Examples}

\section*{Specify Number of Poles in Identified Transfer Function}

Identify a transfer function containing a specified number of poles for given data.

Load time domain system response data and use it to identify a transfer function for the system.
```

load iddata1 z1;
np = 2;
sys = tfest(z1,np);

```
\(z 1\) is an iddata object that contains time domain input-output data. np specifies the number of poles in the identified transfer function. sys is an idtf model containing the identified transfer function.

To see the numerator and denominator coefficients of the resulting estimated model sys, enter:
sys.num
sys.den

\section*{Specify Number of Poles and Zeros in Identified Transfer Function}

Identify a transfer function containing a specified number of poles and zeros for given data.

Load time domain system response data and use it to identify a transfer function for the system.
```

load iddata2 z2;
np = 2;
nz = 1;
sys = tfest(z2,np,nz);

```
z2 is an iddata object that contains time domain system response data. \(n p\) and \(n z\) specify the number of poles and zeros in the identified transfer function, respectively.
sys is an idtf model containing the identified transfer function.

\section*{Known Transport Delay}

Identify a transfer function containing a known transport delay for given data.

Load time domain system response data and use it to identify a transfer function for the system. Specify a known transport delay for the transfer function.
```

load iddata2 z2;
np = 2;
nz = 1;
iodelay = 0.2;
sys = tfest(z2,np,nz,iodelay);

```
z2 is an iddata object that contains time domain system response data.
\(n p\) and \(n z\) specify the number of poles and zeros in the identified transfer function, respectively.
iodelay specifies the transport delay for the identified transfer function as 0.2 seconds.
sys is an idtf model containing the identified transfer function, with ioDelay set to 0.2 seconds.

\section*{Unknown Transport Delay}

Identify a transfer function containing an unknown transport delay for given data.

Load time domain system response data and use it to identify a transfer function for the system. Specify an unknown transport delay for the transfer function.
```

load iddata2 z2;
np = 2;
nz = 1;
iodelay = NaN;
sys = tfest(z2,np,nz,iodelay);

```
z2 is an iddata object that contains time domain system response data. \(n p\) and \(n z\) specify the number of poles and zeros in the identified transfer function, respectively.
iodelay specifies the transport delay for the identified transfer function. iodelay \(=\mathrm{NaN}\) denotes the transport delay as an unknown parameter to be identified.
sys is an idtf model containing the identified transfer function, whose ioDelay is estimated using data.

\section*{Estimate Discrete-Time Transfer Function With No Feedthrough}

Identify a discrete-time transfer function for given data.
Load time-domain system response data.
load iddata2 z2;
z2 is an iddata object that contains time domain system response data.
Identify a transfer function with a sample time and known transport delay
```

np = 2;
nz = 1;
iodelay = 2;
Ts = 0.1;
sysd = tfest(z2,np,nz,iodelay,'Ts',Ts);

```

By default, the model has no feedthrough.

\section*{Estimate Discrete-Time Transfer Function With Feedthrough}

Estimate a discrete-time transfer function whose numerator polynomial has a nonzero leading coefficient.
```

load iddata5 z5
np = 3;
nz = 1;
model = tfest(z5,np,nz,'ts',z5.ts,'Feedthrough',true);

```

\section*{Analyze the Origin of Delay in Measured Data}

This example compares two discrete-time models with and without feedthrough and transport delay.
If there is a delay in measured data, it can be because of lack of feedthrough or due to transport delay. The effect of absence of feedthrough can also be described using a transport delay of 1 sample. Estimating a model with Feedthrough = true and ioDelay = 1 produces a discrete-time system that is equivalent to a system with Feedthrough \(=\) false and ioDelay \(=0\). Both systems show the same Bode response. However, you get different results in continuous-time representation. Therefore, you should check if the delay is due to transport delay or simply because of lack of feedthrough.

Estimate a discrete-time model with no feedthrough and 1 sample input-output delay.
load iddata1 z1
np = 2;
nz = 2;
model1 = tfest(z1, np, nz, 'Ts', z1.Ts);
\(n z\) is 2 because number of zeros refers to the roots of numerator polynomial expressed in \(\mathrm{z}^{-1}\).

Estimate another discrete-time model with feedthrough and 1 sample input-output delay.
```

model2 = tfest(z1, np, nz-1, 1, 'Ts', z1.Ts, 'Feedthrough', true);

```

Compare the Bode response of the models.
bode(model1, model2);


Convert the models to continuous-time, and compare their Bode responses.
bode(d2c(model1), d2c(model2));


As the plot shows, the Bode responses of the two models do not match when you convert them to continuous time.

\section*{Estimate MISO Discrete-Time Transfer Function with Feedthrough and Delay Specifications for Individual Channels}

Estimate a 2 -input, 1 -output discrete-time transfer function with a delay of 2 samples on first input. There is no delay for the second input but there is an absence of feedthrough.

Split data into estimation and validation data sets.
```

load iddata7 z7
ze = z7(1:300);
zv = z7(200:400);

```

Estimate a 2 -input, 1-output transfer function with 2 poles and 1 zero for each input-to-output transfer function.

Lag \(=[2 ; 0]\);
Ft = [false, false];
model \(=\) tfest(ze, 2, 1, 'Ts', z7.Ts, 'Feedthrough', Ft, 'InputDelay'
Choice of Feedthrough dictates whether the leading numerator coefficient is zero (no feedthrough) or not (nonzero feedthrough). Delays are expressed separately using InputDelay or ioDelay property. This example uses InputDelay to express the delays.

Validate the estimated model.
```

I = 1:201; I(114:118) = [];
opt = compareOptions('Samples',I);
compare(zv, model, opt)

```

Exclude the data outliers for validation.


\section*{Specify Estimation Options to Identify a Transfer Function}

Identify a transfer function for given data and specify the estimation options.

Create the options set for tfest.
```

opt = tfestOptions('InitMethod', 'n4sid', 'Display', 'on', 'SearchMethod'

```
opt specifies that the initialization method as 'n4sid', the search method as 'lsqnonlin' and that the loss-function values for each iteration be shown.

Load time domain system response data and use it to identify a transfer function for the system. Specify the estimation options using opt.
```

load iddata2 z2;
np = 2;
nz = 1;
iodelay = 0.2;
sysc = tfest(z2,np,nz,iodelay,opt);

```
z2 is an iddata object that contains time domain system response data. \(n p\) and \(n z\) specify the number of poles and zeros in the identified transfer function, respectively.
iodelay specifies the transport delay for the identified transfer function as 0.2 seconds.
opt specifies the estimation options for identifying the transfer function. sys is an idtf model containing the identified transfer function.

\section*{Specify Model Properties of the Identified Transfer Function}

Identify a transfer function for given data and specify the model properties for the resulting idtf model.

Load time domain system response data and use it to identify a transfer function for the system. Specify the input delay for the identified transfer function.
```

load iddata2 z2;
np = 2;
nz = 1;
input_delay = 0.2;
sys = tfest(z2,np,nz,'InputDelay',input_delay)

```
z2 is an iddata object that contains time domain system response data.
\(n p\) and \(n z\) specify the number of poles and zeros in the identified transfer function, respectively.
input_delay specifies the input delay for the identified transfer function as 0.2 seconds.
sys is an idtf model containing the identified transfer function with an input delay of 0.2 seconds.

\section*{Convert Frequency Response Data (FRD) into Transfer Function}

Identify a transfer function to fit a given frequency response data (FRD).
Obtain frequency response data.
For example, use bode to obtain the magnitude and phase response data for the following system:
\[
H(s)=\frac{s+0.2}{s^{3}+2 s^{2}+s+1}
\]

Use 100 frequency points, ranging from \(0.1 \mathrm{rad} / \mathrm{s}\) to \(10 \mathrm{rad} / \mathrm{s}\), to obtain the frequency response data. Use frd to create a frequency response data object.
```

freq = logspace(-1,1,100);
[mag, phase] = bode(tf([1 .2],[1 2 1 1]),freq);
data = frd(mag.*exp(1j*phase*pi/180),freq);

```

Estimate a transfer function using data.
```

np = 3;
nz = 1;
sys = tfest(data,np,nz);

```
\(n p\) and \(n z\) specify the number of poles and zeros in the identified transfer function, respectively.
sys is an idtf model containing the identified transfer function.

\section*{Identify Transfer Function with Transport Delay to Fit Given Frequency Response Data}

Identify a transfer function to fit a given frequency response data (FRD) containing additional phase roll off induced by input delay.

Obtain frequency response data.
For this example, use bode to obtain the magnitude and phase response data for the following system:
\[
H(s)=e^{-.5 s} \frac{s+0.2}{s^{3}+2 s^{2}+s+1}
\]

Use 100 frequency points, ranging from \(0.1 \mathrm{rad} / \mathrm{s}\) to \(10 \mathrm{rad} / \mathrm{s}\), to obtain the frequency response data. Use frd to create a frequency response data object.
```

freq = logspace(-1,1,100);
[mag, phase] = bode(tf([1 .2],[$$
\begin{array}{llll}{1}&{2}&{1}&{1],'InputDelay',.5),freq);}\end{array}
$$]
data = frd(mag.*exp(1j*phase*pi/180),freq);
data is an iddata object that contains frequency response data for the described system.

```

Estimate a transfer function using data. Specify an unknown transport delay for the identified transfer function.
```

np = 3;

```
nz = 1;
```

iodelay = NaN;
sys = tfest(data,np,nz,iodelay)

```
\(n p\) and \(n z\) specify the number of poles and zeros in the identified transfer function, respectively.
iodelay specifies an unknown transport delay for the identified transfer function.
sys is an idtf model containing the identified transfer function.

\section*{Specify Identified Transfer Function Model Structure and Constraints}

Identify a transfer function for given data by providing its expected structure and coefficient constraints.

Load time domain data.
```

load iddata1 z1;
z1.y = cumsum(z1.y);

```

This command integrates the output data of \(z 1\). The identified transfer function should therefore contain an integrator.

Create a transfer function model with the expected structure.
```

init_sys = idtf([100 1500],[1 10 10 0]);

```
int_sys is an idtf model with three poles and one zero. The denominator coefficient for the \(\mathrm{s}^{\wedge} 0\) term is zero. Therefore, int_sys contains an integrator.

Specify constraints on the numerator and denominator coefficients of the transfer function model. To do so, configure fields in the Structure property of
```

init_sys.Structure.num.Minimum = eps;
init_sys.Structure.den.Minimum = eps;
init_sys.Structure.den.Free(end) = false;

```

The constraints specify that the numerator and denominator coefficients are nonnegative. Additionally, the last element of the denominator coefficients (associated with the \(s^{\wedge} 0\) term) is not a free estimation variable. This constraint forces one of the estimated poles to be at \(s=0\).

Create an estimation option set that specifies using the Levenberg-Marquardt search method.
opt = tfestOptions('SearchMethod', 'lm');
Estimate a transfer function for z1 using init_sys and the estimation option set.
```

sys = tfest(z1,init_sys,opt);

```
tfest uses the coefficients of init_sys to initialize the estimation of sys. Additionally, the estimation is constrained by the constraints you specify in the Structure property of init_sys. The resulting idtf model sys contains the parameter values that result from the estimation.

\section*{Known Transport Delays for Multiple Inputs}

Identify a transfer function with known transport delays for given data.
Load time domain system response data.
```

load co2data;
Ts = 0.5;
data = iddata(Output_exp1,Input_exp1,Ts);

```
data is an iddata object and has a sample rate of 0.5 seconds.
Specify the search method as gna and the maximum search iterations. Also specify the input and output offsets.
```

opt = tfestOptions('SearchMethod','gna');
opt.InputOffset = [170; 50];
opt.OutputOffset = mean(data.y(1:75));
opt.SearchOption.MaxIter = 50;

```
opt is an estimation option set that specifies the search method as gna, with a maximum of 50 iterations. opt also specifies the input offset and the output offset.

Identify a transfer function using the measured data and the estimation option set. Specify the transport delays from the inputs to the output.
```

np = 3;
nz = 1;
iodelay = [2 5];
sys = tfest(data,np,nz,iodelay,opt);

```
iodelay specifies the input to output delay from the first and second inputs to the output as 2 seconds and 5 seconds, respectively.
sys is an idtf model containing the identified transfer function.

\section*{Known and Unknown Transport Delays}

Identify a transfer function containing known and unknown input to output delays for given data.

Load time domain system response data and use it to identify a transfer function for the system. Specify the known and unknown transport delays.
```

load co2data;
Ts = 0.5;
data = iddata(Output_exp1,Input_exp1,Ts);

```
data is an iddata object and has a sample rate of 0.5 seconds.
Specify the search method as gna and the maximum search iterations. Also specify the input and output offsets.
```

opt = tfestOptions('Display','on','SearchMethod','gna');
opt.InputOffset = [170; 50];
opt.OutputOffset = mean(data.y(1:75));
opt.SearchOption.MaxIter = 50;

```
opt is an estimation option set that specifies the search method as gna, with a maximum of 50 iterations. opt also specifies the input offset and the output offset.

Identify a transfer function using the measured data and the estimation option set. Specify the unknown and known transport delays.
```

np = 3;
nz = 1;
iodelay = [2 nan];
sys = tfest(data,np,nz,iodelay,opt)

```
iodelay specifies the transport delay from the first input to the output as 2 seconds. Using NaN specifies the transport delay from the second input to the output as unknown.
sys is an idtf model containing the identified transfer function.

\section*{Unknown Transport Delays with Constraints}

Identify a transfer function containing unknown transport delays with constraints for given data.

Create a transfer function model with the expected numerator and denominator structure and delay constraints.

For this example, the experiment data consists of two inputs and one output. Both transport delays are unknown and have an identical upper bound. Additionally, the transfer functions from both inputs to the output are identical in structure.
```

init_sys = idtf(NaN(1,2),[1, NaN(1,3)],'ioDelay',NaN);
init_sys.Structure(1).ioDelay.Free = true;
init_sys.Structure(1).ioDelay.Maximum = 7;

```
init_sys is an idtf model describing the structure of the transfer function from one input to the output. The transfer function consists of one zero, three poles and a transport delay. The use of NaN indicates unknown coefficients.
init_sys.Structure(1).ioDelay.Free = true indicates that the transport delay is not fixed.
init_sys.Structure(1).ioDelay.Maximum = 7 sets the upper bound for the transport delay to 7 seconds.
init_sys = [init_sys, init_sys];
init_sys now contains the transfer function from both inputs to the output.

Load time domain system response data and use it to identify a transfer function for the system.
```

load co2data;
Ts = 0.5;
data = iddata(Output_exp1,Input_exp1,Ts);
opt = tfestOptions('Display','on','SearchMethod','gna');
opt.InputOffset = [170; 50];
opt.OutputOffset = mean(data.y(1:75));
opt.SearchOption.MaxIter = 50;
sys = tfest(data,init_sys,opt)

```
data is an iddata object and has a sample rate of 0.5 seconds.
opt is an estimation option set that specifies the search method as gna, with a maximum of 50 iterations. opt also specifies the input offset and the output offset.
sys is an idtf model containing the identified transfer function.
Analyze the estimation result by comparison.
```

opt2 = compareOptions;
opt2.InputOffset = opt.InputOffset;
opt2.OutputOffset = opt.OutputOffset;
compare(data, sys, opt2)

```

\section*{Different Number of Poles for Input/Output Pairs}

Identify a multiple-input, single-output transfer function containing different number of poles for input/output pairs for given data.

Obtain frequency response data.
For example, use frd to frequency response data model for the following system:
\[
G=\left[\begin{array}{l}
e^{-4 s} \frac{s+2}{s^{3}+2 s^{2}+4 s+5} \\
e^{-0.6 s} \frac{5}{s^{4}+2 s^{3}+s^{2}+s}
\end{array}\right]
\]

Use 100 frequency points, ranging from \(0.01 \mathrm{rad} / \mathrm{s}\) to \(100 \mathrm{rad} / \mathrm{s}\), to obtain the frequency response data.
```

G = tf({[1 2],[5]},{[1 2 4 5],[1 2 1 1 0]},0,'ioDelay',[4 .6]);

```
data \(=f r d(G\), logspace \((-2,2,100))\);
data is an frd object containing the continuous-time frequency response for \(G\).

Identify a transfer function for data.
```

np = [3 4];
nz = [1 0];
iodelay = [4 .6];
sys = tfest(data,np,nz,iodelay);

```
np specifies the number of poles in the identified transfer function. The first element of \(n p\) indicates that the transfer function from the first input to the output contains 3 poles. Similarly, the second element of np indicates that the transfer function from the second input to the output contains 4 poles.
\(n z\) specifies the number of zeros in the identified transfer function. The first element of \(n z\) indicates that the transfer function from the first
input to the output contains 1 zero. Similarly, the second element of np indicates that the transfer function from the second input to the output does not contain any zeros.
iodelay specifies the transport delay from the first input to the output as 4 seconds. The transport delay from the second input to the output is specified as 0.6 seconds.
sys is an idtf model containing the identified transfer function.

\section*{Identify Transfer Function for Unstable System}

Identify a transfer function describing an unstable system for given data.

Obtain frequency response data.
For example, use frd to frequency response data model for the following system:
\[
G=\left[\begin{array}{c}
\frac{s+2}{s^{3}+2 s^{2}+4 s+5} \\
\frac{5}{s^{4}+2 s^{3}+s^{2}+s+1}
\end{array}\right]
\]

Use 100 frequency points, ranging from \(0.01 \mathrm{rad} / \mathrm{s}\) to \(100 \mathrm{rad} / \mathrm{s}\), to obtain the frequency response data.
```

G = tf({[1 2],[5]},{[1 2 4 5],[1 2 1 1 1]});
data = frd(G,logspace(-2,2,100));

```
data is an frd object containing the continuous-time frequency response for \(G\).

Create estimation options set.
```

opt = tfestOptions('Focus','prediction');

```

Identify a transfer function for data, using the options set opt.
```

np = [3 4];

```
```

nz = [1 0];
sys = tfest(data,np,nz,opt);

```
np specifies the number of poles in the identified transfer function. The first element of \(n p\) indicates that the transfer function from the first input to the output contains 3 poles. Similarly, the second element of np indicates that the transfer function from the second input to the output contains 4 poles.
\(n z\) specifies the number of zeros in the identified transfer function. The first element of \(n z\) indicates that the transfer function from the first input to the output contains 1 zero. Similarly, the second element of np indicates that the transfer function from the second input to the output does not contain any zeros.
opt specifies the estimation options for identifying the transfer function. sys is an idtf model containing the identified transfer function.

\section*{Algorithms}
tfest uses the prediction error minimization (PEM) approach to estimate transfer function coefficients. In general, the estimating algorithm performs two major tasks:

1 Initializing the estimable parameters.
2 Updating the estimable parameters.
The details of the algorithms used to perform these tasks vary depending on a variety of factors, including the sampling of the estimated model and the estimation data.

\section*{Continuous-Time Transfer Function Estimation Using Time-Domain Data}

\section*{Parameter Initialization}

The estimation algorithm initializes the estimable parameters using the method specified by the InitMethod estimation option. The default method is the Instrument Variable (IV) method.

The State-Variable Filters (SVF) approach and the Generalized Poisson Moment Functions (GPMF) approach to continuous-time
parameter estimation use pre-filtered data [1] [2]. The constant \(\frac{1}{\text { in }}\) in [1] and [2] corresponds to the initialization option (InitOption) field FilterTimeConstant. IV is the simplified refined IV method and is called SRIVC in [1] and [2]. It has a prefilter that is the denominator of the current model, initialized with SVF, and iterated up to MaxIter times, until the model change is less than Tolerance. MaxIter and Tolerance are options that you can specify using the InitOption structure. The 'n4sid' initialization option estimates a discrete-time model using the ' \(n 4\) sid' subspace estimation algorithm and then transforms it to continuous-time using d2c.
You use tfestOptions to create the option set used to estimate a transfer function.

\section*{Parameter Update}

The initialized parameters are updated using a nonlinear least-squares search method, specified by the SearchMethod estimation option. The objective of the search method is to minimize the weighted prediction error norm.

\section*{Discrete-Time Transfer Function Estimation}

When using discrete-time data, tfest uses the same algorithm as oe to determine the numerator and denominator polynomial coefficients. In this algorithm, the initialization is performed using arx, followed by nonlinear least-squares search based updates to minimize a weighted prediction error norm.

\section*{Continuous-Time Transfer Function Estimation Using Frequency-Domain Data}

When using continuous-time data and fixed delays, the Output-Error algorithm is used. When using continuous-time data and free delays, or using discrete-time data, the state-space estimation algorithm is used. In this algorithm, the model coefficients are initialized using the N4SID
estimation method, followed by nonlinear least-squares search based updates to minimize a weighted prediction error norm.

\section*{Delay Estimation}
- When delay values are specified as NaN, they are estimated separate from the model's numerator and denominator coefficients, using delayest. The delay values thus determined are treated as fixed values during the iterative update of the model using a nonlinear least-squares search method. That is, the delay values are not iteratively updated. The only exception is the estimation of continuous-time models using continuous-time data.
- When an initial model with finite but free values of ioDelay is used (init_sys.Structure.ioDelay.Value is a finite value and init_sys.Structure.ioDelay.Free is true), those values are updated during estimation only when init_sys.Ts is zero and when you are using continuous-time frequency domain data. In all other cases, the initial delay values are left unchanged.

Estimation of delays is often a difficult problem. You should assess the presence and the value of a delay using physical insight of the process being modeled and using functions such as arxstruc, delayest, and impulseest. For an example of determining input delay, see Model Structure Selection: Determining Model Order and Input Delay.

References

See Also
[1] Garnier, H., M. Mensler, and A. Richard. "Continuous-time Model Identification From Sampled Data: Implementation Issues and Performance Evaluation" International Journal of Control. Vol. 76, Issue 13, 2003, pp 1337-1357.
[2] Ljung, L. "Experiments With Identification of Continuous-Time Models." Proceedings of the 15th IFAC Symposium on System Identification. 2009.
tfestOptions | idtf | ssest | procest | ar | arx | oe | bj | polyest | greyest

\section*{Related \\ Examples}

\author{
Concepts \\ - "What are Transfer Function Models?"
}
- "How to Estimate Transfer Function Models at the Command Line"
Purpose Options set for tfest
```

Syntax opt = tfestOptions
opt = tfestOptions(Name,Value)

```

Description

\section*{Input \\ Arguments}
opt \(=\) tfestOptions creates the default options set for tfest.
opt \(=\) tfestOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{InitMethod}

Algorithm used to initialize the values of the numerator and denominator of the output of tfest.

Applies only for estimation of continuous-time transfer functions using time domain data.

InitMethod is a string that takes the following values:
- 'iv' - Instrument Variable approach.
- 'svf' - State Variable Filters approach.
- 'gpmf ' - Generalized Poisson Moment Functions approach.
- 'n4sid' - Subspace state-space estimation approach.
- 'all' - Combination of all of the above approaches. The software tries all the above methods and selects the method that yields the smallest value of prediction error norm.

Default: 'iv'

\section*{InitOption}

Options associated with the method used to initialize the values of the numerator and denominator of the output of tfest.

InitOption is a structure with the following fields:
- N4Weight - Calculates the weighting matrices used in the singular-value decomposition step of the 'n4sid' algorithm. Applicable when InitMethod is 'n4sid'.

N4Weight is a string that takes the following values:
- 'MOESP' - Uses the MOESP algorithm by Verhaegen.
- 'CVA' - Uses the canonical variable algorithm (CVA) by Larimore.
- 'auto' - The software automatically determines if the MOESP algorithm or the CVA algorithm should be used in the singular-value decomposition step.

Default: `auto'
- N4Horizon - Determines the forward and backward prediction horizons used by the 'n4sid' algorithm. Applicable when InitMethod is 'n4sid'.

N4Horizon is a row vector with three elements: [r sy su], where \(r\) is the maximum forward prediction horizon. That is, the algorithm uses up to \(r\) step-ahead predictors. sy is the number of past outputs, and su is the number of past inputs that are used for the predictions. See pages 209 and 210 in [1] for the exact meaning of this. These numbers can have a substantial influence on the quality of the resulting model, and there are no simple rules for choosing them. Making 'N4Horizon' a k-by-3 matrix means that each row of 'N4Horizon' is tried, and the value that gives the best (prediction) fit to data is selected. \(k\) is the number of guesses of [ \(r\) sy su] combinations.

If N4Horizon = 'auto', the software uses an Akaike Information Criterion (AIC) for the selection of sy and su.

Default: `auto'
- FilterTimeConstant - Time constant of the differentiating filter in the svf and gpmf initialization methods.

Specify FilterTimeConstant as a positive number, typically greater than 1.

Default: 10
- MaxIter - Maximum number of iterations. Applicable when InitMethod is 'iv'.

Default: 30
- Tolerance - Convergence tolerance. Applicable when InitMethod is 'iv'.

Default: 0.01

\section*{InitialCondition}

Specifies how initial conditions are handled during estimation.
- 'zero' - All initial conditions are taken as zero.
- 'estimate' - The necessary initial conditions are treated as estimation parameters.
- 'backcast ' - The necessary initial conditions are estimated by a backcasting (backward filtering) process, described in [2].
- 'auto' - An automatic choice among the above is made, guided by the data.

Default: 'auto'

\section*{Focus}

Defines how the errors \(e\) between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the prediction error.

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies.

Focus can take the following values:
- 'simulation' - Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power.
- prediction - Same as simulation, except that it does not enforce the stability of the resulting model.
- Passbands - Row vector or matrix containing frequency values that define desired passbands. For example:
[ \(w l, w h\) ]
[w1l,w1h;w2l,w2h;w31,w3h;...]
where \(w l\) and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.
- SISO filter - Enter any SISO linear filter in any of the following ways:
- A single-input-single-output (SISO) linear system.
- The \(\{A, B, C, D\}\) format, which specifies the state-space matrices of the filter.
- The \{numerator, denominator\} format, which specifies the numerator and denominator of the filter transfer function

This calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. The estimation result is the same if you first prefilter the data using idfilt.
- Weighting vector - For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data.Frequency.

Each input and output response in the data is multiplied by the corresponding weight at that frequency.

Default: 'simulation'

\section*{EstCovar}

Controls whether parameter covariance data is generated or not.
If EstCovar is true, then use getcov to fetch the covariance matrix from the estimated model.

Default: true

\section*{Display}

Specifies whether estimation progress should be displayed.
Display requires one of the following strings:
- 'on ' - Information on model structure and estimation results are displayed in a progress viewer window
- 'off' - No progress or results information is displayed

Default: 'off'

\section*{InputOffset}

Removes offset from time domain input data during estimation.
Specify as a column vector of length \(N u\), where \(N u\) is the number of inputs.

Use [] to indicate no offset.
For multiexperiment data, specify InputOffset as a \(N u\)-by- \(N e\) matrix. \(N u\) is the number of inputs, and \(N e\) is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

\section*{Default: []}

\section*{OutputOffset}

Removes offset from time domain output data during estimation.
Specify as a column vector of length \(N y\), where \(N y\) is the number of outputs.

Use [] to indicate no offset.
For multiexperiment data, specify OutputOffset as a Ny -by- Ne matrix. \(N y\) is the number of outputs, and \(N e\) is the number of experiments. Each entry specified by OutputOffset is subtracted from the corresponding output data.

Default: []

\section*{SearchMethod}

Search method used for iterative parameter estimation.
SearchMethod is a string that can take the following values:
- gn - The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max (size(J)) *norm(J) are discarded when computing the search direction. \(J\) is the Jacobian matrix. The Hessian matrix is approximated by \(J^{T} J\). If there is no improvement in this direction, the function tries the gradient direction.
- gna - An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness [3]. Eigenvalues less than gamma*max (sv) of the Hessian are neglected, where sv are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see Advanced for more information) and is increased by the factor LMStep each time the search fails to find a lower value of the criterion in less than 5 bisections. It is decreased by the factor 2*LMStep each time a search is successful without any bisections.
- lm - Uses the Levenberg-Marquardt method. This means that the next parameter value is - \(\operatorname{pinv}(H+d * I) * g r a d\) from the previous one, where \(H\) is the Hessian, I is the identity matrix, and grad is the gradient. \(d\) is a number that is increased until a lower value of the criterion is found.
- lsqnonlin - Uses lsqnonlin optimizer from Optimization Toolbox software. You must have Optimization Toolbox installed to use this option. This search method can only handle the Trace criterion.
- grad - The steepest descent gradient search method.
- auto - A choice among the above is made in the algorithm. The descent direction is calculated using gn, gna, Im and grad successively, in that order, at each iteration until a sufficient reduction in error is achieved.

Default: 'auto'

\section*{SearchOption}

SearchOption is an options set for the search algorithm with the fields:
\begin{tabular}{l|l}
\hline SearchMEdradhOption \\
\hline gn,gna,lm, \(\bullet\) & Tolerance - Minimum percentage difference (divided \\
grad & \begin{tabular}{l} 
by 100) between the current value of the loss function \\
and \\
auto
\end{tabular} \\
\begin{tabular}{l} 
and its expected improvement after the next iteration.
\end{tabular} \\
\begin{tabular}{l} 
When the percentage of expected improvement is less \\
than Tolerance, the iterations are stopped. The estimate \\
of the expected loss-function improvement at the next \\
iteration is made based on the Gauss-Newton vector \\
computed for the current parameter value.
\end{tabular} \\
&
\end{tabular}

Default: 0.01
- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as Tolerance.

\section*{SearchMertrodhOption}

Setting MaxIter \(=0\) returns the result of the startup procedure.

Use sys.Report.Termination.Iterations to get the actual number of iterations during an estimation, where sys is an idtf model.

Default: 20
- Advanced - Search settings:
- GnPinvConst - Singular values of the Jacobian that are smaller than GnPinvConst*max(size(J)*norm(J)*eps are discarded when computing the search direction and SearchMethod is 'gn'.

GnPinvConst must be a positive real value.
Default: 10000
- InitGnaTol - Initial value of gamma when SearchMethod is 'gna'.

Default: . 0001
- LMStartValue - Starting value of search-direction length \(d\) in the Levenberg-Marquardt method. Applicable when SearchMethod is ' 1 m '.

Default: . 001
- LMStep - Size of the Levenberg-Marquardt step. The next value of the search-direction length \(d\) in the Levenberg-Marquardt method is LMStep times the previous one. Applicable when SearchMethod is 'lm'.

Default: 2

SearchMEthoodhOption
- MaxBisections - Maximum number of bisections used by the line search along the search direction.

Default: 25
- MaxFunEvals - Iterations are stopped if the number of calls to the model file exceeds this value.

MaxFunEvals must be a positive integer value.
Default: Inf
- MinParChange - Smallest parameter update allowed per iteration

MinParChange must be a positive, real value.
Default: 0
- RelImprovement - Iterations are stopped if the relative improvement of the criterion function is less than RelImprovement.

RelImprovement must be a positive integer value.
Default: 0
- StepReduction - Suggested parameter update is reduced by the factor StepReduction after each try until either MaxBisections tries are completed or a lower value of the criterion function is obtained.

StepReduction must be a positive, real value that is greater than 1.

Default: 2
lsqnonline TolFun - Termination tolerance on the loss function that the software minimizes to determine the estimated parameter values.

\section*{SearchMerdrodhOption}

The value of TolFun is the same as that of sys. SearchOption. Advanced. TolFun.

Default: 1e-5
- TolX - Termination tolerance on the estimated parameter values.

The value of TolX is the same as that of sys.SearchOption.Advanced.TolX.

Default: 1e-6
- MaxIter - Maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as TolFun etc..

The value of MaxIter is the same as that of sys.SearchOption.Advanced.MaxIter.

Default: 20
- Advanced - Options set for lsqnonlin.

For more information, see "Optimization Options".
Use optimset('lsqnonlin') to create an options set for lsqnonlin and then modify it to specify its various options.

\section*{Advanced}

Advanced is a structure with the following fields:
- ErrorThreshold - Specifies when to adjust the weight of large errors from quadratic to linear.
Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from
the median and divided by 0.7. (See the section about choosing a robust norm in the chapter "Computing the Estimate" of [1].) ErrorThreshold \(=0\) disables robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, ErrorThreshold is set to zero.

\section*{Default: 0}
- MaxSize - Specifies the maximum number of elements in a segment when input-output data is split into segments.

MaxSize must be a positive integer.
Default: 250000
- StabilityThreshold - Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:
- s - Specifies the location of the right-most pole to test the stability of continuous-time models. A model is considered stable when its right-most pole is to the left of \(s\).

Default: 0
- z - Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance \(z\) from the origin.

Default: 1+sqrt(eps)
- AutoInitThreshold - Specifies when to automatically estimate the initial conditions.

When InitialCondition = 'Auto', the initial condition is estimated when the ratio of the prediction-error norm with a zero initial condition to the norm with an estimated initial condition exceeds AutoInitialState.

Default: 1.05

\section*{OutputWeight}

Specifies criterion used during minimization.

OutputWeight can have the following values:
- 'noise' — Minimize \(\operatorname{det}\left(E^{\prime *} E\right)\), where \(E\) represents the prediction error. This is the optimal choice in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function.
- positive semi-definite symmetric matrix (W) - Minimize the trace of the weighted prediction error matrix trace ( \(E^{\prime *} E^{*} W\) ), where \(E\) is the matrix of prediction errors, with one column for each output, and \(W\) is the positive semi-definite symmetric matrix of size equal to the number of outputs. Use \(W\) to specify the relative importance of outputs in multiple-input multiple-output models, or the reliability of corresponding data.
This option is relevant only for multi-input, multi-output models.
- [ ] - The software chooses between the 'noise' or using the identity matrix for \(W\).

\section*{Output \\ Arguments}

\section*{Examples}

\section*{opt}

Option set containing the specified options for tfest.

\section*{Create Default Options Set for Transfer Function Estimation}

Create a default options set for tfest.
```

opt = tfestOptions;

```

\section*{Specify Options for Transfer Function Estimation}

Create an options set for tfest using the 'n4sid' initialization algorithm and set the Display to 'on'.
```

opt = tfestOptions('InitMethod','n4sid','Display','on');

```

Alternatively, use dot notation to set the values of opt.
```

opt = tfestOptions;

```
```

opt.InitMethod = 'n4sid';
opt.Display = 'on';

```

\author{
References [1] Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999. \\ [2] Knudsen, T. "New method for estimating ARMAX models," In Proceedings of 10th IFAC Symposium on System Identification, SYSID'94, Copenhagen, Denmark, July 1994, Vol. 2, pp. 611-617. \\ [3] Wills, Adrian, B. Ninness, and S. Gibson. "On Gradient-Based Search for Multivariable System Estimates". Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8, 2005. Oxford, UK: Elsevier Ltd., 2005.
}

\section*{See Also tfest}

\section*{timeoptions}

Purpose
Syntax

Description

Create list of time plot options
\(P=\) timeoptions
P = timeoptions('cstprefs')
\(P=\) timeoptions returns a list of available options for time plots with default values set. You can use these options to customize the time value plot appearance from the command line.

P = timeoptions('cstprefs') initializes the plot options you selected in the Control System Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor" in the User's Guide documentation.

This table summarizes the available time plot options.
\begin{tabular}{l|l}
\hline Option & Description \\
\hline Title, XLabel, YLabel & Label text and style \\
\hline TickLabel & Tick label style \\
\hline Grid & \begin{tabular}{l} 
Show or hide the grid \\
Specified as one of the following \\
strings: ' off' | 'on' \\
Default: 'off'
\end{tabular} \\
\hline XlimMode, YlimMode & Limit modes \\
\hline Xlim, Ylim & Axes limits \\
\hline IOGrouping & \begin{tabular}{l} 
Grouping of input-output pairs \\
Specified as one of the \\
following strings: 'none ' \\
I inputs ' I 'output ' I 'all' ' \\
Default: 'none '
\end{tabular} \\
\hline InputLabels, OutputLabels & Input and output label styles \\
\hline InputVisible, OutputVisible & \begin{tabular}{l} 
Visibility of input and output \\
channels
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Option & Description \\
\hline Normalize & Normalize responses Specified as one of the following strings: 'on ' | 'off' Default: 'off' \\
\hline SettleTimeThreshold & Settling time threshold \\
\hline RiseTimeLimits & Rise time limits \\
\hline TimeUnits & \begin{tabular}{l}
Time units, specified as one of the following strings: \\
- 'nanoseconds' \\
- 'microseconds' \\
- 'milliseconds' \\
- 'seconds' \\
- 'minutes' \\
- 'hours' \\
- 'days' \\
- 'weeks' \\
- 'months' \\
- 'years' \\
Default: 'seconds' \\
You can also specify 'auto' which uses time units specified in the TimeUnit property of the input system. For multiple systems with different time units, the units of the first system is used.
\end{tabular} \\
\hline
\end{tabular}

Examples

The following step plot is created with the responses normalized.
In this example, enable the normalized response option before creating a plot.
\(P=\) timeoptions;
\% Set normalize response to on in options
P.Normalize = 'on';
\% Create plot with the options specified by P
\(h=s t e p p l o t(t f(10,[1,1]), t f(5,[1,5]), P) ;\)


See Also
getoptions | impulseplot | initialplot | lsimplot | setoptions | stepplot

\section*{Purpose Total combined I/O delays for LTI model}

\section*{Syntax td = totaldelay (sys)}

Description td = totaldelay(sys) returns the total combined I/O delays for an LTI model sys. The matrix td combines contributions from the InputDelay, OutputDelay, and ioDelayMatrix properties.

Delays are expressed in seconds for continuous-time models, and as integer multiples of the sample period for discrete-time models. To obtain the delay times in seconds, multiply td by the sample time sys.Ts.

\section*{Examples}
```

sys = tf(1,[1 0]); % TF of 1/s
sys.inputd = 2; % 2 sec input delay
sys.outputd = 1.5; % 1.5 sec output delay
td = totaldelay(sys)
td =
3.5000

```

The resulting I/O map is
\[
e^{-2 s} \times \frac{1}{s} e^{-1.5 s}=e^{-3.5 s} \frac{1}{s}
\]

This is equivalent to assigning an I/O delay of 3.5 seconds to the original model sys.

See Also absorbDelay | hasdelay

\section*{Purpose}

Translate parameter covariance across model operations
Syntax
sys_new = translatecov(fcn,sys)
sys_new = translatecov(fcn,sys1,sys2,...sysn)
sys_new = translatecov(fcn, sys) translates parameter covariance in the model sys during the transformation operation specified in fen. Parameter covariance is computed by applying Gauss Approximation formula on the parameter covariance of sys.
sys_new = translatecov(fcn, sys1,sys2,...sysn) translates parameter covariance in the multiple models sys1, sys2, ...sysn. The parameters of the systems are assumed to be uncorrelated.

Tips
- translatecov transforms the model in the same way that directly calling the transformation command does. For example, translatecov(@(x)d2c(x),sys) produces a system that has the same coefficients as d2c (sys). The resulting model also has the parameter covariance of sys. Using d2c (sys) directly does not translate the parameter covariance.
- If you obtained sys through estimation and have access to the estimation data, you can use zero-iteration update to recompute the parameter covariance. For example:
```

load iddata1
m = ssest(z1,4);
opt = ssestOptions
opt.SearchOption.MaxIter = 0;
m_new = ssest(z1,m2,opt)

```

You cannot run a zero-iteration update in the following cases:
- If MaxIter option, which depends on the SearchMethod option, is not available.
- For some model and data types. For example, a continuous-time idpoly model using time-domain data.

\section*{Input Arguments}

\section*{fcn}

Function for a model transformation operation, specified as a function handle. The function handle describes the transformation such that:
- For single-model operations, sys_new = fcn(sys). Examples of single-model operations are model-type conversion (idpoly, idss, ...) and sample time conversion (c2d, ...). For example, fcn = @(x)c2d(x,Ts), or fcn = @idpoly.
- For multi-model operations, sys_new = fcn(sys1,sys2,..). Examples of multimodel operations are merging and concatenation. For example, \(f \mathrm{cn}=@(\mathrm{x}, \mathrm{y})[\mathrm{x}, \mathrm{y}]\) such that \(\mathrm{fcn}(\mathrm{sys} 1, \mathrm{sys} 2)\) performs horizontal concatenation of the models sys 1 and sys2.

\section*{sys}

Linear model, specified as one of the following model types:
- idtf
- idproc
- idss
- idpoly
- idgrey

The model must contain parameter covariance information (getcov(sys) is nonempty).

\section*{sys1,sys2,...sysn}

Multiple linear models. Models must be of the same type.

\section*{Output}

Arguments
sys_new
Model resulting from a transformation operation and includes parameter covariance.

\section*{Definitions}

\section*{Examples \\ Translate Parameter Covariance During Model Conversion}

Convert an estimated transfer function model into state-space model while also translating the estimated parameter covariance.

Estimate a transfer function model.
```

load iddata1
sys1 = tfest(z1,2);

```

Convert the estimated model to state-space form while also translating the estimated parameter covariance.
```

sys2 = translatecov(@(x)idss(x),sys1);

```

If you convert the transfer function model to state-space form directly, the estimated parameter covariance is lost (the output of getcov is empty).
```

sys3 = idss(sys1);
getcov(sys3)
ans =

```

\section*{[]}

View the parameter covariance in the estimated and converted models.
```

covsys1 = getcov(sys1);
covsys2 = getcov(sys2);

```

Compare the confidence regions.
```

h = bodeplot(sys1,sys2);

```
showConfidence(h,2);

The confidence bounds for sys1 overlaps with sys2.


\section*{Translate Parameter Covariance During Model Concatenation}

Concatenate 3 single-output models such that the covariance data from the 3 models combine to produce the covariance data for the resulting model.

Construct a state-space model.
```

a = [-1.1008 0.3733;0.3733 -0.9561];
b = [0.7254 0.7147;-0.0631 -0.2050];
c = [-0.1241 0; 1.4897 0.6715; 1.4090 -1.2075];
d = [0 1.0347; 1.6302 0; 0.4889 0];
sys = idss(a,b,c,d,'Ts',0);

```

Generate multi-output estimation data.
```

t = (0:0.01:0.99)';
u = randn(100,2);
y = lsim(sys,u,t,'zoh');

```
```

y = y + rand(size(y))/10;
data = iddata(y,u,0.01);

```

Estimate a separate model for each output signal.
```

m1 = ssest(data(:,1,:),2,'feedthrough',true(1,2), 'DisturbanceModel'
m2 = ssest(data(:,2,:),2,'feedthrough',true(1,2), 'DisturbanceModel',
m3 = ssest(data(:,3,:),2,'feedthrough',true(1,2), 'DisturbanceModel',

```

Combine the estimated models while also translating the covariance information.
```

f = @(x,y,z)[x;y;z];
M2 = translatecov(f, m1, m2, m3);
getcov(M2, 'factors')

```

The parameter covariance is not empty.
getcov(M2, 'factors')
ans =
    R: [36x36 double]
    T: [24×36 double]
    Free: [90x1 logical]

If you combine the estimated models into one 3 -output model directly, the covariance information is lost (the output of getcov is empty).
```

M1 = [m1;m2;m3];
getcov(M1)

```
ans
[]

Compare the confidence bounds.
```

h = bodeplot(M2, m1, m2, m3)
showConfidence(h);

```

The confidence bounds for M2 overlap with those of m1, m2 and m3 models on their respective plot axes.


\section*{Algorithms}
translatecov uses numerical perturbations of individual parameters of sys to compute the Jacobian of fon(sys) parameters with respect to parameters of sys. translatecov then applies Gauss Approximation
formula cov_new \(=J \times \operatorname{cov} \times J^{T}\) to translate the covariance, where \(J\) is the Jacobian matrix. This operation can be slow for models containing a large number of free parameters.

\author{
See Also \\ getcov | setcov | getpvec | resample \\ Concepts \\ - "What Is Model Covariance?" \\ - "Types of Model Uncertainty Information"
}

\section*{treepartition}

> Purpose Class representing binary-tree nonlinearity estimator for nonlinear ARX models
```

Syntax
t=treepartition(Property1, Value1, ...PropertyN, ValueN)
t=treepartition('NumberOfUnits',N)

```

\section*{Description}

\section*{Construction}
treepartition Properties
t=treepartition(Property1, Value1, ...PropertyN, ValueN) creates a binary tree nonlinearity estimator object specified by properties in "treepartition Properties" on page 2-972. The tree has the number of leaves equal to \(2^{\wedge}(J+1)-1\), where \(J\) is the number of nodes in the tree and set by the property NumberOfUnits. The default value of NumberOfUnits is computed automatically and sets an upper limit on the actual number of tree nodes used by the estimator.
t=treepartition('NumberOfUnits', N) creates a binary tree nonlinearity estimator object with \(N\) terms in the binary tree expansion (the number of nodes in the tree). When you estimate a model containing \(t\), the value of the NumberOfUnits property, \(N\), in \(t\) is automatically changed to show the actual number of leaves used-which is the largest integer of the form \(2^{\wedge} \mathrm{n}-1\) and less than or equal to N .

You can include property-value pairs in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% List all property values
get(t)
% Get value of NumberOfUnits property
t.NumberOfUnits

```

You can also use the set function to set the value of particular properties. For example:
set(t, 'NumberOfUnits', 5)
The first argument to set must be the name of a MATLAB variable.
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline NumberOfUnits & \begin{tabular}{l}
Integer specifies the number of nodes in the tree. \\
Default='auto' selects the number of nodes from the data using the pruning algorithm. \\
When you estimate a model containing a treepartition nonlinearity, the value of NumberOfUnits is automatically changed to show the actual number of leaves used-which is the largest integer of the form \(2^{\wedge} n-1\) and less than or equal to \(N\) (the integer value of units you specify). \\
For example: \\
treepartition('NumberOfUnits', 5)
\end{tabular} \\
\hline Parameters & \begin{tabular}{l}
Structure containing the following fields: \\
- RegressorMean: 1-by-m vector containing the means of \(x\) in estimation data, \(r\). \\
- RegressorMinMax: m-by-2 matrix containing the maximum and minimum estimation-data regressor values. \\
- OutputOffset: scalar d. \\
- LinearCoef: m-by-1 vector \(L\). \\
- SampleLength: Length of estimation data. \\
- NoiseVariance: Estimated variance of the noise in estimation data. \\
- Tree: A structure containing the following tree parameters:
\end{tabular} \\
\hline
\end{tabular}

\section*{treepartition}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
- TreeLevelPntr: N -by-1 vector containing the levels j of each node. \\
- AncestorDescendantPntr: N-by-3 matrix, such that the entry \((k, 1)\) is the ancestor of node \(k\), and entries \((k, 2)\) and \((k, 3)\) are the left and right descendants, respectively. \\
- LocalizingVectors: N - \(b y\)-( \(\mathrm{m}+1\) ) matrix, such that the rth row is B_r. \\
- LocalParVector: N-by-(m+1) matrix, such that the kth row is C_k. \\
- LocalCovMatrix: N-by-((m+1)m/2) matrix such that the kth row is the covariance matrix of C_k. C_k is reshaped as a row vector.
\end{tabular} \\
\hline Options & \begin{tabular}{l}
Structure containing the following fields that affect the initial model: \\
- FinestCell: Integer or string specifying the minimum number of data points in the smallest partition. Default: 'auto', which computes the value from the data. \\
- Threshold: Threshold parameter used by the adaptive pruning algorithm. Smaller threshold value corresponds to a shorter branch that is terminated by the active partition D_a. Higher threshold value results in a longer branch. Default: 1.0 . \\
- Stabilizer: Penalty parameter of the penalized least-squares algorithm used to compute local parameter vectors C_k. Higher stabilizer value improves stability, but may deteriorate the accuracy of the least-square estimate. Default: 1e-6.
\end{tabular} \\
\hline
\end{tabular}

\section*{Algorithms}

The mapping \(F\) is defined by a dyadic partition \(P\) of the \(x\)-space, such that on each partition element \(P_{k}, F\) is a linear mapping. When \(x\) belongs to \(P_{k}, F(x)\) is given by:
\[
F(x)=d+x L+(1, x) C_{k},
\]
where \(L\) is 1 -by- \(m\) vector and \(d\) is a scalar common for all elements of partition. \(C_{\mathrm{k}}\) is a 1-by- \((m+1)\) vector.
The mapping \(F\) and associated partition \(P\) of the \(x\)-space are computed as follows:

1 Given the value of \(J\), a dyadic tree with \(J\) levels and \(N=2^{\mathrm{J}-1}\) nodes is initialized.

2 Each node at level \(1<j<J\) has two descendants at level \(j+1\) and one parent at level \(j-1\).
- The root node at level 1 has two descendants.
- Nodes at level \(J\) are terminating leaves of the tree and have one parent.

3 One partition element is associated to each node \(k\) of the tree.
- The vector of coefficients \(C_{k}\) is computed using the observations on the corresponding partition element \(P_{k}\) by the penalized least-squares algorithm.
- When the node \(k\) is not a terminating leaf, the partition element \(P_{\mathrm{k}}\) is cut into two to obtain the partition elements of descendant nodes. The cut is defined by the half-spaces \((1, x) B_{k}>0\) or \(<=0\) (move to left or right descendant), where \(B_{k}\) is chosen to improve the stability of least-square computation on the partitions at the descendant nodes.

4 When the value of the mapping \(F\), defined by the treepartition object, is computed at \(x\), an adaptive algorithm selects the active node \(k\) of the tree on the branch of partitions which contain \(x\).

\section*{treepartition}

When the idnlarx property Focus is 'Prediction', treepartition uses a noniterative technique for estimating parameters. Iterative refinements are not possible for models containing this nonlinearity estimator.

You cannot use treepartition when Focus is 'Simulation' because this nonlinearity estimators is not differentiable. Minimization of simulation error requires differentiable nonlinear functions.

\section*{Examples Use treepartition to specify the nonlinear estimator in nonlinear} ARX models. For example:
```

m=nlarx(Data,Orders,treepartition('num',5));

```

The following commands provide an example of using advanced treepartition options:
```

% Define the treepartition object.
t=treepartition('num',100);
% Set the Threshold, which is a field
% in the Options structure.
t.Options.Threshold=2;
% Estimate the nonlinear ARX model.
m=nlarx(Data,Orders,t);

```

\section*{See Also nlarx}

\section*{Purpose \\ Description}

T=getTrend(data)
where data is the iddata object from which you will be removing the offset or linear trend, and \(T\) is the TrendInfo object. You must then assign specific offset and slope values as properties of this object before passing the object as an argument to detrend.

For steady-state data, if you want to detrend the data and store the trend information, use the detrend command with the output argument for storing trend information.

\section*{Properties}

Offset and linear trend slope values for detrending data

TrendInfo class represents offset and linear trend information of input and output data. Constructing the corresponding object lets you:
- Compute and store mean values or best-fit linear trends of input and output data signals.
- Define specific offsets and trends to be removed from input-output data.

By storing offset and trend information, you can apply it to multiple data sets.

After estimating a linear model from detrended data, you can simulate the model at original operation conditions by adding the saved trend to the simulated output using retrend.

\section*{Construction For transient data, if you want to define a specific offset or trend to be removed from this data, create the TrendInfo object using getTrend. For example:} for

After creating the object, you can use get or dot notation to access the object property values.

\section*{TrendInfo}
\(\left.\begin{array}{l|l|l}\hline \begin{array}{l}\text { Property } \\ \text { Name }\end{array} & \text { Default } & \text { Description } \\ \hline \text { DataName } & \text { Empty string } & \begin{array}{l}\text { Name of the iddata object from which trend } \\ \text { information is derived (if any) }\end{array} \\ \hline \text { InputOffset } & \begin{array}{l}\text { zeros(1, nu), where } \\ \text { nu is the number of } \\ \text { inputs }\end{array} & \begin{array}{l}\text { - For transient data, the physical equilibrium } \\ \text { offset you specify for each input signal. } \\ \text { - For steady-state data, the mean of input values. } \\ \text { Computed automatically when detrending the } \\ \text { data. }\end{array} \\ \text { - If removing a linear trend from the input-output } \\ \text { data, the value of the line at to, where to is the } \\ \text { start time. }\end{array}\right\}\)
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Property \\
Name
\end{tabular} & Default & Description \\
\hline OutputOffset & \begin{tabular}{l} 
zeros(1, ny), where \\
ny is the number of \\
outputs
\end{tabular} & \begin{tabular}{l} 
- For transient data, the physical equilibrium \\
offset you specify for each output signal \\
- For steady-state data, the mean of output values. \\
Computed automatically when detrending the \\
data. \\
- If removing a linear trend from the intput-output \\
data, the value of the line at to, where to is the \\
start time.
\end{tabular} \\
\hline OutputSlope & \begin{tabular}{l} 
zeros (1, ny \(),\) where \\
ny is the number of \\
outputs
\end{tabular} & \begin{tabular}{l} 
For multiple experiment data, this is a cell array \\
of size equal to the number of experiments in the \\
data set.
\end{tabular} \\
Slope of linear trend in output data, computed \\
automatically when using the detrend command \\
to remove the linear trend in the data. \\
For multiple experiment data, this is a cell array \\
of size equal to the number of experiments in the \\
data set.
\end{tabular}

\section*{Examples}

Construct the object that stores trend information as part of data detrending:
```

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Plot data on a time plot - it has a nonzero mean
plot(data)
% Detrend the mean from the data
% Store the mean as TrendInfo object T
[data_d,T] = detrend(data,0)
% View mean value removed from the data

```

\section*{TrendInfo}
get (T)
    Construct the object that stores input and output offsets to be removed
from transient data:
    \% Load SISO data containing vectors u2 and y2
    load dryer2
    \% Create data object with sampling time of 0.08 sec
    data=iddata(y2, u2,0.08)
\% Plot data on a time plot - it has a nonzero mean
plot(data)
\% Create a TrendInfo object for storing offsets and trends
T = getTrend(data)
\% Assign offset values to the TrendInfo object
T. InputOffset=5;
T.OutputOffset=5;
\% Subtract specific offset from the data
data_d = detrend(data, T)
\% View mean value removed from the data
get( T )
See Also detrend | getTrend | retrend
How To . "Handling Offsets and Trends in Data"

\section*{Purpose}

Syntax unit=unitgain
Description

Tips

\section*{unitgain}

Properties

\section*{Examples For example, for a one-input and one-output model, to exclude the} output from being affected by a nonlinearity, use the following syntax:
m = nlhw(Data,Orders,'saturation','unitgain')
In this case, the input has a saturation nonlinearity.
If nonlinearities are absent in input or output channels, you can replace unitgain with an empty matrix. For example, to specify a Wiener

\section*{unitgain}
model with a sigmoid nonlinearity at the output and a unit gain at the input, use the following command:
m = nlhw(Data,Orders, [],'sigmoid');
See Also deadzone | nlhw | saturation | sigmoidnet

\section*{Purpose}

\section*{Syntax}

\section*{Description}

Class representing wavelet network nonlinearity estimator for nonlinear ARX and Hammerstein-Wiener models
```

s=wavenet('NumberOfUnits',N)
s=wavenet(Property1,Value1,...PropertyN,ValueN)

```
wavenet is an object that stores the wavelet network nonlinear estimator for estimating nonlinear ARX and Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
s=wavenet('NumberOfUnits',N) creates a wavelet nonlinearity estimator object with \(N\) terms in the wavelet expansion.
s=wavenet(Property1, Value1, ...PropertyN, ValueN) creates a wavelet nonlinearity estimator object specified by properties in "wavenet Properties" on page 2-984.

Use evaluate \((s, x)\) to compute the value of the function defined by the wavenet object \(s\) at \(x\).

Tips

Use wavenet to define a nonlinear function \(y=F(x)\), where \(y\) is scalar and \(x\) is an m -dimensional row vector. The wavelet network function is based on the following function expansion:
\[
\begin{aligned}
F(x)=(x-r) P L & +a_{s_{-} 1} f\left(b_{s_{-} 1}\left((x-r) Q-c_{s_{-} 1}\right)\right)+\ldots \\
& +a_{s_{-} n s} f\left(b_{s_{-} n s}\left((x-r) Q-c_{s_{-} n s}\right)\right) \\
& +a_{w_{-} 1} g\left(b_{w_{-} 1}\left((x-r) Q-c_{w_{-} 1}\right)\right)+\ldots \\
& +a_{w_{-} n w} g\left(b_{w_{-} n w}\left((x-r) Q-c_{w_{-} n w}\right)\right)+d
\end{aligned}
\]
where:
- \(f\) is a scaling function.
- \(g\) is the wavelet function.
- \(P\) and \(Q\) are m-by-p and m-by-q projection matrices, respectively.

The projection matrices \(P\) and \(Q\) are determined by principal component analysis of estimation data. Usually, \(p=m\). If the components of \(x\) in the estimation data are linearly dependent, then \(\mathrm{p}<\mathrm{m}\). The number of columns of \(Q, \mathrm{q}\), corresponds to the number of components of \(x\) used in the scaling and wavelet function.

When used in a nonlinear ARX model, q is equal to the size of the NonlinearRegressors property of the idnlarx object. When used in a Hammerstein-Wiener model, \(\mathrm{m}=\mathrm{q}=1\) and \(Q\) is a scalar.
- \(r\) is a \(1-b y\)-m vector and represents the mean value of the regressor vector computed from estimation data.
- \(d, a_{s}, b_{s}, a_{w}\), and \(b_{w}\) are scalars. Parameters with the \(s\) subscript are scaling parameters, and parameters with the \(w\) subscript are wavelet parameters.
- \(L\) is a \(p-b y-1\) vector.
- \(c_{s}\) and \(c_{w}\) are 1-by-q vectors.

The scaling function \(f\) and the wavelet function \(g\) are both radial functions, as follows:
\[
\begin{aligned}
& f(x)=e^{-0.5 x x^{\prime}} \\
& g(x)=\left(N_{r}-x x^{\prime}\right) e^{-0.5 x x^{\prime}}
\end{aligned}
\]
where \(N_{r}\) is the length of \(x\) (number of regressors).

\section*{wavenet Properties}

You can include property-value pairs in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% List all property values

```
% List all property values
get(w)
get(w)
% Get value of NumberOfUnits property
% Get value of NumberOfUnits property
w.NumberOfUnits
```

w.NumberOfUnits

```

You can also use the set function to set the value of particular properties. For example:
h set(w, 'LinearTerm', 'on')

The first argument to set must be the name of a MATLAB variable.
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline NumberOfUnits & \begin{tabular}{l}
Integer specifies the number of nonlinearity units in the expansion. \\
Default='auto ' \\
For example: \\
wavenet('NumberOfUnits', 5)
\end{tabular} \\
\hline LinearTerm & \begin{tabular}{l}
Can have the following values: \\
- 'on' - (Default) Estimates the vector \(L\) in the expansion. \\
- 'off' - Fixes the vector \(L\) to zero and omits the term \((x-r) P L\). \\
For example: \\
wavenet(H, 'LinearTerm', 'on')
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline Parameters & \begin{tabular}{l}
Structure containing the parameters in the nonlinear expansion, as follows: \\
- Regressormean: 1-by-m vector containing the means of \(x\) in estimation data, \(r\). \\
- NonLinearSubspace: m-by-q matrix containing \(Q\). \\
- LinearSubspace: m-by-p matrix containing \(P\). \\
- LinearCoef: p-by-1 vector \(L\). \\
- ScalingDilation: ns-by-1 matrix containing the values \(b_{s_{-} n s}\). \\
- WaveletDilation: nw-by-1 matrix containing the values \(b_{w_{-} n w}\). \\
- ScalingTranslation: ns-by-q matrix containing the values \(c_{s_{-} n s}\). \\
- WaveletTranslation: nw-by-q matrix containing the values \(c_{w \_n w}\). \\
- ScalingCoef: ns-by-1 vector containing the values \(a_{s_{-} n s}\). \\
- WaveletCoef: nw-by-1 vector containing the values \(a_{w \_n w}\). \\
- OutputOffset: scalar d.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline Options & \begin{tabular}{l}
Structure containing the following fields that affect the initial model: \\
- FinestCell: Integer or string specifying the minimum number of data points in the smallest cell. A cell is the area covered by the significantly nonzero portion of a wavelet. Default: 'auto', which computes the value from the data. \\
- MinCells: Integer specifying the minimum number of cells in the partition. Default: 16. \\
- MaxCells: Integer specifying the maximum number of cells in the partition. Default: 128. \\
- MaxLevels: Integer specifying the maximum number of wavelet levels. Default: 10. \\
- DilationStep: Real scalar specifying the dilation step size. Default: 2. \\
- TranslationStep: Real scalar specifying the translation step size. Default: 1.
\end{tabular} \\
\hline
\end{tabular}

\section*{Algorithms}

Examples

When the idnlarx property Focus is 'Prediction', wavenet uses a fast, noniterative technique for estimating parameters. Successive refinements after the first estimation use an iterative algorithm.

When the idnlarx property Focus='Simulation', wavenet uses an iterative technique for estimating parameters.

To always use noniterative or iterative algorithm, specify the IterWavenet algorithm property of the idnlarx class.

Use wavenet to specify the nonlinear estimator in nonlinear ARX and Hammerstein-Wiener models. For example:

\author{
See Also nlarx | nlhw
}

Purpose
Reorder states in state-space models

\section*{Syntax}

Description

Examples
sys = xperm(sys,P) creating state-space models, see ss and dss.

Order the states in the ssF8 model in alphabetical order.
sys \(=\) xperm(sys,\(P)\) reorders the states of the state-space model sys according to the permutation \(P\). The vector \(P\) is a permutation of \(1: N X\), where \(N X\) is the number of states in sys. For information about

1 Load the ssF8 model by typing the following commands:
```

load ltiexamples
ssF8

```

These commands return:
```

a =

	PitchRate	Velocity	AOA	PitchAngle
PitchRate	-0.7	-0.0458	-12.2	0
Velocity	0	-0.014	-0.2904	-0.562
AOA	1	-0.0057	-1.4	0
PitchAngle	1	0	0	0

b =
Elevator Flaperon
PitchRate -19.1 -3.1
Velocity -0.0119 -0.0096
AOA -0.14 -0.72
PitchAngle 0 0
c =

	PitchRate	Velocity	AOA	PitchAngle
FlightPath	0	0	-1	1
Acceleration	0	0	0.733	0

```
```

d =

	Elevator	Flaperon
FlightPath	0	0
Acceleration	0.0768	0.1134

Continuous-time model.

```

2 Order the states in alphabetical order by typing the following commands:
```

[y,P]=sort(ssF8.StateName);
sys=xperm(ssF8,P)

```

These commands return:
```

a =

	AOA	PitchAngle	PitchRate	Velocity
AOA	-1.4	0	1	-0.0057
PitchAngle	0	0	1	0
PitchRate	-12.2	0	-0.7	-0.0458
Velocity	-0.2904	-0.562	0	-0.014

b =

	Elevator	Flaperon
AOA	-0.14	-0.72
PitchAngle	0	0
PitchRate	-19.1	-3.1
Velocity	-0.0119	-0.0096

c =

	AOA	PitchAngle	PitchRate	Velocity
FlightPath	-1	1	0	0
Acceleration	0.733	0	0	0

d =

	Elevator	Flaperon
FlightPath	0	0
Acceleration	0.0768	0.1134

```

\section*{Continuous-time model}

The states in ssF8 now appear in alphabetical order.
See Also ss \| dss

\section*{Purpose Zeros and gain of SISO dynamic system}
```

Syntax $\quad z=$ zero(sys)
[z,gain] = zero(sys)
[z,gain] = zero(sysarr,J1,...,JN)

```

Description

Input Arguments

\section*{Output}

Arguments
z = zero(sys) returns the zeros of the single-input, single-output (SISO) dynamic system model, sys.
[z,gain] = zero(sys) also returns the overall gain of sys.
[z,gain] = zero(sysarr, J1, ..., JN) returns the zeros and gain of the model with subscripts \(J 1, \ldots, J N\) in the model array sysarr.
sys
SISO dynamic system model.
If sys has internal delays, zero sets all internal delays to zero, creating a zero-order Padé approximation. This approximation ensures that the system has a finite number of zeros. zero returns an error if setting internal delays to zero creates singular algebraic loops.

\section*{sysarr}

Array of dynamic system models.

\section*{J1,...,JN}

Indices identifying the model sysarr \((\mathrm{J} 1, \ldots, \mathrm{JN})\) in the array sysarr.

\section*{z}

Column vector containing the locations of zeros in sys. The zero locations are expressed in the reciprocal of the time units of sys. For example, the zeros are in units of \(1 /\) minutes if the TimeUnit property of sys is minutes.

\section*{gain}

Gain of sys (in the zero-pole-gain sense).

\section*{Examples}

Calculate the zero locations and overall gain of the transfer function
```

H(s)=\frac{4.2\mp@subsup{s}{}{2}+0.25s-0.004}{\mp@subsup{s}{}{2}+9.6s+17}.
H = tf([4.2,0.25, -0.004],[1,9.6,17]);
[z,gain] = zero(H)
z =
-0.0726
0.0131
gain =
4.2000

```

The zero locations are expressed in radians per second, because the time unit of the transfer function (H.TimeUnit) is seconds. Change the model time units, and zero returns pole locations relative to the new unit.
```

H = chgTimeUnit(H,'minutes');
[z,gain] = zero(H)
z =
-4.3581
0.7867
gain =
4.2000

```

\title{
Alternatives To calculate the transmission zeros of a multi-input, multi-output system, use tzero.
}

\section*{See Also \\ pole | pzmap | tzero}

\section*{Purpose}

\section*{Syntax} frequencies
```

zgrid
zgrid(z,wn)
zgrid([],[])
zgrid
zgrid([],[])

```

Generate z-plane grid of constant damping factors and natural
zgrid generates, for root locus and pole-zero maps, a grid of constant damping factors from zero to one in steps of 0.1 and natural frequencies from zero to \(п\) in steps of \(п / 10\), and plots the grid over the current axis. If the current axis contains a discrete \(z\)-plane root locus diagram or pole-zero map, zgrid draws the grid over the plot without altering the current axis limits.
zgrid(z,wn) plots a grid of constant damping factor and natural frequency lines for the damping factors and normalized natural frequencies in the vectors \(z\) and wn, respectively. If the current axis contains a discrete \(z\)-plane root locus diagram or pole-zero map, zgrid( \(z, w n\) ) draws the grid over the plot. The frequency lines for unnormalized (true) frequencies can be plotted using
```

zgrid(z,wn/Ts)

```
where Ts is the sample time.
zgrid([],[]) draws the unit circle.
Alternatively, you can select Grid from the right-click menu to generate the same \(z\)-plane grid.

\section*{Examples}

Plot \(z\)-plane grid lines on the root locus for the system
\[
H(z)=\frac{2 z^{2}-3.4 z+1.5}{z^{2}-1.6 z+0.8}
\]
by typing
```

H = tf([2 -3.4 1.5],[1 -1.6 0.8],-1)

```
```

Transfer function:
2 z^2 - 3.4 z + 1.5
z^2 - 1.6 z + 0.8

```
Sampling time: unspecified

To see the z-plane grid on the root locus plot, type
```

rlocus(H)
zgrid
axis('square')

```


See Also
pzmap | rlocus | sgrid

\section*{Purpose \\ Syntax \\ Description}

Access zero-pole-gain data
[z,p,k] = zpkdata(sys)
[z,p,k,Ts,Td] = zpkdata(sys)
[z,p,k,Ts,covp,covk] = zpkdata(sys)
[ \(\mathrm{z}, \mathrm{p}, \mathrm{k}]=\) zpkdata(sys) returns the zeros z , poles p , and gain(s) k of the zero-pole-gain model sys. The outputs \(z\) and \(p\) are cell arrays with the following characteristics:
- \(z\) and \(p\) have as many rows as outputs and as many columns as inputs.
- The ( \(i, j\) ) entries \(z\{i, j\}\) and \(p\{i, j\}\) are the (column) vectors of zeros and poles of the transfer function from input \(j\) to output \(i\).

The output k is a matrix with as many rows as outputs and as many columns as inputs such that \(k(i, j)\) is the gain of the transfer function from input \(j\) to output \(i\). If sys is a transfer function or state-space model, it is first converted to zero-pole-gain form using zpk.

For SISO zero-pole-gain models, the syntax
[z,p,k] = zpkdata(sys,'v')
forces zpkdata to return the zeros and poles directly as column vectors rather than as cell arrays (see example below).
\([z, p, k, T s, T d]=z p k d a t a(s y s)\) also returns the sample time Ts.
[ \(\mathrm{z}, \mathrm{p}, \mathrm{k}, \mathrm{Ts}, \operatorname{covp}\), covk] = zpkdata(sys) also returns the covariances of the zeros, poles and gain of the identified model sys. covz is a cell array such that covz\{ky,ku\} contains the covariance information about the zeros in the vector \(z\{k y, k u\}\). \(\operatorname{covz}\{k y, k u\}\) is a 3-D array of dimension 2 -by- 2 -by- Nz , where Nz is the length of \(\mathrm{z}\{\mathrm{ky}, \mathrm{ku}\}\), so that the \((1,1)\) element is the variance of the real part, the \((2,2)\) element is the variance of the imaginary part, and the \((1,2)\) and \((2,1)\) elements contain the covariance between the real and imaginary parts. covp has a similar relationship to \(p\) covk is a matrix containing the variances of the elements of \(k\).

You can access the remaining LTI properties of sys with get or by direct referencing, for example,
sys.Ts
sys.inputname

\section*{Examples Example 1}

Given a zero-pole-gain model with two outputs and one input
```

H = zpk({[0];[-0.5]},{[0.3];[0.1+i 0.1-i]},[1;2],-1)
Zero/pole/gain from input to output...
z
\#1: -------
(z-0.3)
2(z+0.5)
\#2: -----------------
(z^2 - 0.2z + 1.01)

```
Sampling time: unspecified
you can extract the zero/pole/gain data embedded in H with
[z,p,k] = zpkdata(H)
z =
    [ 0]
    [-0.5000]
\(p=\)
    [ 0.3000 ]
    [2x1 double]
k =
    1
    2

To access the zeros and poles of the second output channel of H , get the content of the second cell in \(z\) and \(p\) by typing
```

z{2,1}
ans =
-0.5000
p{2,1}
ans =
0.1000+ 1.0000i
0.1000-1.0000i

```

\section*{Example 2}

Extract the ZPK matrices and their standard deviations for a 2-input, 1 output identified transfer function.
```

load iddata7

```
transfer function model
```

sys1 = tfest(z7, 2, 1, 'InputDelay',[1 0]);

```
an equivalent process model
```

sys2 = procest(z7, {'P2UZ', 'P2UZ'}, 'InputDelay',[1 0]);
1, p1, k1, ~, dz1, dp1, dk1] = zpkdata(sys1);
[z2, p2, k2, ~, dz2, dp2, dk2] = zpkdata(sys2);

```

Use iopzplot to visualize the pole-zero locations and their covariances
```

h = iopzplot(sys1, sys2);
showConfidence(h)

```

See Also
get | ssdata | tfdata | zpk
zpkdata

\section*{Block Reference}

\author{
Data Import and Processing (p. 3-2) Blocks for transferring data between System Identification Toolbox and Simulink software \\ Linear Model Identification (p. 3-3) Blocks for estimating linear models during simulation in Simulink software \\ Simulation (p. 3-4) \\ Blocks for simulating and predicting linear and nonlinear model output in Simulink software
}

\section*{Data Import and Processing}

\author{
IDDATA Sink \\ IDDATA Source
}

Export iddata object to MATLAB workspace

Import iddata object from MATLAB workspace

\section*{Linear Model Identification}
\begin{tabular}{ll} 
AR Estimator & \begin{tabular}{l} 
Estimate parameters of AR model \\
from scalar time series in Simulink \\
software returning idpoly object
\end{tabular} \\
ARMAX Estimator & \begin{tabular}{l} 
Estimate parameters of ARMAX \\
model from SISO data in Simulink \\
software returning idpoly object
\end{tabular} \\
ARX Estimator & \begin{tabular}{l} 
Estimate parameters of ARX model \\
from SISO data in Simulink software \\
returning idpoly object
\end{tabular} \\
BJ Estimator & \begin{tabular}{l} 
Estimate parameters of Box-Jenkins \\
model from SISO data in Simulink
\end{tabular} \\
OE Estimator & \begin{tabular}{l} 
software returning idpoly object
\end{tabular} \\
& \begin{tabular}{l} 
Estimate parameters of \\
Output-Error model from SISO \\
data in Simulink software returning
\end{tabular} \\
idpoly object
\end{tabular}

\section*{Simulation}
\begin{tabular}{ll} 
IDMODEL Model & \begin{tabular}{l} 
Simulate idmodel object in Simulink \\
software
\end{tabular} \\
IDNLARX Model & \begin{tabular}{l} 
Simulate nonlinear ARX model in \\
Simulink software
\end{tabular} \\
IDNLGREY Model & \begin{tabular}{l} 
Simulate nonlinear grey-box model \\
in Simulink software
\end{tabular} \\
IDNLHW Model & \begin{tabular}{l} 
Simulate Hammerstein-Wiener \\
model in Simulink software
\end{tabular}
\end{tabular}

Blocks - Alphabetical List

\section*{AR Estimator}

\section*{Purpose}

\section*{Library}

Description


\section*{Model Definition}

Estimate parameters of AR model from scalar time series in Simulink software returning idpoly object

System Identification Toolbox
The AR Estimator block estimates the parameters of an AR model for a scalar time series and returns the model as an idpoly object. A time series is time-domain data consisting of one or more outputs \(y(t)\) and no corresponding measured input.

For information about the default algorithm settings used for model estimation, see arOptions.

Each estimation generates a figure with the following plots:
- Actual (measured) output versus the simulated or predicted model output.
- Error in simulated model, which is the difference between the measured output and the model output.

The AR model is defined, as follows:
\[
y(t)+a_{1} y(t-1)+\cdots+a_{n_{a}} y\left(t-n_{a}\right)=e(t)
\]
where
- \(y(t)\) is the output at time \(t\).
- \(a_{1} \cdots a_{n}\) are the parameters to be estimated from the data.
- \(n_{a}\) is the number of poles of the system.
- \(y(t-1) \ldots y\left(t-n_{a}\right)\) are the previous outputs on which the current output depends.
- \(e(t)\) is white-noise disturbance.

\section*{AR Estimator}

The AR model can be written compactly for a single output \(y(t)\) using the following notation:
\[
A(q) y(t)=e(t)
\]
where \(A(q)=1+a_{1} q^{-1}+\cdots+a_{n_{a}} q^{-n_{a}}\) and \(q^{-1}\) is the backward shift operator defined by \(q^{-1} u(t)=u(t-1)\).

The following block diagram shows the AR model structure.


Time-series signal.

The AR Estimator block outputs a sequence of multiple models (idpoly objects), estimated at regular intervals during the simulation. The Data window field in the block parameter dialog box specifies the number of data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in the block parameter dialog box.

\section*{AR Estimator}

Dialog Box

Sink Block Parameters: AutoRegressive model estimator \(x\)
AR (mask) (link)
Autoregressive model estimator for a scalar valued signal.
Model Name: Enter workspace variable name for resulting models. Leave empty for printout to MATLAB Command Window. Choose prediction-horizon for the plots.

Parameters
Orders of model [na]:
3
How often to update model (samples):
25
Sample time:
0.05

Length of data window (samples):
200
Model name:

Prediction horizon: 1 step prediction

OK
Cancel
Help
Apply

\section*{Orders of model [na]}

Integer \(n_{a}\) corresponds to the number of \(a\) parameters (poles) in the AR model.

\section*{How often to update model (samples)}

Number of input data samples that specify the interval after which to estimate a new model.

\section*{AR Estimator}

Default: 25

\section*{Sample time}

Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must be consistent with this sample time.

\section*{Length of Data Window}

Number of past data samples used to estimate each model. A longer data window should be used for higher-order models. Too small a value might cause poor estimation results, and too large a value leads to slower computation.

Default: 200.

\section*{Model Name}

Name of the model.
Whether you specify the model name determines the output format of the resulting models, as follows:
- If you do not specify a model name, the estimated models display in the MATLAB Command Window in a transfer-function format.
- If you specify a model name, the resulting models are output to the MATLAB workspace as a cell array.

\section*{Prediction horizon}

Specifies the forward-prediction horizon for computing the response K steps in the future, where K is 1,5 , or 10 .

\section*{Examples This example shows how you can use the AR Estimator block in a Simulink model.}

1 Generate sample input and output data.

\section*{AR Estimator}
```

y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);

```

2 Create a new Simulink model, as follows:
- Add the IDDATA Source block and specify y in the Iddata object field of the IDDATA Source block parameter dialog box.
- Add the AR Estimator block to the model and accept default block parameter values.
- Connect the Output port of the IDDATA Source block to the y port of the AR Estimator block.


3 Run the estimation.
The estimated models appear in the MATLAB Command Window every 25 samples.

\section*{See Also Related Commands}
ar
idpoly

\section*{Topics in the System Identification Toolbox User's Guide}

\author{
"Estimating AR and ARMA Models"
}

\section*{ARMAX Estimator}

\section*{Purpose}

\section*{Library}

Description
 Average with eXternal input model estimator

\section*{Model Definition}

Estimate parameters of ARMAX model from SISO data in Simulink software returning idpoly object

System Identification Toolbox
The ARMAX Estimator block estimates the parameters of a single-input and single-output ARMAX model and returns the model as an idpoly object.

For information about the default algorithm settings used for model estimation, see armaxOptions.

Each estimation generates a figure with the following plots:
- Actual (measured) output versus the simulated or predicted model output.
- Error in simulated model, which is the difference between the measured output and the model output.

The ARMAX model is defined, as follows:
\[
\begin{aligned}
& y(t)+a_{1} y(t-1)+\cdots+a_{n_{a}} y\left(t-n_{a}\right)= \\
& b_{1} u(t-1)+\cdots+b_{n_{b}} u\left(t-n_{b}\right)+e(t)+c_{1} e(t-1)+\cdots+c_{n_{c}} e\left(t-n_{c}\right)
\end{aligned}
\]
where
- \(y(t)\) is the output at time \(t\).
- \(a_{1} \cdots a_{n}, b_{1} \cdots b_{n}\), and \(c_{1} \cdots c_{n}\) are the parameters to be estimated.
- \(n_{a}\) is the number of poles of the system.
- \(n_{b}-1\) is the number of zeros of the system.
- \(n_{c}\) is the number of previous error terms on which the current output depends.
- \(n_{k}\) is the number of input samples that occur before the inputs affecting the current output.
- \(y(t-1) \ldots y\left(t-n_{a}\right)\) are the previous outputs on which the current output depends.
- \(u\left(t-n_{k}\right) \ldots u\left(t-n_{k}-n_{b}+1\right)\) are the previous inputs on which the current output depends.
- \(e(t), e(t-1), \cdots e\left(t-n_{c}\right)\) are the white-noise disturbance values on which the current output depends.

The ARMAX model can also be written in a compact way using the following notation:
\[
A(q) y(t)=B(q) u(t)+C(q) e(t)
\]
where
\[
\begin{aligned}
& A(q)=1+a_{1} q^{-1}+\cdots+a_{n_{a}} q^{-n_{a}} \\
& B(q)=b_{1}+b_{2} q^{-1}+\cdots+b_{n_{b}} q^{-n_{b}+1} \\
& C(q)=1+c_{1} q^{-1}+\cdots a_{n_{c}} q^{-n_{c}}
\end{aligned}
\]
and \(q^{-1}\) is the backward shift operator, defined by \(q^{-1} u(t)=u(t-1)\). The following block diagram shows the ARMAX model structure.

\section*{ARMAX Estimator}


Input

Output

The block accepts two inputs, corresponding to the measured input-output data for estimating the model.

First input: Input signal.
Second input: Output signal.
The ARMAX Estimator block outputs a sequence of multiple models (idpoly objects), estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies the number of data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in the block parameter dialog box.

\section*{ARMAX Estimator}


Dialog Box

\section*{Orders of model [na nb nc nk]}

Integers \(n_{a}, n_{b}, n_{c}\), and \(n_{k}\) specify the number of \(A, B\), and \(C\) model parameters and \(n_{k}\) is input-output delay, respectively.

\section*{Calculate after how many points}

Number of input data samples that specify the interval after which to estimate a new model.

Default: 25

\section*{ARMAX Estimator}

\section*{Sample time}

Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must be consistent with this sample time.

\section*{Length of Data Window}

Number of past data samples used to estimate each model. A longer data window should be used for higher-order models. Too small a value might cause poor estimation results, and too large a value leads to slower computation.

Default: 200.

\section*{Model Name}

Name of the model.
Whether you specify the model name determines the output format of the resulting models, as follows:
- If you do not specify a model name, the estimated models display in the MATLAB Command Window in a transfer-function format.
- If you specify a model name, the resulting models are output to the MATLAB workspace as a cell array.

\section*{Simulation/Prediction}

Simulation: The algorithm uses only measured input data to simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for computing the response K steps in the future, where K is 1 , 5 , or 10 .

Examples This example shows how to use the ARMAX Estimator block in a Simulink model.

1 Generate sample input and output data.
```

u = sin([1:300]') + 0.6*(rand(300,1)-0.5);
y = cos(u) + 0.1*rand (300,1);
IODATA = iddata(y,u,1);

```

2 Create a new Simulink model, as follows.
Add the IDDATA Source block and specify IODATA in the Iddata object field of the IDDATA Source block parameters dialog box.

Add the ARMAX Estimator block to the model and set the model orders to [ \(\left.\begin{array}{llll}4 & 4 & 4 & 0\end{array}\right]\) and set the sample time to 1 .

Connect the Input and Output ports of the IDDATA Source block to the \(u\) and y ports of the ARMAX Estimator block, respectively. Set the simulation end time to 300 seconds.


3 Run the simulation.
The estimated models display in the MATLAB Command Window every 25 samples.

\section*{See Also Related Commands}
armax
idpoly

\section*{ARMAX Estimator}

\section*{Topics in the System Identification Toolbox User's Guide}
"Identifying Input-Output Polynomial Models"

\section*{Purpose}

\section*{Library}

Description

AutoRegressive
with eXter nal input model estimator

\section*{Model Definition}

Estimate parameters of ARX model from SISO data in Simulink software returning idpoly object

System Identification Toolbox
The ARX block uses least-squares analysis to estimate the parameters of an ARX model and returns the estimated model as an idpoly object.
For information about the default algorithm settings used for model estimation, see arxOptions.

Each estimation generates a figure with the following plots:
- Actual (measured) output versus the simulated or predicted model output.
- Error in simulated model, which is the difference between the measured output and the model output.

The ARX model is defined, as follows:
\[
y(t)+a_{1} y(t-1)+\cdots+a_{n_{a}} y\left(t-n_{a}\right)=b_{1} u(t-1)+\cdots+b_{n_{b}} u\left(t-n_{k}-n_{b}+1\right)+e(t)
\]
where
- \(y(t)\) is the output at time \(t\).
- \(a_{1} \cdots a_{n}\) and \(b_{1} \cdots b_{n}\) are the parameters to be estimated.
- \(n_{a}\) is the number of poles of the system.
- \(n_{b}-1\) is the number of zeros of the system.
- \(n_{k}\) is the number of input samples that occur before the inputs that affect the current output.
- \(y(t-1) \ldots y\left(t-n_{a}\right)\) are the previous outputs on which the current output depends.

\section*{ARX Estimator}
- \(u\left(t-n_{k}\right) \ldots u\left(t-n_{k}-n_{b}+1\right)\) are the previous inputs on which the current output depends.
- \(e(t)\) is a white-noise disturbance value.

The ARX model can also be written in a compact way using the following notation:
\[
A(q) y(t)=B(q) u\left(t-n_{k}\right)+e(t)
\]
where
\[
\begin{aligned}
& A(q)=1+a_{1} q^{-1}+\cdots+a_{n_{a}} q^{-n_{a}} \\
& B(q)=b_{1}+b_{2} q^{-1}+\cdots+b_{n_{b}} q^{-n_{b}+1}
\end{aligned}
\]
and \(q^{-1}\) is the backward shift operator, defined by \(q^{-1} u(t)=u(t-1)\). The following block diagram shows the ARX model structure.


The block accepts two inputs, corresponding to the measured input-output data for estimating the model.

First input: Input signal.
Second input: Output signal.

The ARX Estimator block outputs a sequence of multiple models (idpoly objects), estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies the number of data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in the block parameter dialog box.

\section*{ARX Estimator}

\section*{Sink Block Parameters: AutoRegressive with eXternal input model e...} \(x^{x}\) ARX (mask) (link)

ARX model estimator.
Hook input 1 to system input.
Hook input 2 to system output.
Model Name: Enter workspace variable name for resulting models.
Leave empty for printout to MATLAB Command Window.
Choose if presented model plots should be for simulation or prediction.

Parameters
Orders of model [na nb nk]:

\section*{[2 21\(]\)}

How often update model (samples):
25
Sample time:
0.05

Length of data window (samples):
200
Model name:

Simulation/Prediction: Simulation

Dialog

\section*{Orders of model [na nb nk]}

Integers \(n_{d}, n_{b}\), and \(n_{k}\) specify the number of \(A\) and \(B\) model parameters and \(n_{k}\) is input-output delay, respectively.

\section*{How often to update model [samples]}

Number of input data samples that specify the interval after which to estimate a new model.

\title{
Default: 25
}

\section*{Sample time}

Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must be consistent with this sample time.

\section*{Length of Data window}

Number of past data samples used to estimate each model. A longer data window should be used for higher-order models. Too small a value might cause poor estimation results, and too large a value leads to slower computation.

Default: 200.

\section*{Model Name}

Name of the model.
Whether you specify the model name determines the output format of the resulting models, as follows:
- If you do not specify a model name, the estimated models display in the MATLAB Command Window in a transfer-function format.
- If you specify a model name, the resulting models are output to the MATLAB workspace as a cell array.

\section*{Simulation/Prediction}

Simulation: The algorithm uses only measured input data to simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for computing the response K steps in the future, where K is 1 , 5 , or 10 .

\section*{ARX Estimator}

\section*{Examples This example shows how you can use the ARX Estimator block in a Simulink model.}

1 Specify the data from iddata1.mat for estimation:
load iddata1;
IODATA = z1;
2 Create a new Simulink model, as follows:
- Add the IDDATA Source block and specify IODATA in the Iddata object field of the IDDATA Source block parameters dialog box.
- Add the ARX Estimator block to the model. Set the sample time in the block to 0.1 seconds and the simulation end time to 30 seconds.
- Connect the Input and Output ports of the IDDATA Source block to the u and y ports of the ARX Estimator block, respectively.


3 Run the simulation.

\section*{See Also Related Commands}
arx
idpoly

\section*{ARX Estimator}

\section*{Topics in the System Identification Toolbox User's Guide}
"Identifying Input-Output Polynomial Models"

\section*{BJ Estimator}

\section*{Purpose}

\section*{Library}

Description


\section*{Model Definition}

Estimate parameters of Box-Jenkins model from SISO data in Simulink software returning idpoly object

System Identification Toolbox
The BJ Estimator block estimates the parameters of a Box-Jenkins model, and returns the estimated model as an idpoly object.
For information about the default algorithm settings used for model estimation, see bjOptions.

Each estimation generates a figure with the following plots:
- Actual (measured) output versus the simulated or predicted model output.
- Error in simulated model, which is the difference between the measured output and the model output.

The Box-Jenkins model is defined, as follows:
\[
y(t)=\frac{B(q)}{F(q)} u\left(t-n_{k}\right)+\frac{C(q)}{D(q)} e(t)
\]
where the coefficients of
\[
\begin{aligned}
& B(q)=b_{1}+b_{2} q^{-1}+\cdots+b_{n_{b}} q^{-n_{b}+1} \\
& F(q)=1+f_{1} q^{-1}+\cdots+f_{n_{f}} q^{-n_{f}} \\
& C(q)=1+c_{1} q^{-1}+\cdots+c_{n_{c}} q^{-n_{c}} \\
& D(q)=1+d_{1} q^{-1}+\cdots+d_{n_{d}} q^{-n_{d}}
\end{aligned}
\]
are the parameters being estimated, and \(q^{-1}\) is the backward shift operator defined by \(q^{-1} u(t)=u(t-1)\).

The following block diagram shows the Box-Jenkins model structure.

\section*{BJ Estimator}


Input

Output

The block accepts two inputs, corresponding to the measured input-output data for estimating the model.
First input: Input signal.
Second input: Output signal.
The BJ Estimator block outputs a sequence of multiple models (idpoly), estimated at regular intervals during the simulation.
The Data window field in the block parameter dialog box specifies the number of data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in the block parameter dialog box.

Sink Block Parameters: Box-Jenkins model estimator
BJ (mask) (link)
Box-Jenkins model estimator.
Hook input 1 to system input.
Hook input 2 to system output.
Model Name: Enter workspace variable name for resulting models.
Leave empty for printout to MATLAB Command Window.
Choose if presented model plots should be for simulation or prediction.

Parameters
Orders of model [nb nc nd nf nk]:

\section*{[2221]}

How often to update model (samples):
25
Sample time:
0.05

Length of data window:
200
Model name:

Simulation/Prediction:
Simulation

OK
Cancel
Help
Apply
Dialog

\section*{Orders of model [nb nc nd nf nk]}

Integers \(n_{b}, n_{c}, n_{d}\), and \(n_{f}\) specify the number of \(B, C, D\), and \(F\) model parameters, respectively.

Integer \(n_{k}\) specifies the input-output delay.

\section*{Calculate after how many points}

Number of input data samples that specify the interval after which to estimate a new model.

Default: 25

\section*{Sample time}

Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must be consistent with this sample time.

\section*{Length of data window}

Number of past data samples used to estimate each model. A longer data window should be used for higher-order models. Too small a value might cause poor estimation results, and too large a value leads to slower computation.

Default: 200.

\section*{Model name}

Name of the model.
Whether you specify the model name determines the output format of the resulting models, as follows:
- If you do not specify a model name, the estimated models display in the MATLAB Command Window in a transfer-function format.
- If you specify a model name, the resulting models are output to the MATLAB workspace as a cell array.

\section*{Simulation/Prediction}

Simulation: The algorithm uses only measured input data to simulate the response of the model.

\section*{BJ Estimator}

Prediction: Specifies the forward-prediction horizon for computing the response K steps in the future, where K is 1,5 , or 10 .

\section*{Examples}

This example shows how you can use the BJ Estimator block in a Simulink model.

1 Specify the data in iddata1. mat for estimation:
load iddata1;
IODATA = z1;

2 Create a new Simulink model, as follows:
- Add the IDDATA Source block and specify IODATA in the Iddata object field of the IDDATA Source block parameters dialog box.
- Add the BJ Estimator block to the model. Set the sample time in the block to 0.1 seconds and the simulation end time to 30 seconds.
- Connect the Input and Output ports of the IDDATA Source block to the \(u\) and y ports of the BJ Estimator block, respectively.


3 Run the simulation.
The estimated models appear in the MATLAB Command Window every 25 samples.

\section*{BJ Estimator}

See Also Related Commands
bj
idpoly

\section*{Topics in the System Identification Toolbox User's Guide}
"Identifying Input-Output Polynomial Models"
\begin{tabular}{ll} 
Purpose & Export iddata object to MATLAB workspace \\
Library & \begin{tabular}{l} 
System Identification Toolbox
\end{tabular} \\
Description & \begin{tabular}{l} 
The IDDATA Sink block exports an iddata object to the MATLAB \\
workspace.
\end{tabular} \\
\begin{tabular}{ll} 
Input \\
Input \\
IDDATA SINK
\end{tabular} & \begin{tabular}{l} 
The first block input is the input of specified iddata object in the \\
MATLAB workspace. Similarly, the second block input is the output of \\
the specified iddata object.
\end{tabular} \\
& \begin{tabular}{l} 
Output
\end{tabular} \\
& None.
\end{tabular}

\section*{IDDATA Sink}

\section*{Dialog Box}
```

涼 Sink Block Parameters: Iddata Sink
IDDATA Sink (mask) (link)

Export simulation data to workspace as IDDATA object. The object stores input and output signals sampled at the specified sample time when simulation stops. The object is created in the MATLAB base workspace when simulating from the model window or caller workspace when simulating programmatically.

Specify the variable name in "IDDATA Name". Specify a positive number, representing the sampling interval, in "Sample Time".

Parameters
IDDATA Name
data
Sample Time (sec.)
0.1

OK
Cancel
Help
Apply

IDDATA Name

Name of the iddata object in the MATLAB workspace.

Sample Time (sec.)

Time interval (in seconds) between successive data samples.

See Also

IDDATA Source

Purpose

Import iddata object from MATLAB workspace

Library

Description

System Identification Toolbox
The IDDATA Source block imports an iddata object from the MATLAB workspace.
Input
None.

Output

The first block output is the input signal of the iddata object imported from the MATLAB workspace.

The second block output is the output signal of this iddata object.

IDDATA Source

Iddata object

Name of the iddata object imported from the MATLAB workspace.

The iddata object must contain only one experiment. For a multiple-experiment object, use getexp (data, kexp) to specify the experiment number kexp.

See Also

IDDATA Sink

IDMODEL Model

Purpose
 Simulate idmodel object in Simulink software

Library

System Identification Toolbox

Description

Idmodel

The IDMODEL block simulates a linear model in the MATLAB workspace.

Note For simulating nonlinear models, use the IDNLGREY, IDNLARX, or IDNLHW Model blocks.

Input

Input signal to the model.

Output

Simulated output from the model.

IDMODEL Model

```
-1 Function Block Parameters: Idmodel
Idmodel Block (mask) (link)
Enter any linear identified model name (idpoly, idss, idtf, idgrey or
idproc).
For simulations with noise, Seed(s) may be left empty for random
restarts.
Enter as many seeds as there are outputs for specific realizations.
Parameters
Model variable
idss(-1,1,1,0)
Initial state (state space only: column vector)
0
Add noise
Noise seed(s). Default empty
```


idmodel variable

Name of idmodel variable in the MATLAB workspace, which can be an idpoly, idss, idgrey, idarx or idproc model object that you estimated using System Identification Toolbox software.

This block supports both continuous-time and discrete-time models with or without input-output delays.

Initial state (state space only)

Initial state vector.
(Default) 'z' (in quotation marks) specifies zero, which corresponds to a simulation starting from a state of rest.

IDMODEL Model

Enter ' m ' to use the internal initial states of the model, stored by the idss or idgrey model property Xo .

To specify your own initial states, enter one of the following:

- Enter known initial states for a state-space model directly, as a numerical vector.

Note For non-state-space models, the initial conditions are 0.

- Compute the initial states using the findstates(idParametric) command to get the initial state values that produce the best fit between the model output and the measured output signal.

For example, if the data set z and model m are already in the MATLAB workspace, you can enter XO, such that:

XO = findstates(m,z1)

Add noise

Select when you need to add noise, as specified by the model property model. NoiseVariance and the matrices or polynomials that determine the color of the additive noise.

For continuous-time models, the ideal variance of the noise term at any moment is infinite. In reality, you see a band-limited noise that takes into account the natural time constants of the system. You can interpret the resulting simulated output as filtered using a low-pass filter with a pass-band that does not distort the dynamics from the input.

Noise seed(s)

(Use when you select the Add noise check box.)
Enter an integer that specifies a seed that forces the simulation to add the same noise to the output every time you simulate the

IDMODEL Model

model. For more information about using seeds with functions that generate random number sequences, see the rand reference page in MATLAB documentation, for example.

See Also findstates(idParametric)
idmodel

IDNLARX Model

Purpose	Simulate nonlinear ARX model in Simulink software
Library	System Identification Toolbox
Description	The IDNLARX Model block simulates a nonlinear ARX (idnlarx) model for time-domain input and output data.
IDNLARX mODEL	
Input	Input signal to the model.
Output	Simulated output from the model.

IDNLARX Model

Model

Name of idnlarx variable in the MATLAB workspace.

Initial conditions

Specifies the initial states as one of the following:

- Input and output values: Specify the input and output levels, as follows:

- Input level

IDNLARX Model

If known, enter a vector of length equal to the number of model inputs. If you enter a scalar, it is the signal value for all inputs.

- Output level

If known, enter a vector of length equal to the number of model's outputs. If you enter a scalar, it is the signal value for all outputs.

- State values: When selected, you must specify a vector of length equal to the number of states in the model in the Vector of state values field.

If you do not know the initial states, you can estimate these states, as follows:

- To simulate around a given input level when you do not know the corresponding output level, you can estimate the equilibrium state values using the findop(idnlarx) command.

For example, to simulate a model M about a steady-state point where the input is 1 and the output is unknown, you can enter XO, such that:

XO = findop(M,'steady', $1, \mathrm{NaN}$)

- To estimate the initial states that provide a best fit between measured data and the simulated response of the model for the same input, use the findstates(idnlarx) command.

For example, to compute initial states such that the response of the model M matches the output data in the data set z, you can enter XO, such that:

XO = findstates(M,z,[],'sim')

- To continue a simulation from a previous run, use the simulated input-output values from the previous simulation to compute the initial states XO for the current simulation.

IDNLARX Model

For example, suppose that firstSimData is a variable that stores the input and output values from a previous simulation. For a model M, you can enter XO, such that:

XO = data2state(M,firstSimData)

Examples
 Example 1

In this example, you estimate a nonlinear ARX model from data and compare the model output to the measured output of the system.

1 Load the sample data.
load twotankdata
2 Create a data object from sample data.

```
z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000);
```

3 Estimate a nonlinear ARX model.

```
mw1 = nlarx(z1,[5 1 3],wavenet('NumberOfUnits',8));
```

4 Build the following Simulink model using the IDDATA Source, IDNLARX Model, and Scope blocks.

5 Double-click the IDDATA Source block and enter the following into the block parameter dialog box:

IDNLARX Model

IDDATA Object: z1

Click OK.

6 Double-click the IDNLARX Model block and enter the following into the block parameter dialog box:

- Model: mw1
- Initial conditions: Select Input and output values and accept the default values.

7 Run the simulation.
Click the Scope block to view the difference between the measured output and the model output. Use the Autoscale command to scale the axes.

Example 2

In this example, you reduce the difference between the measured and simulated responses. To achieve this, you use the findstates command to estimate an initial state vector for the model from the data.

1 Estimate initial states from the data z1.
x0 = findstates(mw1,z1,[],'simulation');
2 Set the Initial Conditions to State Values. Enter x0 in the corresponding field.

3 Run the simulation.

See Also Related Commands

```
findop(idnlarx)
findstates(idnlarx)
idnlarx
```


IDNLARX Model

Topics in the System Identification Toolbox User's Guide

"Identifying Nonlinear ARX Models"

Purpose

Simulate nonlinear grey-box model in Simulink software

Library

Description

System Identification Toolbox
Simulates systems of nonlinear grey-box (idnlgrey) models.

Input

Input signal to the model.

Output

Output signal from the model.

Dialog

 Box

IDNLGREY model

Name of idnlgrey variable in the MATLAB workspace.

Initial state

Specify the initial states as one of the following:

- 'z': Specifies zero, which corresponds to a system starting from rest.
- 'm': Specifies the internal initial states of the model.

IDNLGREY Model

- Vector of size equal to the number of states in the idnlgrey object.
- An initial state structure array. For information about creating this structure, type help idnlgrey/sim in the MATLAB Command Window.

See Also Related Commands

idnlgrey

Topics in the System Identification Toolbox User's Guide

"Estimating Nonlinear Grey-Box Models"

IDNLHW Model

Purpose	Simulate Hammerstein-Wiener model in Simulink software
Library	System Identification Toolbox
Description	The IDNLHW Model block simulates a Hammerstein-Wiener (idnlhw) model for time-domain input and output data.
IDNLHW modec	Input signal to the model.
Output	Simulated output from the model.

IDNLHW Model

Hammerstein-Wiener Model (mask) (link)
Simulate a Hammerstein-Wiener (idnlhw) model. Specify the name of an estimated idnlhw model for "Model". Specify initial conditions for simulation as one of the following:

1. String "zero" to use a value of zero for all initial state values. 2. Double vector representing the initial states of the linear block of the model. Click on Help button for information on how to determine initial states from various requirements.
Parameters
Model
[]
Initial conditions: Zero

Dialog Box

Model

Name of the idnlhw variable in the MATLAB workspace.

Initial conditions

Specifies the initial states as one of the following:

- Zero: Specifies zero, which corresponds to a simulation starting from a state of rest.
- State values: When selected, you must specify a vector of length equal to the number of states in the model in the Specify a vector of state values field.

If you do not know the initial states, you can estimate these states, as follows:

IDNLHW Model

- To simulate around a given input level when you do not know the corresponding steady-state output level, you can estimate the equilibrium state values using the findop(idnlhw) command.

For example, to simulate a model M about a steady-state point where the input is 1 and the output is unknown, you can enter XO, such that:

```
XO = findop(M,'steady',1,NaN)
```

- To estimate the initial states such that the simulated response of the model matches specified output data for the same input, use the findstates (idnlhw).

For example, for the data set z and model m, you can enter X0, such that:
X0 = findstates(m,z)

Examples Example 1

In this example, you estimate a Hammerstein-Wiener model from data and compare the model output of the model to the measured output of the system.

1 Load the sample data.
load twotankdata
2 Create a data object from sample data.

```
z = iddata(y,u,0.2, ...
    'Name','Two tank system',...
    'Tstart',0);
```

3 Estimate a Hammerstein-Wiener model.

```
mhw1 = nlhw(z,[1 5 3],pwlinear,pwlinear);
```


IDNLHW Model

4 Build the following Simulink model using the IDDATA Source, IDNLHW Model, and Scope blocks.

5 Double-click the IDDATA Source block and enter the following into the block parameter dialog box:

- IDDATA Object: z

Click OK.
6 Double-click the IDNLHW Model block and enter the following into the block parameter dialog box:

- Model: mhw1
- Initial Conditions: Zero

7 Run the simulation.
Click the Scope block to view the difference between the measured output and the model output. Use the Autoscale toolbar button to scale the axes.

Example 2

In this example, you reduce the difference between the measured and simulated responses using suitable initial state values. To achieve this, you use the findstates command to estimate an initial state vector for the model from the data.

1 Estimate initial states from the data z:

IDNLHW Model

 x0 = findstates(mhw1,z,[],'maxiter',50);
 2 Set the Initial Conditions to State Values. Enter x0 in the
 corresponding field.
 3 Run the simulation.

See Also Related Commands

```
    findop(idnlhw)
    findstates(idnlhw)
    idnlhw
```


Topics in the System Identification Toolbox User's Guide

"Identifying Hammerstein-Wiener Models"

Purpose

Library
Description

Model Definition

Estimate parameters of Output-Error model from SISO data in Simulink software returning idpoly object

System Identification Toolbox
The OE block estimates the parameters of an Output-Error model, and returns the estimated model as an idpoly object.
For information about the default algorithm settings used for model estimation, see oeOptions.

Each estimation generates a figure with the following plots:

- Actual (measured) output versus the simulated or predicted model output.
- Error in simulated model, which is the difference between the measured output and the model output.

The output-error model is defined, as follows:

$$
\begin{aligned}
& w(t)+f_{1} w(t-1)+\cdots+f_{n_{f}} w\left(t-n_{f}\right)=b_{1} u(t-1)+\cdots+b_{n_{b}} u\left(t-n_{k}-n_{b}+1\right) \\
& y(t)=w(t)+e(t)
\end{aligned}
$$

where

- w is the undisturbed output.
- $y(t)$ is the output at time t.
- $f_{1} \cdots f_{n_{f}}$ and $b_{1} \cdots b_{n_{b}}$ are the parameters to be estimated.
- n_{f} is the number of poles of the transfer function from the input to the undisturbed output.
- $n_{b}+1$ is the number of zeros of the transfer function from the input to the undisturbed output.
- n_{k} is the number of input samples that occur before the inputs that affect the current output.
- $u\left(t-n_{k}\right) \ldots u\left(t-n_{k}-n_{b}+1\right)$ are the previous inputs on which the current output depends.
- $e(t)$ is a white-noise disturbance value.

The OE model can also be written in a compact way using the following notation:

$$
y(t)=\frac{B(q)}{F(q)} u\left(t-n_{k}\right)+e(t)
$$

where

$$
\begin{aligned}
& B(q)=b_{1}+b_{2} q^{-1}+\cdots+b_{n_{b}} q^{-n_{b}+1} \\
& F(q)=1+f_{1} q^{-1}+\cdots f_{n_{f}} q^{-n_{f}}
\end{aligned}
$$

and q^{-1} is the backward shift operator, defined by $q^{-1} u(t)=u(t-1)$. The following block diagram shows the ARX model structure.

The block accepts two inputs, corresponding to the measured input-output data for estimating the model.

First input: Input signal.
Second input: Output signal.

The OE Estimator block outputs a sequence of multiple models (idpoly), estimated at regular intervals during the simulation.
The Length of Data window field in the block parameter dialog box specifies the number of data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in the block parameter dialog box.

OE Estimator

Sink Block Parameters: Output-error model estimator
OE (mask) (link)
Output-error model estimator.
Hook input 1 to system input.
Hook input 2 to system output.
Model Name: Enter workspace variable name for resulting models.
Leave empty for printout to MATLAB Command Window.
Choose if presented model plots should be for simulation or prediction.

Parameters
Orders of model [nb nf nk]:

[2 21$]$

How often to update model (samples):
25
Sample time:
0.05

Length of data window (samples):
200
Model name:

Simulation/Prediction:
Simulation

Orders of model [$\mathbf{n b} \mathbf{n f} \mathbf{n k}$]

Integers n_{b}, n_{f}, and n_{k} specify the number of B and F model parameters and n_{k} is the input-output delay, respectively.

How often to update model

Number of input data samples that specify the interval after which to estimate a new model.

Default: 25

Sample time

Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must be consistent with this sample time.

Length of Data Window

Number of past data samples used to estimate each model. A longer data window should be used for higher-order models. Too small a value might cause poor estimation results, and too large a value leads to slower computation.

Default: 200.

Model Name

Name of the model.
Whether you specify the model name determines the output format of the resulting models, as follows:

- If you do not specify a model name, the estimated models display in the MATLAB Command Window in a transfer-function format.
- If you specify a model name, the resulting models are output to the MATLAB workspace as a cell array.

Simulation/Prediction

Simulation: The algorithm uses only measured input data to simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for computing the response K steps in the future, where K is 1,5 , or 10 .

OE Estimator

Examples This example shows how you can use the OE Estimator block in a Simulink model.

1 Specify the data from iddata1.mat for estimation:
load iddata1;
IODATA = z1;
2 Create a new Simulink model, as follows:

- Add the IDDATA Source block and specify IODATA in the Iddata object field of the IDDATA Source block parameters dialog box.
- Add the OE Estimator block to the model. Set sample time in the block to 0.1 seconds and the simulation end time to 30 seconds.
- Connect the Input and Output ports of the IDDATA Source block to the u and y ports of the OE Estimator block, respectively.

3 Run the simulation.
The estimated models appear in the MATLAB Command Window every 25 samples.

See Also Related Commands

oe
idpoly

Topics in the System Identification Toolbox User's Guide

"Identifying Input-Output Polynomial Models"

PEM Estimator

Purpose

Library

Description
 Predictive Error Method

Model Definition

Input

$$
A y(t)=\frac{B}{F} u(t-N k)+\frac{C}{D} e(t)
$$

where

- $y(t)$ is the output at time t.
- A, B, F, C, and D are the parameters $a_{1} \ldots a_{n a}, b_{1} \cdots b_{n_{b}}, f_{1} \cdots f_{n_{f}}$, $c_{1} \cdots c_{n_{c}}$ and $d_{1} \cdots d_{n_{d}}$ to be estimated.
- $e(t)$ is a white-noise disturbance.

Estimate generic input-output polynomial model parameters from SISO data using iterative prediction-error minimization method

System Identification Toolbox
The PEM Estimator block estimates linear input-output polynomial models in Simulink software.

Each estimation generates a figure with the following plots:

- Actual (measured) output versus the simulated or predicted model output.
- Error in simulated model, which is the difference between the measured output and the model output.

The input-output polynomial structure is defined, as follows:

The block accepts two inputs, corresponding to the measured input-output data for estimating the model.
First input: Input signal.
Second input: Output signal.

PEM Estimator

Output

The PEM Estimator block outputs a sequence of multiple models (idpoly objects), estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies the number of data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in the block parameter dialog box.

Sink Block Parameters: General model estimator using Predictive Er...
PEM (mask) (link)
General SISO polynomial model estimator.
Hook input 1 to system input.
Hook input 2 to system output.
Model Name: Enter workspace variable name for resulting models.
Leave empty for printout to MATLAB Command Window.
Choose if presented model plots should be for simulation or prediction.

Parameters
Orders of model [na nb nc nd nf nk]:

[2 22221 1]

How often to update model (samples):
25
Sample time:
0.05

Length of data window (samples):
200
Model name:

Simulation/Prediction: Simulation

Dialog

Orders of model [na nb nc nd nf nk]

Integers $n_{d}, n_{b}, n_{c}, n_{d}, n_{f}$, and n_{k}, specify the number of A, B, C, D, and F model parameters n_{k} is the input-output delay, respectively.

Calculate after how many points

Number of input data samples that specify the interval after which to estimate a new model.

Default: 25

Sample time

Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must be consistent with this sample time.

Length of Data Window

Number of past data samples used to estimate each model. A longer data window should be used for higher-order models. Too small a value might cause poor estimation results, and too large a value leads to slower computation.

Default: 200.

Model Name

Name of the model.
Whether you specify the model name determines the output format of the resulting models, as follows:

- If you do not specify a model name, the estimated models display in the MATLAB Command Window in a transfer-function format.
- If you specify a model name, the resulting models are output to the MATLAB workspace as a cell array.

Simulation/Prediction

Simulation: The algorithm uses only measured input data to simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for computing the response K steps in the future, where K is 1,5 , or 10 .

Examples This example shows how you can use the PEM Estimator block in a

 Simulink model.1 Specify data in iddata1.mat for estimation:
load iddata1;
IODATA = z1;
2 Create a new Simulink model, as follows.
Add the IDDATA Source block and specify IODATA in the Iddata object field of the IDDATA Source block parameters dialog box.

Add the PEM Estimator block to the model. Set the sample time in the block to 0.1 seconds and the simulation end time to 30 seconds.

Connect the Input and Output ports of the IDDATA Source block to the u and y ports of the PEM Estimator block, respectively.

3 Run the simulation.
The estimated models display in the MATLAB Command Window every 25 samples.

See Also Related Commands

idpoly
pem

PEM Estimator

Topics in the System Identification Toolbox User's Guide

"Identifying Input-Output Polynomial Models"

A

adaptive noise canceling 2-756
append 2-10

B

bodemag (Bode magnitude plots) 2-92

C

c2d 2-103
cell array 2-249
continuous-time
conversion to.. See conversion, model
conversion, model
discrete to continuous (d2c) 2-158
with negative real poles $2-162$
resampling
discrete models 2-167

D

d2c 2-158
d2d 2-167
dB to magnitude 2-178
db2mag 2-178 2-570
dcgain 2-179
dead time. See delays
delays
combining 2-964
existence of, test for 2-287
hasdelay $2-287$
Dirac impulse 2-486
discretization
available methods 2-113 2-169

E

evalfr 2-189

F

filt 2-239
first-order hold (FOH) 2-113
FRD (frequency response data) objects
data 2-239
frdata 2-239
frdata 2-239
freqresp 2-241
frequency response
at single frequency (evalfr) 2-189
frequency response function $2-844$

G

gain
low frequency (DC) 2-179
get 2-248

H

hasdelay 2-287

I

impulse 2-486
impulse response $2-486$
input
Dirac impulse 2-486
isempty 2-520
isproper 2-521
issiso 2-526

L

lsim 2-560
LTI properties
accessing property values (get) 2-248
displaying properties 2-248
property names 2-248 2-784
property values 2-248 2-784
setting 2-784

M

magnitude to dB 2-570
matched pole-zero 2-113
MIMO 2-486
model building
appending LTI models 2-10

N

numerator
value 2-249
nyquist 2-627

0

operations on LTI models
append 2-10
diagonal building 2-10

P

plotting
s-plane grid (sgrid) 2-801
z-plane grid (zgrid) 2-995
pole 2-682
pole-zero
map (pzmap) 2-742
poles
computing 2-682
multiple 2-682
pole-zero map 2-742
s-plane grid (sgrid) 2-801
z-plane grid (zgrid) 2-995
pzmap 2-742

R

realization
state coordinate transformation 2-866
resampling (d2d) 2-167

S

sample time
resampling 2-167
set 2-784
simulation of linear systems.. See time response
stability margins
pole 2-682
pzmap 2-742
state
transformation 2-866
state-space models
state order 2-989
step response 2-901

T

time response
impulse response (impulse) 2-486
MIMO 2-486
response to arbitrary inputs (lsim) 2-560
step response (step) 2-901
totaldelay 2-964
transfer functions
quick data retrieval (tfdata) 2-919
transmission zeros.. See zeros
triangle approximation 2-113
Tustin approximation 2-113 2-169
with frequency prewarping 2-113 2-169
tzero. . See zero

Z

zero 2-992
zero-order hold (ZOH) 2-113 2-169
zero-pole-gain (ZPK) models
quick data retrieval (zpkdata) 2-997
zeros
computing 2-992
pole-zero map 2-742
transmission 2-992

[^0]: References

 See Also arOptions | idpoly | arx | etfe | ivar | pem | spa | forecast

[^1]: See Also ar

[^2]: Examples Define custom regressors as a cell array of strings:

    ```
    load iddata1
    m = nlarx(z1,[2 2 1]);
    C={'u1(t-1)*sin(y1(t-3))','u1(t-2)^3'};
    % u1 and y1 are system input and output
    m.CustomRegressors = C;
    m=pem(z1,m)
    ```

[^3]: See Also

    ```
    eig | esort | dsort | pole | pzmap | zero
    ```

[^4]: Alternatives Use evalfr to evaluate the frequency response at individual frequencies or small numbers of frequencies. freqresp is optimized for medium-to-large vectors of frequencies.

[^5]: See Also
 nkshift | rarmax | rarx | rbj | rpem | rplr

[^6]: See Also
 sim

[^7]: simsdOptions | getcov | sim | rsample | showConfidence

